1
|
Pais R, Rievaj J, Larraufie P, Gribble F, Reimann F. Angiotensin II Type 1 Receptor-Dependent GLP-1 and PYY Secretion in Mice and Humans. Endocrinology 2016; 157:3821-3831. [PMID: 27447725 PMCID: PMC5045501 DOI: 10.1210/en.2016-1384] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Angiotensin II (Ang II) is the key hormone mediator of the renin angiotensin system, which regulates blood pressure and fluid and electrolyte balance in the body. Here we report that in the colonic epithelium, the Ang II type 1 receptor is highly and exclusively expressed in enteroendocrine L cells, which produce the gut hormones glucagon-like peptide-1 and peptide YY (PYY). Ang II stimulated glucagon-like peptide-1 and PYY release from primary cultures of mouse and human colon, which was antagonized by the specific Ang II type 1 receptor blocker candesartan. Ang II raised intracellular calcium levels in L cells in primary cultures, recorded by live-cell imaging of L cells specifically expressing the fluorescent calcium sensor GCaMP3. In Ussing chamber recordings, Ang II reduced short circuit currents in mouse distal colon preparations, which was antagonized by candesartan or a specific neuropeptide Y1 receptor inhibitor but insensitive to amiloride. We conclude that Ang II stimulates PYY secretion, in turn inhibiting epithelial anion fluxes, thereby reducing net fluid secretion into the colonic lumen. Our findings highlight an important role of colonic L cells in whole-body fluid homeostasis by controlling water loss through the intestine.
Collapse
Affiliation(s)
- Ramona Pais
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Juraj Rievaj
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Pierre Larraufie
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Fiona Gribble
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Frank Reimann
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
2
|
Wade PR, Palmer JM, Mabus J, Saunders PR, Prouty S, Chevalier K, Gareau MG, McKenney S, Hornby PJ. Prokineticin-1 evokes secretory and contractile activity in rat small intestine. Neurogastroenterol Motil 2010; 22:e152-61. [PMID: 19930539 DOI: 10.1111/j.1365-2982.2009.01426.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Prokineticins 1 and 2 (PROK1 and PROK2) are so named because they contract gastrointestinal smooth muscle, yet little else is known about their role in gastrointestinal function. Therefore, we used a combination of approaches to elucidate the mechanisms by which PROK1 alters ileal contractility and secretion in rats. METHODS RT-PCR and immunofluorescence were used to determine PROK and receptor (PK-R) mRNA levels and PK-R1 localization, respectively. Upper GI transit and fluid secretion were determined in vivo. Contractility and intestinal epithelial ion transport were assessed in isolated ileal segments. KEY RESULTS In the gastric fundus, PROK1 mRNA is highly expressed (70-fold >PROK2 mRNA) whereas the ileum has the highest mRNA expression of its receptor. PK-R1 immunoreactivity is visualized in ileal crypt cells, and in submucosal and myenteric neurons. In ileal segments, PROK1 evokes biphasic contractile responses consisting of an early, TTX-sensitive response (EC(50) = 87.8 nmol L(-1)) followed by a late, TTX-insensitive (EC(50) = 72.4 nmol L(-1)) component that is abolished in mucosa-free preparations. Oral administration of PROK1 enhances small bowel transit (111 +/- 3% of control) and fluid secretion (340 +/- 90% of control) and in muscle-stripped ileal preparations increases short-circuit current (EC(50) = 8.2 nmol L(-1)) in a TTX-insensitive manner. The PROK1-evoked Cl- secretion is reduced by piroxicam (non-selective cyclooxygenase inhibitor), and a prostaglandin EP(4) receptor antagonist (AH23848), but not a thromboxane receptor antagonist (GR32191B). CONCLUSIONS & INFERENCES These results demonstrate that PROK1 has oral prokinetic and secretogogue activity and that it acts on the intestinal mucosa via PK-R1 and prostaglandin receptors to mediate these effects.
