1
|
Pinho RM, Garas LC, Huang BC, Weimer BC, Maga EA. Malnourishment affects gene expression along the length of the small intestine. Front Nutr 2022; 9:894640. [PMID: 36118759 PMCID: PMC9478944 DOI: 10.3389/fnut.2022.894640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Malnourishment is a risk factor for childhood mortality, jeopardizing the health of children by aggravating pneumonia/acute respiratory infections and diarrheal diseases. Malnourishment causes morphophysiological changes resulting in stunting and wasting that have long-lasting consequences such as cognitive deficit and metabolic dysfunction. Using a pig model of malnutrition, the interplay between the phenotypic data displayed by the malnourished animals, the gene expression pattern along the intestinal tract, microbiota composition of the intestinal contents, and hepatic metabolite concentrations from the same animals were correlated using a multi-omics approach. Samples from the duodenum, jejunum, and ileum of malnourished (protein and calorie-restricted diet) and full-fed (no dietary restrictions) piglets were subjected to RNA-seq. Gene co-expression analysis and phenotypic correlations were made with WGCNA, while the integration of transcriptome with microbiota composition and the hepatic metabolite profile was done using mixOmics. Malnourishment caused changes in tissue gene expression that influenced energetic balance, cell proliferation, nutrient absorption, and response to stress. Repression of antioxidant genes, including glutathione peroxidase, in coordination with induction of metal ion transporters corresponded to the hepatic metabolite changes. These data indicate oxidative stress in the intestine of malnourished animals. Furthermore, several of the phenotypes displayed by these animals could be explained by changes in gene expression.
Collapse
Affiliation(s)
- Raquel M. Pinho
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Raquel M. Pinho
| | - Lydia C. Garas
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - B. Carol Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Elizabeth A. Maga
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Blunted satellite cell response is associated with dysregulated IGF-1 expression after exercise with age. Eur J Appl Physiol 2018; 118:2225-2231. [PMID: 30062517 DOI: 10.1007/s00421-018-3954-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/04/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE Insulin-like growth factor-1 (IGF-1) regulates protein synthesis and cell cycle kinetics. Given that aging is associated with anabolic resistance, we sought to determine if the attenuated exercise-induced satellite cell (SC) expression in older muscle is associated with a blunted IGF-1 response. METHODS SC expression (Pax7+ cells) and protein (Western blot) and mRNA (RT-PCR) expression of IGF-1 splice variants and ubiquitous (IGFBP4) and muscle-specific (IGFBP3 and -5) IGF-1 binding proteins were measured in skeletal muscle of young (Y: 22 ± 2, n = 7) and older (O: 70 ± 2, n = 7) adults up to 48 h after an acute bout of resistance exercise. RESULTS SC expression was greater in Y compared to O (age; P < 0.01) and increased (interaction; P < 0.05) by 24 h after exercise in Y only. IGF-1Ea and IGF-1Eb mRNA tended to be greater in O (age; P < 0.06-0.09). IGF-1Eb mRNA increased at 48 h (time; P < 0.05), whereas IGF-1Ec mRNA increased (interaction; P < 0.05) at 24 and 48 h in O only. IGF binding protein (IGFBP)4 mRNA was greater (age; P < 0.01) in O with the increase at 24 h and 48 h (time; P < 0.01) primarily driven by changes in O (interaction; P < 0.01). Despite IGFBP3 mRNA being greater in O (age; P < 0.01) and increasing at 48 h (time; P < 0.01), there was no effect of age or exercise on IGFBP3 protein expression. In contrast, IGFBP5 mRNA was greater (age; P < 0.01) despite IGFBP5 protein expression being lower (age; P < 0.01) in O compared to Y. CONCLUSIONS The greater muscle-specific expression of IGF-1 family members with a blunted post-exercise SC expression may be a compensatory attempt to rescue age-related anabolic resistance.
