1
|
Highly efficient ex vivo lentiviral transduction of primary human pancreatic exocrine cells. Sci Rep 2019; 9:15870. [PMID: 31676849 PMCID: PMC6825235 DOI: 10.1038/s41598-019-51763-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023] Open
Abstract
The lack of efficient gene transfer methods into primary human pancreatic exocrine cells hampers studies on the plasticity of these cells and their possible role in beta cell regeneration. Therefore, improved gene transfer protocols are needed. Lentiviral vectors are widely used to drive ectopic gene expression in mammalian cells, including primary human islet cells. Here we aimed to optimize gene transfer into primary human exocrine cells using modified lentiviral vectors or transduction conditions. We evaluated different promoters, viral envelopes, medium composition and transduction adjuvants. Transduction efficiency of a reporter vector was evaluated by fluorescence microscopy and flow cytometry. We show that protamine sulfate-assisted transduction of a VSV-G-pseudotyped vector expressing eGFP under the control of a CMV promoter in a serum-free environment resulted in the best transduction efficiency of exocrine cells, reaching up to 90% of GFP-positive cells 5 days after transduction. Our findings will enable further studies on pancreas (patho)physiology that require gene transfer such as gene overexpression, gene knockdown or lineage tracing studies.
Collapse
|
2
|
Regulation of autophagy by systemic admission of microRNA-141 to target HMGB1 in l-arginine-induced acute pancreatitis in vivo. Pancreatology 2016; 16:337-46. [PMID: 27017485 DOI: 10.1016/j.pan.2016.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 02/22/2016] [Accepted: 03/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS MicroRNAs are endogenous, non-coding RNAs of approximately 20-22 nucleotides that regulate gene expression by binding to the 3' untranslated region (UTR) of target mRNAs and can be applied in gene therapy. Acute pancreatitis is an inflammatory pancreatic disease that carries considerable morbidity and mortality. The purpose of this study was to explore the therapeutic potential of microRNA-141 (miR-141) for acute pancreatitis in vivo. METHODS AP was induced by two hourly intra-peritoneal (i.p.) injections of l-arginine (200mg × 2/100 g.BW). Control mice received normal saline injections. In a separate group, normal saline, empty adenoviral vector and miR-141 adenoviral vector were given to the mice via tail vein hydrodynamically at 72 h before the first l-arginine injection. All the mice were euthanized at 24 h after the last l-arginine injection, and the pancreatic tissues were assessed by qRT-PCR, Western blotting and electron microscopy. RESULTS miR-141 directly inhibited HMGB1 expression in mouse hepal-6 cell. Furthermore, systemic administration of the miR-141 knock-down the expression of HMGB1 protein and further antagonized the downstream protein Beclin-1, leading to the reduction of autophagosomes and autolysosomes, blockade of the LC3-II level and the increased levels of p62 protein after injection of l-arginine. In addition, the level of Lamp-2 was not significantly different. CONCLUSIONS For the first time miR-141 was applied in acute pancreatitis treatment in vivo. Inhibition of HMGB1 by miR-141 may block the process of autophagosome formation through the HMGB1/Beclin-1 pathway. The miR-141 appears to be a promising candidate for the gene therapy of acute pancreatitis.
Collapse
|
3
|
Lerch MM, Gorelick FS. Models of acute and chronic pancreatitis. Gastroenterology 2013; 144:1180-93. [PMID: 23622127 DOI: 10.1053/j.gastro.2012.12.043] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/06/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2022]
Abstract
Animal models of acute and chronic pancreatitis have been created to examine mechanisms of pathogenesis, test therapeutic interventions, and study the influence of inflammation on the development of pancreatic cancer. In vitro models can be used to study early stage, short-term processes that involve acinar cell responses. Rodent models reproducibly develop mild or severe disease. One of the most commonly used pancreatitis models is created by administration of supraphysiologic concentrations of caerulein, an ortholog of cholecystokinin. Induction of chronic pancreatitis with factors thought to have a role in human disease, such as combinations of lipopolysaccharide and chronic ethanol feeding, might be relevant to human disease. Models of autoimmune chronic pancreatitis have also been developed. Most models, particularly of chronic pancreatitis, require further characterization to determine which features of human disease they include.
