Vanis L, Gentilcore D, Hausken T, Pilichiewicz AN, Lange K, Rayner CK, Feinle-Bisset C, Meyer JH, Horowitz M, Jones KL. Effects of gastric distension on blood pressure and superior mesenteric artery blood flow responses to intraduodenal glucose in healthy older subjects.
Am J Physiol Regul Integr Comp Physiol 2010;
299:R960-7. [PMID:
20554933 DOI:
10.1152/ajpregu.00235.2010]
[Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Postprandial hypotension occurs frequently and is associated with increased morbidity. Gastric distension may attenuate the postprandial fall in blood pressure (BP). Using a barostat, we sought to determine the effects of gastric distension on BP, heart rate (HR), and superior mesenteric artery (SMA) blood flow responses to intraduodenal glucose in eight (6 men, 2 women) healthy older (65-75 yr old) subjects. BP and HR were measured using an automated device and SMA blood flow was measured using Doppler ultrasound on 4 days in random order. SMA blood flow was calculated using the radius of the SMA and time-averaged mean velocity. Subjects were intubated with a nasoduodenal catheter incorporating a duodenal infusion port. On 2 of the 4 days, they were intubated orally with a second catheter, incorporating a barostat bag, positioned in the fundus and set at 8 mmHg above minimal distending pressure. Each subject received a 60-min (0-60 min) intraduodenal infusion of glucose (3 kcal/min) or saline (0.9%); therefore, the four study conditions were as follows: intraduodenal glucose + barostat (glucose + distension), intraduodenal saline + barostat (saline + distension), intraduodenal glucose (glucose), and intraduodenal saline (saline). Systolic and diastolic BP fell during glucose compared with saline (P = 0.05 and P = 0.003, respectively) and glucose + distension (P = 0.01 and P = 0.05, respectively) and increased during saline + distension compared with saline (P = 0.04 and P = 0.006, respectively). The maximum changes in systolic BP were -14 +/- 5, +11 +/- 2, -3 +/- 4, and +15 +/- 3 mmHg for glucose, saline, glucose + distension, and saline + distension, respectively. There was an increase in HR during glucose and glucose + distension (maximum rise = 14 +/- 2 and 14 +/- 3 beats/min, respectively), but not during saline or saline + distension. SMA blood flow increased during glucose and glucose + distension (2,388 +/- 365 and 1,673 +/- 187 ml/min, respectively), but not during saline, and tended to decrease during saline + distension (821 +/- 115 and 864 +/- 116 ml/min, respectively). In conclusion, gastric distension has the capacity to abolish the fall in BP and attenuate the rise in SMA blood flow induced by intraduodenal glucose in healthy older subjects.
Collapse