1
|
DeConne TM, Buckley DJ, Trott DW, Martens CR. The role of T cells in vascular aging, hypertension, and atherosclerosis. Am J Physiol Heart Circ Physiol 2024; 327:H1345-H1360. [PMID: 39423035 DOI: 10.1152/ajpheart.00570.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Vascular dysfunction has emerged as a significant risk factor for the development of cardio- and cerebrovascular diseases (CVDs), which are currently the leading cause of morbidity and mortality worldwide. T lymphocytes (T cells) have been shown to be important modulators of vascular function in primary aging and CVDs, likely by producing inflammatory cytokines and reactive oxygen species that influence vasoprotective molecules. This review summarizes the role of T cells on vascular function in aging, hypertension, and atherosclerosis in animals and humans, and discusses potential T-cell targeted therapeutics to prevent, delay, or reverse vascular dysfunction.
Collapse
Affiliation(s)
- Theodore M DeConne
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - David J Buckley
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
2
|
Darling AM, Young BE, Skow RJ, Dominguez CM, Saunders EFH, Fadel PJ, Greaney JL. Sympathetic and blood pressure reactivity in young adults with major depressive disorder. J Affect Disord 2024; 361:322-332. [PMID: 38897296 DOI: 10.1016/j.jad.2024.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Sympathetic and blood pressure (BP) hyper-reactivity to stress may contribute to increased cardiovascular disease (CVD) risk in adults with major depressive disorder (MDD); however, whether this is evident in young adults with MDD without comorbid disease remains unclear. We hypothesized that acute stress-induced increases in muscle sympathetic nerve activity (MSNA) and BP would be exaggerated in young adults with MDD compared to healthy non-depressed young adults (HA) and that, in adults with MDD, greater symptom severity would be positively related to MSNA and BP reactivity. METHODS In 28 HA (17 female) and 39 young adults with MDD of mild-to-moderate severity (unmedicated; 31 female), MSNA (microneurography) and beat-to-beat BP (finger photoplethysmography) were measured at rest and during the cold pressor test (CPT) and Stroop color word test (SCWT). RESULTS There were no group differences in resting MSNA (p = 0.24). Neither MSNA nor BP reactivity to either the CPT [MSNA: ∆24 ± 10 HA vs. ∆21 ± 11 bursts/min MDD, p = 0.67; mean arterial pressure (MAP): ∆22 ± 7 HA vs. ∆21 ± 10 mmHg MDD, p = 0.46)] or the SCWT (MSNA: ∆-4 ± 6 HA vs. ∆-5 ± 8 bursts/min MDD, p = 0.99; MAP: ∆7 ± 8 HA vs ∆9 ± 5 mmHg MDD; p = 0.82) were different between groups. In adults with MDD, symptom severity predicted MAP reactivity to the CPT (β = 0.78, SE = 0.26, p = 0.006), but not MSNA (p = 0.42). LIMITATIONS The mild-to-moderate symptom severity reflects only part of the MDD spectrum. CONCLUSIONS Neither sympathetic nor BP stress reactivity are exaggerated in young adults with MDD; however, greater symptom severity may amplify BP reactivity to stress, thereby increasing CVD risk.