Collapse
Affiliation(s)
- Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.
| | | |
Collapse
|
4
|
Houbracken I, Baeyens L, Ravassard P, Heimberg H, Bouwens L. Gene delivery to pancreatic exocrine cells in vivo and in vitro. BMC Biotechnol 2012; 12:74. [PMID: 23088534 PMCID: PMC3487942 DOI: 10.1186/1472-6750-12-74] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/19/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Effective gene transfer to the pancreas or to pancreatic cells has remained elusive although it is essential for studies of genetic lineage tracing and modulation of gene expression. Different transduction methods and viral vectors were tested in vitro and in vivo, in rat and mouse pancreas. RESULTS For in vitro transfection/transduction of rat exocrine cells lipofection reagents, adenoviral vectors, and Mokola- and VSV-G pseudotyped lentiviral vectors were used. For in vivo transduction of mouse and rat pancreas adenoviral vectors and VSV-G lentiviral vectors were injected into the parenchymal tissue. Both lipofection of rat exocrine cell cultures and transduction with Mokola pseudotyped lentiviral vectors were inefficient and resulted in less than 4% EGFP expressing cells. Adenoviral transduction was highly efficient but its usefulness for gene delivery to rat exocrine cells in vitro was hampered by a drastic increase in cell death. In vitro transduction of rat exocrine cells was most optimal with VSV-G pseudotyped lentiviral vectors, with stable transgene expression, no significant effect on cell survival and about 40% transduced cells. In vivo, pancreatic cells could not be transduced by intra-parenchymal administration of lentiviral vectors in mouse and rat pancreas. However, a high efficiency could be obtained by adenoviral vectors, resulting in transient transduction of mainly exocrine acinar cells. Injection in immune-deficient animals diminished leukocyte infiltration and prolonged transgene expression. CONCLUSIONS In summary, our study remarkably demonstrates that transduction of pancreatic exocrine cells requires lentiviral vectors in vitro but adenoviral vectors in vivo.
Collapse
Affiliation(s)
- Isabelle Houbracken
- Cell Differentiation Lab, Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, B-1090, Belgium.
| | | | | | | | | |
Collapse
|
5
|
Transforming growth factor-β2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J 2011; 437:515-20. [PMID: 21585337 DOI: 10.1042/bj20101500] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
EndMT (endothelial-mesenchymal transition) is a critical process of cardiac development and disease progression. However, little is know about the signalling mechanisms that cause endothelial cells to transform into mesenchymal cells. In the present paper we show that TGF-β2 (transforming growth factor-β2) stimulates EndMT through the Smad, MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase], PI3K (phosphinositide 3-kinase) and p38 MAPK signalling pathways. Inhibitors of these pathways prevent TGF-β2-induced EndMT. Furthermore, we show that all of these pathways are essential for increasing expression of the cell-adhesion-suppressing transcription factor Snail. Inhibition of Snail with siRNA (small interfering RNA) prevents TGF-β2-induced EndMT. However, overexpression of Snail is not sufficient to cause EndMT. Chemical inhibition of GSK-3β (glycogen synthase kinase-3β) allows EndMT to be induced by Snail overexpression. Expression of a mutant Snail protein that is resistant to GSK-3β-dependent inactivation also promotes EndMT. These results provide the foundation for understanding the roles of specific signalling pathways in mediating EndMT.