Collapse
Affiliation(s)
- P R Wade
- Enterology Research Team, Drug Discovery, Johnson & Johnson Pharmaceutical Research and Development, LLC, Spring House, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Since the first identification of renin by Tigerstedt and Bergmann in 1898, the renin-angiotensin system (RAS) has been extensively studied. The current view of the system is characterized by an increased complexity, as evidenced by the discovery of new functional components and pathways of the RAS. In recent years, the pathophysiological implications of the system have been the main focus of attention, and inhibitors of the RAS such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin (ANG) II receptor blockers have become important clinical tools in the treatment of cardiovascular and renal diseases such as hypertension, heart failure, and diabetic nephropathy. Nevertheless, the tissue RAS also plays an important role in mediating diverse physiological functions. These focus not only on the classical actions of ANG on the cardiovascular system, namely, the maintenance of cardiovascular homeostasis, but also on other functions. Recently, the research efforts studying these noncardiovascular effects of the RAS have intensified, and a large body of data are now available to support the existence of numerous organ-based RAS exerting diverse physiological effects. ANG II has direct effects at the cellular level and can influence, for example, cell growth and differentiation, but also may play a role as a mediator of apoptosis. These universal paracrine and autocrine actions may be important in many organ systems and can mediate important physiological stimuli. Transgenic overexpression and knock-out strategies of RAS genes in animals have also shown a central functional role of the RAS in prenatal development. Taken together, these findings may become increasingly important in the study of organ physiology but also for a fresh look at the implications of these findings for organ pathophysiology.
Collapse
Affiliation(s)
- Martin Paul
- Institute of Clinical Pharmacology and Toxicology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | | | | |
Collapse
|
4
|
Zhao WC, Zhu JX, Zhang GH, Wong CHY, Chung YW, Chan HC. Effect of sodium ferulate on human colonic anion secretion and the underlying signaling mechanism. Biol Pharm Bull 2005; 28:1608-11. [PMID: 16141524 DOI: 10.1248/bpb.28.1608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the effect of ferulic acid, a compound purified from traditional Chinese herbal medicine Chuanxiong and Awei, on anion secretion by human colonic cells (T84) using the short circuit current (I(SC)) and microspectrofluorimetric technique. Basolateral administration of sodium ferulate (SF) produced a concentration-dependent increase of I(SC) in T84 cells with an EC50 of 1.2 mM. The SF-induced increase in I(SC) contained a transient peak followed by a sustained plateau. Removal of extracellular Cl-, basolateral addition of bumetanide, an inhibitor of the Na+ - K+ - Cl- cotransporter (NKCC) and apical pretreatment with DPC, a Cl- channels blocker, decreased the SF-induced increase in I(SC) by 94% (p < 0.001), 84% (p < 0.001) and 85% (p < 0.001) respectively. Pretreatment with thapsigargin, a specific microsomal Ca2+-ATPase inhibitor, in combination with EGTA, a Ca2+ chelator, decreased the SF-induced peak by 52% (p < 0.01) and inhibited the SF-induced plateau by 60% (p < 0.05). Pretreatment with MDL12330A, an adenylate cyclase inhibitor, blocked the SF-induced I(SC) plateau by 87% (p < 0.01) but did not affect the SF-induced I(SC) peak. Microspectrofluorimetric measurements show that SF induced a sustained increase in [Ca2+]i. The results suggested that SF could induce Cl- secretion in T84 cells via Ca2+ and cAMP-dependent pathways.