Collapse
Affiliation(s)
- Ashley M Darling
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America
| | - Benjamin E Young
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America; Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America
| | - Cynthia M Dominguez
- Department of Bioengineering, The University of Texas at Arlington, United States of America
| | - Erika F H Saunders
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA, United States of America
| | - Paul J Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America
| | - Jody L Greaney
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America; Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
3
|
Lv S, Zhang G, Lu Y, Zhong X, Huang Y, Ma Y, Yan W, Teng J, Wei S. Pharmacological mechanism of natural antidepressants: The role of mitochondrial quality control. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155669. [PMID: 38696923 DOI: 10.1016/j.phymed.2024.155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Depression is a mental illness characterized by persistent sadness and a reduced capacity for pleasure. In clinical practice, SSRIs and other medications are commonly used for therapy, despite their various side effects. Natural products present distinct advantages, including synergistic interactions among multiple components and targeting multiple pathways, suggesting their tremendous potential in depression treatment. Imbalance in mitochondrial quality control (MQC) plays a significant role in the pathology of depression, emphasizing the importance of regulating MQC as a potential intervention strategy in addressing the onset and progression of depression. However, the role and mechanism through which natural products regulate MQC in depression treatments still need to be comprehensively elucidated, particularly in clinical and preclinical settings. PURPOSE This review was aimed to summarize the findings of recent studies and outline the pharmacological mechanisms by which natural products modulate MQC to exert antidepressant effects. Additionally, it evaluated current research limitations and proposed new strategies for future preclinical and clinical applications in the depression domain. METHODS To study the main pharmacological mechanisms underlying the regulation of MQC by natural products in the treatment of depression, we conducted a thorough search across databases such as PubMed, Web of Science, and ScienceDirect databases to classify and summarize the relationship between MQC and depression, as well as the regulatory mechanisms of natural products. RESULTS Numerous studies have shown that irregularities in the MQC system play an important role in the pathology of depression, and the regulation of the MQC system is involved in antidepressant treatments. Natural products mainly regulate the MQC system to induce antidepressant effects by alleviating oxidative stress, balancing ATP levels, promoting mitophagy, maintaining calcium homeostasis, optimizing mitochondrial dynamics, regulating mitochondrial membrane potential, and enhancing mitochondrial biogenesis. CONCLUSIONS We comprehensively summarized the regulation of natural products on the MQC system in antidepressants, providing a unique perspective for the application of natural products within antidepressant therapy. However, extensive efforts are imperative in clinical and preclinical investigations to delve deeper into the mechanisms underlying how antidepressant medications impact MQC, which is crucial for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355,China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
4
|
Lu Y, Wang C, Chen H, Peng W, Zhang W, Zhang L, Wu C, Xie A, Lin Y, Sun Y, Pu Y, Fang B, Feng B. The interaction effect of depressive symptoms and inflammation on the occurrence of cardiovascular diseases. J Affect Disord 2024; 350:946-954. [PMID: 38199407 DOI: 10.1016/j.jad.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Whether there was an interaction effect between depressive symptoms and inflammation on the occurrence of cardiovascular diseases (CVDs) was unclear. METHODS In this cross-sectional study, 3346 participants in the National Health and Nutrition Examination Survey (NHANES) were included. Multivariable regression analysis was performed to explore the associations of depressive symptoms or inflammation with CVDs. The attributable proportion of interaction (API), and synergy index (SI) were applied for evaluating the statistical significance of the interaction effect. RESULTS Depressive symptoms were associated with 2.31-fold risk of CVDs [odds ratio (OR) = 2.31, 95 % confidence interval (CI): 1.47-3.62). The increased risk of CVDs was observed in people with neutrophil to lymphocyte ratio (NLR) ≥1.88 group (OR = 1.36, 95%CI: 1.01-1.85) and neutrophil/[white blood cell (WBC)-neutrophil] ≥1.35 (OR = 1.52, 95%CI: 1.12-2.07) after adjusting for confounders. The interaction effect of depressive symptoms and high NLR on the risk of CVDs was statistically significant with an OR value of 2.60 (95%CI: 1.43-4.70) compared to low NLR and no depressive symptoms group after adjusting for confounders. The API was 0.66 (95%CI: 0.44-0.89) and SI was 4.23 (95%CI: 2.08-8.59). The interaction effect of depressive symptoms and high neutrophil/(WBC-neutrophil) was associated with the risk of CVDs compared to low neutrophil/(WBC-neutrophil) and no depressive symptoms group (OR = 3.59, 95%CI: 2.00-6.45). The API was 0.78 (95%CI: 0.63-0.93) and SI was 6.75 (95%CI: 3.55-12.82). CONCLUSION There was an interaction effect of depressive symptoms and inflammation on the occurrence of CVDs.
Collapse
Affiliation(s)
- Yiying Lu
- Department of Encephalopathy, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of TCM, Shanghai 200082, China
| | - Changde Wang
- Department of Encephalopathy, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of TCM, Shanghai 200082, China
| | - Hui Chen
- Department of Encephalopathy, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of TCM, Shanghai 200082, China
| | - Wei Peng
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wen Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Zhang
- Department of Encephalopathy, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of TCM, Shanghai 200082, China
| | - Chunlan Wu
- Department of Encephalopathy, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of TCM, Shanghai 200082, China
| | - Anjie Xie
- Department of Encephalopathy, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of TCM, Shanghai 200082, China
| | - Yudong Lin
- Department of Encephalopathy, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of TCM, Shanghai 200082, China
| | - Yuting Sun
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuting Pu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Beilei Feng
- Department of Encephalopathy, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of TCM, Shanghai 200082, China.
