1
|
Sigle M, Rohlfing AK, Cruz Santos M, Kopp T, Krutzke K, Gidlund V, Kollotzek F, Marzi J, von Ungern-Sternberg S, Poso A, Heikenwälder M, Schenke-Layland K, Seizer P, Möllmann J, Marx N, Feil R, Feil S, Lukowski R, Borst O, Schäffer TE, Müller KAL, Gawaz MP, Heinzmann D. Targeting Cyclophilin A in the Cardiac Microenvironment Preserves Heart Function and Structure in Failing Hearts. Circ Res 2024; 135:758-773. [PMID: 39140165 DOI: 10.1161/circresaha.124.324812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Cardiac hypertrophy is characterized by remodeling of the myocardium, which involves alterations in the ECM (extracellular matrix) and cardiomyocyte structure. These alterations critically contribute to impaired contractility and relaxation, ultimately leading to heart failure. Emerging evidence implicates that extracellular signaling molecules are critically involved in the pathogenesis of cardiac hypertrophy and remodeling. The immunophilin CyPA (cyclophilin A) has been identified as a potential culprit. In this study, we aimed to unravel the interplay between eCyPA (extracellular CyPA) and myocardial dysfunction and evaluate the therapeutic potential of inhibiting its extracellular accumulation to improve heart function. METHODS Employing a multidisciplinary approach encompassing in silico, in vitro, in vivo, and ex vivo experiments we studied a mouse model of cardiac hypertrophy and human heart specimen to decipher the interaction of CyPA and the cardiac microenvironment in highly relevant pre-/clinical settings. Myocardial expression of CyPA (immunohistology) and the inflammatory transcriptome (NanoString) was analyzed in human cardiac tissue derived from patients with nonischemic, noninflammatory congestive heart failure (n=187). These analyses were paralleled by a mouse model of Ang (angiotensin) II-induced heart failure, which was assessed by functional (echocardiography), structural (immunohistology, atomic force microscopy), and biomolecular (Raman spectroscopy) analyses. The effect of inhibiting eCyPA in the cardiac microenvironment was evaluated using a newly developed neutralizing anti-eCyPA monoclonal antibody. RESULTS We observed a significant accumulation of eCyPA in both human and murine-failing hearts. Importantly, higher eCyPA expression was associated with poor clinical outcomes in patients (P=0.043) and contractile dysfunction in mice (Pearson correlation coefficient, -0.73). Further, myocardial expression of eCyPA was critically associated with an increase in myocardial hypertrophy, inflammation, fibrosis, stiffness, and cardiac dysfunction in vivo. Antibody-based inhibition of eCyPA prevented (Ang II)-induced myocardial remodeling and dysfunction in mice. CONCLUSIONS Our study provides strong evidence of the pathogenic role of eCyPA in remodeling, myocardial stiffening, and dysfunction in heart failure. The findings suggest that antibody-based inhibition of eCyPA may offer a novel therapeutic strategy for nonischemic heart failure. Further research is needed to evaluate the translational potential of these interventions in human patients with cardiac hypertrophy.
Collapse
Affiliation(s)
- Manuel Sigle
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Melanie Cruz Santos
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy (M.C.S., R.L.), University of Tübingen, Germany
| | - Timo Kopp
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Konstantin Krutzke
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Vincent Gidlund
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Ferdinand Kollotzek
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- DFG Heisenberg Group Cardiovascular Thrombo-Inflammation and Translational Thrombocardiology (F.K., O.B.), University of Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine (J. Marzi, K.S.-L.), Eberhard Karls University Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen Reutlingen, Germany (J. Marzi, K.S.-L.)
| | - Saskia von Ungern-Sternberg
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- Now with Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Germany (S.U.-S.)
| | - Antti Poso
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland Kuopio (A.P.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität Tübingen, Germany (A.P.)
- Tübingen Center for Academic Drug Discovery and Development (TüCAD2), Tübingen, Germany (A.P.)
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre Heidelberg (DKFZ), Germany (M.H.)