Collapse
|
3
|
Kuemmerle JF. Insulin-like growth factors in the gastrointestinal tract and liver. Endocrinol Metab Clin North Am 2012; 41:409-23, vii. [PMID: 22682638 PMCID: PMC3372868 DOI: 10.1016/j.ecl.2012.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The liver is a major source of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) that are present in the circulation and have important endocrine activities relating to energy metabolism, body size, carcinogenesis, and various organ-specific functions. Although IGFs have only minor effects on the normal liver itself, production of IGFs and IGFBPs in a tissue-specific manner in the gastrointestinal tract exert important regulatory effects on cellular proliferation, survival, and apoptosis. IGFs and IGFBPs play important regulatory roles in the response of both the liver and the gastrointestinal tract to inflammation and in the development of neoplasia.
Collapse
Affiliation(s)
- John F Kuemmerle
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341, USA.
| |
Collapse
|
4
|
Simmen FA, Xiao R, Velarde MC, Nicholson RD, Bowman MT, Fujii-Kuriyama Y, Oh SP, Simmen RCM. Dysregulation of intestinal crypt cell proliferation and villus cell migration in mice lacking Kruppel-like factor 9. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1757-69. [PMID: 17379758 DOI: 10.1152/ajpgi.00013.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Krüppel-like factor 9 (Klf9), a zinc-finger transcription factor, is implicated in the control of cell proliferation, cell differentiation, and cell fate. Using Klf9-null mutant mice, we have investigated the involvement of Klf9 in intestine crypt-villus cell renewal and lineage determination. We report the predominant expression of Klf9 gene in small and large intestine smooth muscle (muscularis externa). Jejunums null for Klf9 have shorter villi, reduced crypt stem/transit cell proliferation, and altered lineage determination as indicated by decreased and increased numbers of goblet and Paneth cells, respectively. A stimulatory role for Klf9 in villus cell migration was demonstrated by bromodeoxyuridine labeling. Results suggest that Klf9 controls the elaboration, from intestine smooth muscle, of molecular mediator(s) of crypt cell proliferation and lineage determination and of villus cell migration.
Collapse
Affiliation(s)
- Frank A Simmen
- Arkansas Children's Nutrition Center, 1120 Marshall St., Little Rock, AR 72202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Davies M, Gupta S, Goldspink G, Winslet M. The insulin-like growth factor system and colorectal cancer: clinical and experimental evidence. Int J Colorectal Dis 2006; 21:201-8. [PMID: 15959790 DOI: 10.1007/s00384-005-0776-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2005] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The aim of this review is to clarify the involvement of the insulin-like growth factor (IGF) system in the development of colorectal malignancy. MATERIALS AND METHODS Medline searches were used to identify key articles relating the IGF system with the development of colorectal cancer. RESULTS The IGF system has been linked to colorectal malignancy by a convergence of data from epidemiological, clinical and laboratory-based sources. CONCLUSION Further work is needed to characterise the IGF system expression in the colon. Such clarification could lead to the identification of targets that can be manipulated for clinical advantage.