| |
Collapse
|
5
|
Darling AM, Dominguez CM, Skow RJ, Mogle J, Saunders EFH, Fadel PJ, Greaney JL. Cardiac autonomic function is preserved in young adults with major depressive disorder. Am J Physiol Heart Circ Physiol 2024; 326:H648-H654. [PMID: 38214903 PMCID: PMC11221799 DOI: 10.1152/ajpheart.00762.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The prevalence of major depressive disorder (MDD) is highest in young adults and contributes to an increased risk of developing future cardiovascular disease (CVD). However, the underlying mechanisms remain unclear. The studies examining cardiac autonomic function that have included young unmedicated adults with MDD report equivocal findings, and few have considered the potential influence of disease severity or duration. We hypothesized that heart rate variability (HRV) and cardiac baroreflex sensitivity (BRS) would be reduced in young unmedicated adults with MDD (18-30 yr old) compared with healthy nondepressed young adults (HA). We further hypothesized that greater symptom severity would be related to poorer cardiac autonomic function in young adults with MDD. Heart rate and beat-to-beat blood pressure were continuously recorded during 10 min of supine rest to assess HRV and cardiac BRS in 28 HA (17 female, 22 ± 3 yr old) and 37 adults with MDD experiencing current symptoms of mild-to-moderate severity (unmedicated; 28 female, 20 ± 3 yr old). Neither HRV [root mean square of successive differences between normal heartbeats (RMSSD): 63 ± 34 HA vs. 79 ± 36 ms MDD; P = 0.14] nor cardiac BRS (overall gain, 21 ± 10 HA vs. 23 ± 7 ms/mmHg MDD; P = 0.59) were different between groups. In young adults with MDD, there was no association between current depressive symptom severity and either HRV (RMSSD, R2 = 0.004, P = 0.73) or cardiac BRS (overall gain, R2 = 0.02, P = 0.85). Taken together, these data suggest that cardiac autonomic dysfunction may not contribute to elevated cardiovascular risk factor profiles in young unmedicated adults with MDD of mild-to-moderate severity.NEW & NOTEWORTHY This study investigated cardiac autonomic function in young unmedicated adults with major depressive disorder (MDD). The results demonstrated that both heart rate variability and cardiac baroreflex sensitivity were preserved in young unmedicated adults with MDD compared with healthy nondepressed young adults. Furthermore, in young adults with MDD, current depressive symptom severity was not associated with any indices of cardiac autonomic function.
Collapse
Affiliation(s)
- Ashley M Darling
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Cynthia M Dominguez
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, United States
| | - Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Jacqueline Mogle
- Department of Psychology, Clemson University, Clemson, South Carolina, United States
| | - Erika F H Saunders
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Paul J Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Jody L Greaney
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
6
|
Liu R, Gong Y, Xia C, Cao Y, Zhao C, Zhou M. Itaconate: A promising precursor for treatment of neuroinflammation associated depression. Biomed Pharmacother 2023; 167:115521. [PMID: 37717531 DOI: 10.1016/j.biopha.2023.115521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
Neuroinflammation triggers the production of inflammatory factors, influences neuron generation and synaptic plasticity, thus playing an important role in the pathogenesis of depression and becoming an important direction of depression prevention and treatment. Itaconate is a metabolite secreted by macrophages in immunomodulatory responses, that has potent immunomodulatory effects and has been proven to exert anti-inflammatory effects in a variety of diseases. Microglia are mononuclear macrophages that reside in the central nervous system (CNS), and may be the source of endogenous itaconate in the brain. Itaconate can directly inhibit succinate dehydrogenase (SDH), reduce the production of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), activate nuclear factor erythroid-2 related factor 2 (Nrf2), and block glycolysis, and thereby improving the depressive symptoms associated with the above mechanisms. Notably, itaconate also indirectly ameliorates the depressive symptoms associated with some inflammatory diseases. With the optimization of the structure and the development of new delivery systems, the application value and therapeutic potential of itaconate have been significantly improved. Dimethyl itaconate (DI) and 4-octyl itaconate (4-OI), cell-permeable derivatives of itaconate, are more suitable for crossing the blood-brain barrier (BBB), exhibiting therapeutic effects in the research of multiple diseases. This article provides an overview of the immunomodulatory effects of itaconate and its potential therapeutic efficacy in inflammatory depression, focusing on the promising application of itaconate as a precursor of antidepressants.