- University Tübingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome (M.H.)
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine (J. Marzi, K.S.-L.), Eberhard Karls University Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen Reutlingen, Germany (J. Marzi, K.S.-L.)
| | - Peter Seizer
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- Now with Aalen, Germany (P.S.)
| | - Julia Möllmann
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Germany (J. Möllmann, N.M.)
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Germany (J. Möllmann, N.M.)
| | - Robert Feil
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy (M.C.S., R.L.), University of Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- DFG Heisenberg Group Cardiovascular Thrombo-Inflammation and Translational Thrombocardiology (F.K., O.B.), University of Tübingen, Germany
| | - Tilman E Schäffer
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Karin Anne Lydia Müller
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Meinrad P Gawaz
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - David Heinzmann
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| |
Collapse
|
2
|
Zhang H, Muhetarijiang M, Chen RJ, Hu X, Han J, Zheng L, Chen T. Mitochondrial Dysfunction: A Roadmap for Understanding and Tackling Cardiovascular Aging. Aging Dis 2024:AD.2024.0058. [PMID: 38739929 DOI: 10.14336/ad.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiovascular aging is a progressive remodeling process constituting a variety of cellular and molecular alterations that are closely linked to mitochondrial dysfunction. Therefore, gaining a deeper understanding of the changes in mitochondrial function during cardiovascular aging is crucial for preventing cardiovascular diseases. Cardiac aging is accompanied by fibrosis, cardiomyocyte hypertrophy, metabolic changes, and infiltration of immune cells, collectively contributing to the overall remodeling of the heart. Similarly, during vascular aging, there is a profound remodeling of blood vessel structure. These remodeling present damage to endothelial cells, increased vascular stiffness, impaired formation of new blood vessels (angiogenesis), the development of arteriosclerosis, and chronic vascular inflammation. This review underscores the role of mitochondrial dysfunction in cardiac aging, exploring its impact on fibrosis and myocardial alterations, metabolic remodeling, immune response remodeling, as well as in vascular aging in the heart. Additionally, we emphasize the significance of mitochondria-targeted therapies in preventing cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Han Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mairedan Muhetarijiang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ryan J Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Lindsey ML, Brunt KR, Kirk JA, Kleinbongard P, Calvert JW, de Castro Brás LE, DeLeon-Pennell KY, Del Re DP, Frangogiannis NG, Frantz S, Gumina RJ, Halade GV, Jones SP, Ritchie RH, Spinale FG, Thorp EB, Ripplinger CM, Kassiri Z. Guidelines for in vivo mouse models of myocardial infarction. Am J Physiol Heart Circ Physiol 2021; 321:H1056-H1073. [PMID: 34623181 PMCID: PMC8834230 DOI: 10.1152/ajpheart.00459.2021] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Despite significant improvements in reperfusion strategies, acute coronary syndromes all too often culminate in a myocardial infarction (MI). The consequent MI can, in turn, lead to remodeling of the left ventricle (LV), the development of LV dysfunction, and ultimately progression to heart failure (HF). Accordingly, an improved understanding of the underlying mechanisms of MI remodeling and progression to HF is necessary. One common approach to examine MI pathology is with murine models that recapitulate components of the clinical context of acute coronary syndrome and subsequent MI. We evaluated the different approaches used to produce MI in mouse models and identified opportunities to consolidate methods, recognizing that reperfused and nonreperfused MI yield different responses. The overall goal in compiling this consensus statement is to unify best practices regarding mouse MI models to improve interpretation and allow comparative examination across studies and laboratories. These guidelines will help to establish rigor and reproducibility and provide increased potential for clinical translation.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - John W Calvert
- Carlyle Fraser Heart Center of Emory University Hospital Midtown, Atlanta, Georgia
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Nikolaos G Frangogiannis
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Richard J Gumina
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, Florida
| | - Steven P Jones
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Victoria, Australia
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Medical Center, Columbia, South Carolina
| | - Edward B Thorp