Collapse
Affiliation(s)
- M Davies
- University Department of Surgery, Royal Free and University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | | | | | | |
Collapse
|
6
|
Durai R, Yang W, Gupta S, Seifalian AM, Winslet MC. The role of the insulin-like growth factor system in colorectal cancer: review of current knowledge. Int J Colorectal Dis 2005; 20:203-20. [PMID: 15650828 DOI: 10.1007/s00384-004-0675-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2004] [Indexed: 02/04/2023]
Abstract
BACKGROUND The insulin-like growth factor system, which includes insulin-like growth factors (IGF-I and IGF-II), IGF receptors (IGF-IR and IGF-IIR) and IGF binding proteins (IGFBPs), plays an important role in epithelial growth, anti-apoptosis and mitogenesis. There is a growing body of evidence showing that IGFs control growth and proliferation of several types of cancer. This review introduces the latest information on the biology of the IGF system and its pathophysiological role in the development of colorectal cancer. DISCUSSION The growth promoting effects of IGF-I and IGF-II on cancer cells are mediated through the IGF-IR, which is a tyrosine kinase and cancer cells with a strong tendency to metastasise have a higher expression of the IGF-IR. Most of the IGFs in circulation are bound to the IGFBPs, which regulate the bioavailability of the IGFs. All IGFBPs inhibit IGF action by high affinity binding, while some of them also potentiate the effects of IGFs. Colon cancer cells produce specific proteases that degrade the IGFBP so that the IGF will be free to act on the cancer cell in an autocrine manner. Therefore, the IGFBPs play a crucial role in the development of the cancer. CONCLUSION The current knowledge about the link between IGFs and colon cancer is mainly based on in vitro investigations. Further in vivo study is needed to understand the exact role of the IGF system, especially its binding proteins, so that they can be manipulated for the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Rajaraman Durai
- University Department of Surgery, Royal Free and University College Medical School, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | | | | | | | | |
Collapse
|
7
|
Kuemmerle JF. Endogenous IGF-I protects human intestinal smooth muscle cells from apoptosis by regulation of GSK-3 beta activity. Am J Physiol Gastrointest Liver Physiol 2005; 288:G101-10. [PMID: 15297258 DOI: 10.1152/ajpgi.00032.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that endogenous IGF-I regulates human intestinal smooth muscle cell proliferation by activation of phosphatidylinositol 3 (PI3)-kinase- and Erk1/2-dependent pathways that jointly regulate cell cycle progression and cell division. Whereas insulin-like growth factor-I (IGF-I) stimulates PI3-kinase-dependent activation of Akt, expression of a kinase-inactive Akt did not alter IGF-I-stimulated proliferation. In other cell types, Akt-dependent phosphorylation of glycogen synthase kinase-3 beta (GSK-3 beta) inhibits its activity and its ability to stimulate apoptosis. The aim of the present study was to determine whether endogenous IGF-I regulates Akt-dependent GSK-3 beta phosphorylation and activity and whether it regulates apoptosis in human intestinal muscle cells. IGF-I elicited time- and concentration-dependent GSK-3 beta phosphorylation (inactivation) that was measured by Western blot analysis using a phospho-specific GSK-3beta antibody. Endogenous IGF-I stimulated GSK-3 beta phosphorylation and inhibited GSK-3 beta activity (measured by in vitro kinase assay) in these cells. IGF-I-dependent GSK-3 beta phosphorylation and the resulting GSK-3 beta inactivation were mediated by activation of a PI3-kinase-dependent, phosphoinositide-dependent kinase-1 (PDK-1)-dependent, and Akt-dependent mechanism. Deprivation of serum induced beta-catenin phosphorylation, increased in caspase 3 activity, and induced apoptosis of muscle cells, which was inhibited by either IGF-I or a GSK-3 beta inhibitor. Endogenous IGF-I inhibited beta-catenin phosphorylation, caspase 3 activation, and apoptosis induced by serum deprivation. IGF-I-dependent inhibition of apoptosis, similar to GSK-3 beta activity, was mediated by a PI3-kinase-, PDK-1-, and Akt-dependent mechanism. We conclude that endogenous IGF-I exerts two distinct but complementary effects on intestinal smooth muscle cell growth: it stimulates proliferation and inhibits apoptosis. The growth of intestinal smooth muscle cells is regulated jointly by the net effect of these two processes.
Collapse
Affiliation(s)
- John F Kuemmerle
- Division of Gastroenterology, Medical College of Virginia Campus, Virginia Commonwealth University, PO Box 980711, Richmond, VA 23298-0711, USA.