Collapse
Affiliation(s)
- Ruisi Liu
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yueling Gong
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Song Y, Cao H, Zuo C, Gu Z, Huang Y, Miao J, Fu Y, Guo Y, Jiang Y, Wang F. Mitochondrial dysfunction: A fatal blow in depression. Biomed Pharmacother 2023; 167:115652. [PMID: 37801903 DOI: 10.1016/j.biopha.2023.115652] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondria maintain the normal physiological function of nerve cells by producing sufficient cellular energy and performing crucial roles in maintaining the metabolic balance through intracellular Ca2+ homeostasis, oxidative stress, and axonal development. Depression is a prevalent psychiatric disorder with an unclear pathophysiology. Damage to the hippocampal neurons is a key component of the plasticity regulation of synapses and plays a critical role in the mechanism of depression. There is evidence suggesting that mitochondrial dysfunction is associated with synaptic impairment. The maintenance of mitochondrial homeostasis includes quantitative maintenance and quality control of mitochondria. Mitochondrial biogenesis produces new and healthy mitochondria, and mitochondrial dynamics cooperates with mitophagy to remove damaged mitochondria. These processes maintain mitochondrial population stability and exert neuroprotective effects against early depression. In contrast, mitochondrial dysfunction is observed in various brain regions of patients with major depressive disorders. The accumulation of defective mitochondria accelerates cellular nerve dysfunction. In addition, impaired mitochondria aggravate alterations in the brain microenvironment, promoting neuroinflammation and energy depletion, thereby exacerbating the development of depression. This review summarizes the influence of mitochondrial dysfunction and the underlying molecular pathways on the pathogenesis of depression. Additionally, we discuss the maintenance of mitochondrial homeostasis as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yufeng Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| |
Collapse
|
8
|
Reed EC, Case AJ. Defining the nuanced nature of redox biology in post-traumatic stress disorder. Front Physiol 2023; 14:1130861. [PMID: 37007993 PMCID: PMC10060537 DOI: 10.3389/fphys.2023.1130861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health disorder that arises after experiencing or witnessing a traumatic event. Despite affecting around 7% of the population, there are currently no definitive biological signatures or biomarkers used in the diagnosis of PTSD. Thus, the search for clinically relevant and reproducible biomarkers has been a major focus of the field. With significant advances of large-scale multi-omic studies that include genomic, proteomic, and metabolomic data, promising findings have been made, but the field still has fallen short. Amongst the possible biomarkers examined, one area is often overlooked, understudied, or inappropriately investigated: the field of redox biology. Redox molecules are free radical and/or reactive species that are generated as a consequence of the necessity of electron movement for life. These reactive molecules, too, are essential for life, but in excess are denoted as "oxidative stress" and often associated with many diseases. The few studies that have examined redox biology parameters have often utilized outdated and nonspecific methods, as well as have reported confounding results, which has made it difficult to conclude the role for redox in PTSD. Herein, we provide a foundation of how redox biology may underlie diseases like PTSD, critically examine redox studies of PTSD, and provide future directions the field can implement to enhance standardization, reproducibility, and accuracy of redox assessments for the use of diagnosis, prognosis, and therapy of this debilitating mental health disorder.
Collapse
Affiliation(s)
- Emily C. Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J. Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
9
|
Anderson G. Depression Pathophysiology: Astrocyte Mitochondrial Melatonergic Pathway as Crucial Hub. Int J Mol Sci 2022; 24:ijms24010350. [PMID: 36613794 PMCID: PMC9820523 DOI: 10.3390/ijms24010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is widely accepted as having a heterogenous pathophysiology involving a complex mixture of systemic and CNS processes. A developmental etiology coupled to genetic and epigenetic risk factors as well as lifestyle and social process influences add further to the complexity. Consequently, antidepressant treatment is generally regarded as open to improvement, undoubtedly as a consequence of inappropriately targeted pathophysiological processes. This article reviews the diverse array of pathophysiological processes linked to MDD, and integrates these within a perspective that emphasizes alterations in mitochondrial function, both centrally and systemically. It is proposed that the long-standing association of MDD with suppressed serotonin availability is reflective of the role of serotonin as a precursor for the mitochondrial melatonergic pathway. Astrocytes, and the astrocyte mitochondrial melatonergic pathway, are highlighted as crucial hubs in the integration of the wide array of biological underpinnings of MDD, including gut dysbiosis and permeability, as well as developmental and social stressors, which can act to suppress the capacity of mitochondria to upregulate the melatonergic pathway, with consequences for oxidant-induced changes in patterned microRNAs and subsequent patterned gene responses. This is placed within a development context, including how social processes, such as discrimination, can physiologically regulate a susceptibility to MDD. Future research directions and treatment implications are derived from this.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| |
Collapse
|