Collapse
Affiliation(s)
- Wen Chao Zhao
- Epithelial Cell Biology Research Center, Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | | | |
Collapse
|
5
|
Wang GD, Wang XY, Hu HZ, Fang XC, Liu S, Gao N, Xia Y, Wood JD. Angiotensin receptors and actions in guinea pig enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2005; 289:G614-26. [PMID: 16093423 DOI: 10.1152/ajpgi.00119.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Actions of ANG II on electrical and synaptic behavior of enteric neurons in the guinea pig small intestine were studied. Exposure to ANG II depolarized the membrane potential and elevated neuronal excitability. The number of responding neurons was small, with responses to ANG II in 32% of submucosal neurons and 25% of myenteric neurons. Hyperpolarizing responses were evoked by ANG II in 45% of the neurons. The hyperpolarizing responses were suppressed by alpha2-noradrenergic receptor antagonists, which suggested that the hyperpolarizing responses reflected stimulation of norepinephrine release from sympathetic neurons. Exposure to ANG II enhanced the amplitude and prolonged the duration of noradrenergic inhibitory postsynaptic potentials and suppressed the amplitude of both fast and slow excitatory postsynaptic potentials. The selective ANG II(1) receptor (AT1R) antagonists, ZD-7115 and losartan, but not a selective AT2R antagonist (PD-123319), suppressed the actions of ANG II. Western blot analysis and RT-PCR confirmed expression of AT1R protein and the mRNA transcript for the AT1R in the enteric nervous system. No expression of AT2R protein or mRNA was found. Immunoreactivity for AT1R was expressed by the majority of neurons in the gastric antrum and small and large intestine. AT1R immunoreactivity was coexpressed with calbindin, choline acetyltransferase, calretinin, neuropeptide Y, and nitric oxide synthase in subpopulations of neurons. The results suggest that formation of ANG II might have paracrine-like actions in the enteric nervous system, which include alterations in neuronal excitability and facilitated release of norepinephrine from sympathetic postganglionic axons. The enhanced presence of norepinephrine is expected to suppress fast and slow excitatory neurotransmission in the enteric microcircuits and to suppress neurogenic mucosal secretion.
Collapse
MESH Headings
- Angiotensin II/physiology
- Animals
- Blotting, Western
- Electrophysiology
- Female
- Guinea Pigs
- Humans
- Inflammation
- Intestine, Small/innervation
- Intestine, Small/physiology
- Irritable Bowel Syndrome/physiopathology
- Male
- Membrane Potentials
- Myenteric Plexus/physiology
- Norepinephrine/physiology
- RNA, Messenger/biosynthesis
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Guo-Du Wang
- Dept. of Physiology and Cell Biology, The Ohio State University, College of Medicine and Public Health, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wu R, Laplante MA, de Champlain J. Cyclooxygenase-2 inhibitors attenuate angiotensin II-induced oxidative stress, hypertension, and cardiac hypertrophy in rats. Hypertension 2005; 45:1139-44. [PMID: 15851630 DOI: 10.1161/01.hyp.0000164572.92049.29] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II is an important oxidative stress mediator. Our previous studies have indicated that the potent antioxidative properties of acetylsalicylic acid play an important role in its cardiovascular protective effects. There are some ongoing controversies concerning the use of selective cyclooxygenase-2 inhibitors in cardiovascular disease. The aim of this study was to determine whether the cyclooxygenase-2 selective inhibitors rofecoxib and nimesulide possess antioxidative and cardiovascular protective effects against angiotensin II. Chronic subcutaneous angiotensin II infusion increased cardiovascular but not colonic tissue superoxide production, heart/body weight ratio, and blood pressure. Moreover, angiotensin II selectively increased cardiac cyclooxygenase-2 but not cyclooxygenase-1 expression, which was totally prevented by acetylsalicylic acid treatment. Similar to acetylsalicylic acid, rofecoxib or nimesulide treatments significantly attenuated angiotensin II-induced oxidative stress, hypertension, and cardiac NAD(P)H oxidase subunit p47(phox) expression. Rofecoxib also reduced cardiac hypertrophy. Treatment with nonselective anti-inflammatory drugs ibuprofen, indomethacin, or salicylic acid did not show any effect on angiotensin II-induced superoxide production, hypertension, or cardiac hypertrophy. Although acetylsalicylic acid and salicylic acid inhibited angiotensin II-induced nuclear factor kappaB (NF-kappaB) activation, nimesulide did not modify NF-kappaB activation. In conclusion, cyclooxygenase-2 pathway is implicated in angiotensin II-induced oxidative stress and deleterious cardiovascular changes. Rofecoxib and nimesulide produced significant antioxidative effect by reducing NAD(P)H oxidase-dependent superoxide generation. These effects seem to be independent of NF-kappaB inhibition.