Collapse
|
6
|
Yang H, Lee CJ, Zhang L, Sans MD, Simeone DM. Regulation of transforming growth factor beta-induced responses by protein kinase A in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G170-G178. [PMID: 18467503 PMCID: PMC2494718 DOI: 10.1152/ajpgi.00492.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
TGF-beta is an important regulator of growth and differentiation in the pancreas and has been implicated in pancreatic tumorigenesis. We have recently demonstrated that TGF-beta can activate protein kinase A (PKA) in mink lung epithelial cells (Zhang L, Duan C, Binkley C, Li G, Uhler M, Logsdon C, Simeone D. Mol Cell Biol 24: 2169-2180, 2004). In this study, we sought to determine whether TGF-beta activates PKA in pancreatic acinar cells, the mechanism by which PKA is activated, and PKA's role in TGF-beta-mediated growth regulatory responses. TGF-beta rapidly activated PKA in pancreatic acini while having no effect on intracellular cAMP levels. Coimmunoprecipitation experiments demonstrated a physical interaction between a Smad3/Smad4 complex and the regulatory subunits of PKA. TGF-beta also induced activation of the PKA-dependent transcription factor CREB. Both the specific PKA inhibitor H89 and PKI peptide significantly blocked TGF-beta's ability to activate PKA and CREB. TGF-beta-mediated growth inhibition and TGF-beta-induced p21 and SnoN expression in pancreatic acinar cells were blocked by H89 and PKI peptide. This study demonstrates that this novel cross talk between TGF-beta and PKA signaling pathways may play an important role in regulating TGF-beta signaling in the pancreas.
Collapse
Affiliation(s)
- Huibin Yang
- Departments of Surgery and Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cheong J. Lee
- Departments of Surgery and Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lizhi Zhang
- Departments of Surgery and Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria Dolors Sans
- Departments of Surgery and Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Diane M. Simeone
- Departments of Surgery and Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
7
|
Wang H, Rajan S, Liu G, Chakrabarty S. Transforming growth factor beta suppresses beta-catenin/Wnt signaling and stimulates an adhesion response in human colon carcinoma cells in a Smad4/DPC4 independent manner. Cancer Lett 2008; 264:281-7. [PMID: 18367323 DOI: 10.1016/j.canlet.2008.01.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/24/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
Transforming growth factor beta (TGFbeta) suppresses the malignant phenotype of human colon carcinoma cells through diverse cellular pathways. Activation of beta-catenin/Wnt signal pathway underlies the malignant phenotype of human colon carcinomas. The Smad family of signal transducing, sequence-specific transcription activators are mediators of TGFbeta signaling. In this report, we showed that TGFbeta suppressed the beta-catenin/Wnt signal pathway in human colon carcinoma cells and stimulated an adhesion response in these cells in a Smad4/DPC4 independent manner. Smad/DCP4, however, was found to be linked to the growth-inhibitory action of TGFbeta.
Collapse
Affiliation(s)
- Huijun Wang
- Pathology Research Center, Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
8
|
Fischer BM, Zheng S, Fan R, Voynow JA. Neutrophil elastase inhibition of cell cycle progression in airway epithelial cells in vitro is mediated by p27kip1. Am J Physiol Lung Cell Mol Physiol 2007; 293:L762-8. [PMID: 17586698 DOI: 10.1152/ajplung.00067.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neutrophil elastase (NE), a serine protease present in high concentrations in the airways of cystic fibrosis patients, injures the airway epithelium. We examined the epithelial response to NE-mediated proteolytic injury. We have previously reported that NE treatment of airway epithelial cells causes a marked decrease in epithelial DNA synthesis and proliferation. We hypothesized that NE inhibits DNA synthesis by arresting cell cycle progression. Progression through the cell cycle is positively regulated by cyclin complexes and negatively regulated by cyclin-dependent kinase inhibitors (CKI). To test whether NE arrests cell cycle progression, we treated normal human bronchial epithelial (NHBE) cells with NE (50 nM) or control vehicle for 24 h and assessed the effect of treatment on the cell cycle by flow cytometry. NE treatment resulted in G(1) arrest. Arrest in G(1) phase may be the result of CKI inhibition of the cyclin E complex; therefore, we evaluated whether NE upregulated CKI expression and/or affected the interaction of CKIs with the cyclin E complex. Following NE or control vehicle treatment, expression of p27(Kip1), a member of the Cip/Kip family, was evaluated. NE increased p27(Kip1) gene and protein expression. NE increased the coimmunoprecipitation of p27(Kip1) with cyclin E complex, suggesting that p27(Kip1) inhibited cyclin E complex activity. Our results demonstrate that p27 is regulated by NE and is critical for NE-induced cell cycle arrest.