| |
Collapse
|
8
|
Kuemmerle JF, Murthy KS, Bowers JG. IGFBP-3 activates TGF-beta receptors and directly inhibits growth in human intestinal smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2004; 287:G795-802. [PMID: 15178549 DOI: 10.1152/ajpgi.00009.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have shown that human intestinal smooth muscle cells produce IGF-I and IGF binding protein-3 (IGFBP-3). Endogenous IGF-I acts in autocrine fashion to stimulate growth of these cells. IGFBP-3 inhibits the binding of IGF-I to its receptor and thereby inhibits IGF-I-stimulated growth. In several carcinoma cell lines and some normal cells, IGFBP-3 regulates growth independently of IGF-I. Two mechanisms for this effect have been identified: IGFBP-3 can directly activate transforming growth factor-beta (TGF-beta) receptors or it can undergo direct nuclear translocation. The aim of the present study was to determine whether IGFBP-3 acts independently of IGF-I and to characterize the mechanisms mediating this effect in human intestinal smooth muscle cells. The direct effects of IGFBP-3 were determined in the presence of an IGF-I receptor antagonist to eliminate its IGF-I-dependent effects. Affinity labeling of TGF-beta receptors (TGF-betaRI, TGF-betaRII, and TGF-betaRV) with 125I-labeled TGF-beta1 showed that IGFBP-3 displaced binding to TGF-betaRII and TGF-betaRV in a concentration-dependent fashion. IGFBP-3 stimulated TGF-betaRII-dependent serine phosphorylation (activation) of both TGF-betaRI and of its primary substrate, Smad2(Ser465/467). IGFBP-3 also caused IGF-I-independent inhibition of basal [3H]thymidine incorporation. The effects of IGFBP-3 on Smad2 phosphorylation and on smooth muscle cell proliferation were independent of TGF-beta1 and were abolished by transfection of Smad2 siRNA. Immunoneutralization of IGFBP-3 increased basal [3H]thymidine incorporation, implying that endogenous IGFBP-3 inhibits proliferation. We conclude that endogenous IGFBP-3 directly inhibits proliferation of human intestinal smooth muscle cells by activation of TGF-betaRI and Smad2, an effect that is independent of its effect on IGF-I-stimulated growth.
Collapse
Affiliation(s)
- John F Kuemmerle
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0711, USA.
| | | | | |
Collapse
|
9
|
Kuemmerle JF. IGF-I elicits growth of human intestinal smooth muscle cells by activation of PI3K, PDK-1, and p70S6 kinase. Am J Physiol Gastrointest Liver Physiol 2003; 284:G411-22. [PMID: 12444011 DOI: 10.1152/ajpgi.00310.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endogenous IGF-I regulates growth of human intestinal smooth muscle cells by jointly activating phosphatidylinositol 3-kinase (PI3K) and ERK1/2. The 70-kDa ribosomal S6 kinase (p70S6 kinase) is a key regulator of cell growth activated by several independently regulated kinases. The present study characterized the role of p70S6 kinase in IGF-I-induced growth of human intestinal smooth muscle cells and identified the mechanisms of p70S6 kinase activation. IGF-I-induced growth elicited via either the PI3K or ERK1/2 pathway required activation of p70S6 kinase. IGF-I elicited concentration-dependent activation of PI3K, 3-phosphoinositide-dependent kinase-1 (PDK-1), and p70S6 kinase that was sequential and followed similar time courses. IGF-I caused time-dependent and concentration-dependent phosphorylation of p70S6 kinase on Thr(421)/Ser(424), Thr(389), and Thr(229) that paralleled p70S6 kinase activation. p70S6 kinase(Thr(421)/Ser(424)) phosphorylation was PI3K dependent and PDK-1 independent, whereas p70S6 kinase(Thr(389)) and p70S6 kinase(Thr(229)) phosphorylation and p70S6 kinase activation were PI3K dependent and PDK-1 dependent. IGF-I elicited sequential Akt(Ser(308)), Akt(Ser(473)), and mammalian target of rapamycin(Ser(2448)) phosphorylation; however, transfection of muscle cells with kinase-inactive Akt1(K179M) showed that these events were not required for IGF-I to activate p70S6 kinase and stimulate proliferation of human intestinal muscle cells.
Collapse
Affiliation(s)
- John F Kuemmerle
- Departments of Medicine and Physiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0711, USA.
| |
Collapse
|