Collapse
Affiliation(s)
- Rong Wu
- Department of Physiology, University of Montreal, Montréal, Québec, Canada
| | | | | |
Collapse
|
7
|
Chiu T, Santiskulvong C, Rozengurt E. EGF receptor transactivation mediates ANG II-stimulated mitogenesis in intestinal epithelial cells through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway. Am J Physiol Gastrointest Liver Physiol 2005; 288:G182-94. [PMID: 15358595 DOI: 10.1152/ajpgi.00200.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of epidermal growth factor receptor (EGFR) tyrosine kinase and its downstream targets in the regulation of the transition from the G0/G1 phase into DNA synthesis in response to ANG II has not been previously investigated in intestinal epithelial IEC-18 cells. ANG II induced a rapid and striking EGFR tyrosine phosphorylation, which was prevented by selective inhibitors of EGFR tyrosine kinase activity (e.g., AG-1478) or by broad-spectrum matrix metalloproteinase (MMP) inhibitor GM-6001. Pretreatment of these cells with either AG-1478 or GM-6001 reduced ANG II-stimulated DNA synthesis by approximately 50%. To elucidate the downstream targets of EGFR, we demonstrated that ANG II stimulated phosphorylation of Akt at Ser473, mTOR at Ser2448, p70S6K1 at Thr389, and S6 ribosomal protein at Ser(235/236). Pretreatment with AG-1478 inhibited Akt, p70S6K1, and S6 ribosomal protein phosphorylation. Inhibition of phosphatidylinositol (PI)3-kinase with LY-294002 or mTOR/p70S6K1 with rapamycin reduced [3H]thymidine incorporation by 50%, i.e., to levels comparable to those achieved by addition of either AG-1478 or GM-6001. Utilizing Akt small-interfering RNA targeted to Akt1 and Akt2, Akt protein knockdown dramatically inhibited p70S6K1 and S6 ribosomal protein phosphorylation. In contrast, AG-1478 or Akt gene silencing exerted no detectable inhibitory effect on ANG II-induced extracellular signal-regulated kinase 1/2 phosphorylation in IEC-18 cells. Taken together, our results demonstrate that EGFR transactivation mediates ANG II-stimulated mitogenesis through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway in IEC-18 cells.
Collapse
Affiliation(s)
- Terence Chiu
- Department of Medicine, School of Medicine, CURE, Digestive Diseases Research Center, Molecular Biology Institute, University of California, Los Angeles, California, USA
| | | | | |
Collapse
|
8
|
Hosoda Y, Karaki SI, Shimoda Y, Kuwahara A. Substance P-evoked Cl(-) secretion in guinea pig distal colonic epithelia: interaction with PGE(2). Am J Physiol Gastrointest Liver Physiol 2002; 283:G347-56. [PMID: 12121882 DOI: 10.1152/ajpgi.00504.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interaction between substance P (SP) and PGE(2) on Cl(-) secretion in the guinea pig distal colonic epithelia was investigated. A short-circuit current (I(sc)) was measured as an index of ion transport. Mucosa preparations deprived of muscle and submucosa of distal colon were mounted in the Ussing flux chamber and treated with TTX and piroxicam to remove the influences of neuronal activity and endogenous PG synthesis, respectively. Although SP (10(-7) M) itself evoked little increase in I(sc), exogenous PGE(2) concentration dependently enhanced the response of SP. The effect of PGE(2) on the SP-evoked response was mimicked by forskolin and 8-bromoadenosine cAMP. Depletion of Ca2+ from the bathing solution reduced the PGE(2)-dependent response of SP. Effects of PGE(2), SP, and SP in the presence of PGE(2) on intracellular Ca2+ concentration ([Ca2+](i)) in isolated crypt cells were measured by the confocal microscope fluorescence imaging system. SP, but not PGE(2), temporally evoked an increase in [Ca2+](i) but declined to the baseline within 3 min. A return of the SP-evoked increase in [Ca2+](i) was slower in the presence of PGE(2) than SP alone. These results suggest that PGE(2) synergistically enhances SP-evoked Cl(-) secretion via an interaction between the intracellular cAMP and [Ca2+](i) in the epithelial cells. In conclusion, SP and PGE(2) could cooperatively induce massive Cl(-) secretion in guinea pig distal colon at epithelial levels.