Collapse
Affiliation(s)
- Bernard M Fischer
- Division of Pediatric Pulmonary Medicine, Duke Univ. Medical Center, Box 2994, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
9
|
Simeone DM, Zhang L, Treutelaar MK, Zhang L, Graziano K, Logsdon CD, Burant CF. Islet hypertrophy following pancreatic disruption of Smad4 signaling. Am J Physiol Endocrinol Metab 2006; 291:E1305-16. [PMID: 16735447 DOI: 10.1152/ajpendo.00561.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To investigate the role of transforming growth factor (TGF)-beta family signaling in the adult pancreas, a transgenic mouse (E-dnSmad4) was created that expresses a dominant-negative Smad4 protein driven by a fragment of the elastase promoter. Although E-dnSmad4 mice have normal growth, pancreas weight, and pancreatic exocrine and ductal histology, beginning at 4-6 wk of age, E-dnSmad4 mice show an age-dependent increase in the size of islets. In parallel, an expanded population of replicating cells expressing the E-dnSmad4 transgene is found in the stroma between the enlarged islets and pancreatic ducts. Despite the marked enlargement, E-dnSmad4 islets contain normal ratios and spatial organization of endocrine cell subtypes and have normal glucose homeostasis. Replication of cells derived from primary duct cultures of wild-type mice, but not E-dnSmad4 mice, was inhibited by the addition of TGF-beta family proteins, demonstrating a cell-autonomous effect of the transgene. These data show that, in the adult pancreas, TGF-beta family signaling plays a role in islet size by regulating the growth of a pluripotent progenitor cell residing in the periductal stroma of the pancreas.
Collapse
Affiliation(s)
- Diane M Simeone
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang L, Duan CJ, Binkley C, Li G, Uhler MD, Logsdon CD, Simeone DM. A transforming growth factor beta-induced Smad3/Smad4 complex directly activates protein kinase A. Mol Cell Biol 2004; 24:2169-80. [PMID: 14966294 PMCID: PMC350541 DOI: 10.1128/mcb.24.5.2169-2180.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) interacts with cell surface receptors to initiate a signaling cascade critical in regulating growth, differentiation, and development of many cell types. TGFbeta signaling involves activation of Smad proteins which directly regulate target gene expression. Here we show that Smad proteins also regulate gene expression by using a previously unrecognized pathway involving direct interaction with protein kinase A (PKA). PKA has numerous effects on growth, differentiation, and apoptosis, and activation of PKA is generally initiated by increased cellular cyclic AMP (cAMP). However, we found that TGFbeta activates PKA independent of increased cAMP, and our observations support the conclusion that there is formation of a complex between Smad proteins and the regulatory subunit of PKA, with release of the catalytic subunit from the PKA holoenzyme. We also found that the activation of PKA was required for TGFbeta activation of CREB, induction of p21(Cip1), and inhibition of cell growth. Taken together, these data indicate an important and previously unrecognized interaction between the TGFbeta and PKA signaling pathways.
Collapse
Affiliation(s)
- Lizhi Zhang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Nawshad A, Hay ED. TGFbeta3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development. ACTA ACUST UNITED AC 2004; 163:1291-301. [PMID: 14691138 PMCID: PMC2173726 DOI: 10.1083/jcb.200306024] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial mesenchymal transformation (EMT) of the medial edge epithelial (MEE) seam creates palatal confluence. This work aims to elucidate the molecular mechanisms by which TGFβ3 brings about palatal seam EMT. We collected mRNA for PCR analysis from individual transforming MEE cells by laser microdissection techniques and demonstrated that TGFβ3 stimulates lymphoid-enhancing factor 1 (LEF1) mRNA synthesis in MEE cells. We show with antisense β-catenin oligonucleotides that up-regulated LEF1 is not activated by β-catenin in palate EMT. We ruled out other TGFβ3 targets, such as RhoA and MEK1/2 pathways, and we present evidence using dominant-negative Smad4 and dominant-negative LEF1 showing that TGFβ3 uses Smads both to up-regulate synthesis of LEF1 and to activate LEF1 transcription during induction of palatal EMT. When phospho-Smad2 and Smad4 are present in the nucleus, LEF1 is activated without β-catenin. Our paper is the first to show that the Smad2,4/LEF1 complex replaces β-catenin/LEF1 during activation of EMT in vivo by TGFβ3.