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Toomer KA, Yu M, Fulmer D, Guo L, Moore KS, Moore R, Drayton KD, Glover J, Peterson N, Ramos-Ortiz S, Drohan A, Catching BJ, Stairley R, Wessels A, Lipschutz JH, Delling FN, Jeunemaitre X, Dina C, Collins RL, Brand H, Talkowski ME, Del Monte F, Mukherjee R, Awgulewitsch A, Body S, Hardiman G, Hazard ES, da Silveira WA, Wang B, Leyne M, Durst R, Markwald RR, Le Scouarnec S, Hagege A, Le Tourneau T, Kohl P, Rog-Zielinska EA, Ellinor PT, Levine RA, Milan DJ, Schott JJ, Bouatia-Naji N, Slaugenhaupt SA, Norris RA. Primary cilia defects causing mitral valve prolapse. Sci Transl Med 2020; 11:11/493/eaax0290. [PMID: 31118289 PMCID: PMC7331025 DOI: 10.1126/scitranslmed.aax0290] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Mitral valve prolapse (MVP) affects 1 in 40 people and is the most common indication for mitral valve surgery. MVP can cause arrhythmias, heart failure, and sudden cardiac death, and to date, the causes of this disease are poorly understood. We now demonstrate that defects in primary cilia genes and their regulated pathways can cause MVP in familial and sporadic nonsyndromic MVP cases. Our expression studies and genetic ablation experiments confirmed a role for primary cilia in regulating ECM deposition during cardiac development. Loss of primary cilia during development resulted in progressive myxomatous degeneration and profound mitral valve pathology in the adult setting. Analysis of a large family with inherited, autosomal dominant nonsyndromic MVP identified a deleterious missense mutation in a cilia gene, DZIP1 A mouse model harboring this variant confirmed the pathogenicity of this mutation and revealed impaired ciliogenesis during development, which progressed to adult myxomatous valve disease and functional MVP. Relevance of primary cilia in common forms of MVP was tested using pathway enrichment in a large population of patients with MVP and controls from previously generated genome-wide association studies (GWAS), which confirmed the involvement of primary cilia genes in MVP. Together, our studies establish a developmental basis for MVP through altered cilia-dependent regulation of ECM and suggest that defects in primary cilia genes can be causative to disease phenotype in some patients with MVP.
Collapse
Affiliation(s)
- Katelynn A Toomer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Mengyao Yu
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France
| | - Diana Fulmer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Lilong Guo
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Kelsey S Moore
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Reece Moore
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Ka'la D Drayton
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Janiece Glover
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Neal Peterson
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Sandra Ramos-Ortiz
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Alex Drohan
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Breiona J Catching
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Rebecca Stairley
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Andy Wessels
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Francesca N Delling
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xavier Jeunemaitre
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Christian Dina
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Ryan L Collins
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Harrison Brand
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Federica Del Monte
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rupak Mukherjee
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Awgulewitsch
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Simon Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gary Hardiman
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA.,Faculty of Medicine, Health and Life Sciences School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - E Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA
| | - Willian A da Silveira
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Maire Leyne
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Ronen Durst
- Cardiology Division, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| | - Roger R Markwald
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | | - Albert Hagege
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris, Department of Cardiology, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Thierry Le Tourneau
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Peter Kohl
- University Heart Center Freiburg, Bad Krozingen and Faculty of Medicine of the Albert-Ludwigs University Freiburg, Institute for Experimental Cardiovascular Medicine, Elsässerstr 2Q, 79110 Freiburg, Germany
| | - Eva A Rog-Zielinska
- University Heart Center Freiburg, Bad Krozingen and Faculty of Medicine of the Albert-Ludwigs University Freiburg, Institute for Experimental Cardiovascular Medicine, Elsässerstr 2Q, 79110 Freiburg, Germany
| | - Patrick T Ellinor
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - David J Milan
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.,Leducq Foundation, 265 Franklin Street, Suite 1902, Boston, MA, 02110, USA
| | - Jean-Jacques Schott
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Nabila Bouatia-Naji
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Russell A Norris
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|