Collapse
Affiliation(s)
- Yutaka Hosoda
- Laboratory of Physiology, Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Japan
| | | | | | | |
Collapse
|
9
|
Ko WH, Law VWY, Yip WCY, Yue GGL, Lau CW, Chen ZY, Huang Y. Stimulation of chloride secretion by baicalein in isolated rat distal colon. Am J Physiol Gastrointest Liver Physiol 2002; 282:G508-18. [PMID: 11842001 DOI: 10.1152/ajpgi.00291.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of baicalein on mucosal ion transport in the rat distal colon was investigated in Ussing chambers. Mucosal addition of baicalein (1-100 microM) elicited a concentration-dependent short-circuit current (I(sc)) response. The increase in I(sc) was mainly due to Cl(-) secretion. The presence of mucosal indomethacin (10 microM) significantly reduced both the basal and subsequent baicalein-evoked I(sc) responses. The baicalein-induced I(sc) were inhibited by mucosal application of diphenylamine-2-carboxylic acid (100 microM) and glibenclamide (500 microM) and basolateral application of chromanol 293B (30 microM), a blocker of K(v)LQT1 channels and Ba(2+) ions (5 mM). Treatment of the colonic mucosa with baicalein elicited a threefold increase in cAMP production. Pretreating the colonic mucosa with carbachol (100 microM, serosal) but not thapsigargin (1 microM, both sides) abolished the baicalein-induced I(sc). Addition of baicalein subsequent to forskolin induced a further increase in I(sc). These results indicate that the baicalein evoked Cl(-) secretion across rat colonic mucosa, possibly via a cAMP-dependent pathway. However, the action of baicalein cannot be solely explained by its cAMP-elevating effect. Baicalein may stimulate Cl(-) secretion via a cAMP-independent pathway or have a direct effect on cystic fibrosis transmembrane conductance regulator.
Collapse
Affiliation(s)
- W H Ko
- Department of Physiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhu JX, Chan YM, Tsang LL, Chan LN, Zhou Q, Zhou CX, Chan HC. Cellular signaling mechanisms underlying pharmacological action of Bak Foong Pills on gastrointestinal secretion. THE JAPANESE JOURNAL OF PHYSIOLOGY 2002; 52:129-34. [PMID: 12047811 DOI: 10.2170/jjphysiol.52.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bak Foong Pills (BFP, also known as Bai Feng Wan) is an over-the-counter traditional Chinese medicine that has long been used for treating gynecological disorders and improving overall body functions, including gastrointestinal (GI) function. However, the cellular signaling mechanism underlying BFP action, especially on the GI tract, has not been elucidated. In the present study, the human colonic epithelia cell line T(84) was used as a model to investigate the effect of BFP ethanol extract on ion transport in conjunction with the short-circuit current (I(SC)) technique. The results showed that the apical addition of BFP extract produced a concentration-dependent (10-1,000 microg/ml, EC(50) = 120 microg/ml) increase in I(SC). The maximal response was observed at 500 microg/ml with an increase in I(SC) of 24.4 +/- 2.3 microA/cm(2) and apical conductance. The BFP-induced I(SC) was not observed when extracellular Cl(-) was replaced or when treated with Bumetanide (100 microM), an inhibitor of the Na(+)-K(+)-2Cl(-) cotransporter. The BFP-induced I(SC) was insensitive to the Na(+) channel blocker, amiloride, but partially inhibited by the Cl(-) channel blocker, DIDS (100 microM), and completely blocked by DPC (2 mM) or glibenclamide (1 mM) with a significant reduction in the apical conductance. The BFP-induced I(SC) could be mimicked by forskolin (10 microM), but inhibited by a pretreatment of the cells with adenylate cyclase inhibitor, MDL-12330A (10 microM). Pretreatment with EGTA (5 mM) and thapsigargin (10 microM) decreased the BFP-induced I(SC) by 10%. These results demonstrated that BFP ethanol extract exerted a stimulatory effect on gastrointestinal Cl(-) secretion by predominantly activating adenylate cyclase and apical cAMP-dependent Cl(-) channels, with minor contributions from calcium-dependent Cl(-) channels. The effect of BFP may be explored to treat GI disorders such as constipation.
Collapse
Affiliation(s)
- J X Zhu
- Epithelial Cell Biology Research Center, Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR
| | | | | | | | | | | | | |
Collapse
|