Collapse
Affiliation(s)
- Ali Nawshad
- Department of Cell Biology, Harvard Medical School, 220 Longwood Ave., B-1, Room 342, Boston, MA 02115-6092, USA
| | | |
Collapse
|
12
|
Xu XB, Leng XS, He ZP, Liang ZQ. Smad4 antisense gene transfer into ito cells and suppressed extracellular matrix production. Shijie Huaren Xiaohua Zazhi 2003; 11:1690-1693. [DOI: 10.11569/wcjd.v11.i11.1690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate possible role of antisense Smad4 RNA in the regulation of Smad4 and ECM production in Ito cells after blockade of TGF-β1 signal transmission by antisense Smad4.
METHODS A rat Smad4 cDNA (2.5 kb) was inserted in reverse orientation into the adenoviral shuttle vector pAdv5SR (+), and so pAdvATSmad4 was obtained. PAdvATSmad4 was transfected, together with pJM17, into 293 cells by a liposome-mediated technique. We acquired the recombinant virus (AdvATSmad4) containing the anti-Smad4 gene by PCR detecting method. AdvATSmad4 was amplified and purified and then introduced into the rat Ito cell line CFSC.
RESULTS The presence of antisense Smad4 RNA was detected by RT-PCR. The expression of Smad4 and the production of extracellular matrix were markedly decreased in the antisense Smad4 transfected cultured cells by in situ hybridization and immunohistochemistry.
CONCLUSION Antisense RNA of Smad4 can be used successfully to inhibit Ito cell activation, endogenous Smad4 mRNA and extracellular matrix production, and may provide a basis for the development of anti-fibrosis gene therapy.
Collapse
Affiliation(s)
- Xin-Bao Xu
- Hepatobiliary Surgery Department, People's Hospital, Peking University, Beijing 100044, China
| | - Xi-Sheng Leng
- Hepatobiliary Surgery Department, People's Hospital, Peking University, Beijing 100044, China
| | - Zhen-Ping He
- Hepatobiliary Surgery Center, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhi-Qing Liang
- Maternity Department, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
13
|
Logan A, Berry M. Cellular and molecular determinants of glial scar formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:115-58. [PMID: 12575819 DOI: 10.1007/978-1-4615-0123-7_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ann Logan
- Molecular Neuroscience, Department of Medicine, Wolfson Research Laboratories, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | | |
Collapse
|
14
|
Chamberlain J. Transforming growth factor-beta: a promising target for anti-stenosis therapy. CARDIOVASCULAR DRUG REVIEWS 2002; 19:329-44. [PMID: 11830751 DOI: 10.1111/j.1527-3466.2001.tb00074.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is the general name for a family of cytokines which have widespread effects on many aspects of growth and development. The TGF-beta isoforms are produced by most cell types and exert a wide range of effects in a context-dependent autocrine, paracrine or endocrine fashion via interactions with distinct receptors on the cell surface. TGF-beta is involved in the wound healing process and, thus plays a significant role in the formation of a restenotic lesion after percutaneous transluminal coronary angioplasty (PTCA) or stenting. Perhaps because of its wide-ranging effects, TGF-beta is usually released from cells in a latent form, and its activation and signaling are complex. Manipulation of the TGF-beta1, TGF-beta2, and TGF-beta3 isoforms by inhibiting their expression, activation, or signaling reduces scarring and fibrosis in animal models. However, to date, few have reached clinical trial. This review summarizes current knowledge on the activation and signaling of TGF-beta, and focuses on the anti-TGF-beta strategies which may lead to clinical applications in the prevention of restenosis following PTCA or stenting.
Collapse
Affiliation(s)
- J Chamberlain
- Cardiovascular Research Group, Section of Medicine, University of Sheffield, Clinical Sciences Centre, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK.
| |
Collapse
|