1
|
Shen YR, Cheng L, Zhang DF. TRPV1: A novel target for the therapy of diabetes and diabetic complications. Eur J Pharmacol 2024; 984:177021. [PMID: 39362389 DOI: 10.1016/j.ejphar.2024.177021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease characterized by abnormally elevated blood glucose levels. Type II diabetes accounts for approximately 90% of all cases. Several drugs are available for hyperglycemia treatment. However, the current therapies for managing high blood glucose do not prevent or reverse the disease progression, which may result in complications and adverse effects, including diabetic neuropathy, retinopathy, and nephropathy. Hence, developing safer and more effective methods for lowering blood glucose levels is imperative. Transient receptor potential vanilloid-1 (TRPV1) is a significant member of the transient receptor potential family. It is present in numerous body tissues and organs and performs vital physiological functions. PURPOSE This review aimed to develop new targeted TRPV1 hypoglycemic drugs by systematically summarizing the mechanism of action of the TRPV1-based signaling pathway in preventing and treating diabetes and its complications. METHODS Literature searches were performed in the PubMed, Web of Science, Google Scholar, Medline, and Scopus databases for 10 years from 2013 to 2023. The search terms included "diabetes," "TRPV1," "diabetic complications," and "capsaicin." RESULTS TRPV1 is an essential potential target for treating diabetes mellitus and its complications. It reduces hepatic glucose production and food intake and promotes thermogenesis, metabolism, and insulin secretion. Activation of TRPV1 ameliorates diabetic nephropathy, retinopathy, myocardial infarction, vascular endothelial dysfunction, gastroparesis, and bladder dysfunction. Suppression of TRPV1 improves diabetes-related osteoporosis. However, the therapeutic effects of activating or suppressing TRPV1 may vary when treating diabetic neuropathy and periodontitis. CONCLUSION This review demonstrates that TRPV1 is a potential therapeutic target for diabetes and its complications. Additionally, it provides a theoretical basis for developing new hypoglycemic drugs that target TRPV1.
Collapse
Affiliation(s)
- Yu-Rong Shen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
3
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
4
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
5
|
Du Q, Liao Q, Chen C, Yang X, Xie R, Xu J. The Role of Transient Receptor Potential Vanilloid 1 in Common Diseases of the Digestive Tract and the Cardiovascular and Respiratory System. Front Physiol 2019; 10:1064. [PMID: 31496955 PMCID: PMC6712094 DOI: 10.3389/fphys.2019.01064] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/02/2019] [Indexed: 01/30/2023] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1), a member of the transient receptor potential vanilloid (TRPV) channel family, is a nonselective cation channel that is widely expressed in sensory nerve fibers and nonneuronal cells, including certain vascular endothelial cells and smooth muscle cells. The activation of TRPV1 may be involved in the regulation of various physiological functions, such as the release of inflammatory mediators in the body, gastrointestinal motility function, and temperature regulation. In recent years, a large number of studies have revealed that TRPV1 plays an important role in the physiological and pathological conditions of the digestive system, cardiovascular system, and respiratory system, but there is no systematic report on TRPV1. The objective of this review is to explain the function and effects of TRPV1 on specific diseases, such as irritable bowel syndrome, hypertension, and asthma, and to further investigate the intrinsic relationship between the expression and function of TRPV1 in those diseases to find new therapeutic targets for the cure of related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Yang S, Liu L, Meng L, Hu X. Capsaicin is beneficial to hyperlipidemia, oxidative stress, endothelial dysfunction, and atherosclerosis in Guinea pigs fed on a high-fat diet. Chem Biol Interact 2018; 297:1-7. [PMID: 30342015 DOI: 10.1016/j.cbi.2018.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Capsaicin has anti-inflammatory and antioxidant effects, as well as some benefits on the cardiovascular system. The exact effects of capsaicin on atherosclerosis are poorly understood. To investigate the effects of capsaicin on hyperlipidemia and atherosclerosis in guinea pigs fed on a high-fat diet, as well as its potential mechanisms. Guinea pigs (n = 48) were randomly divided into six groups (n = 8/group): normal diet (control); high fat diet (model); model + low-dose capsaicin (2.5 mg/kg); model + moderate-dose capsaicin (5 mg/kg); model + high-dose capsaicin (10 mg/kg), and model + simvastatin (1.5 mg/kg) (positive control). After 14 weeks, serum lipids, apolipoprotein B100, malondialdehyde (MDA), superoxide dismutase (SOD), nitric oxide (NO), and endothelin-1 were measured. Aortic atherosclerotic lesions were histologically examined. eNOS and iNOS were assessed by immunohistochemistry. The model group developed severe dyslipidemia and associated histologic changes and endothelial dysfunction. All doses of capsaicin decreased total cholesterol, triglycerides, low-density lipoprotein cholesterol, and apolipoprotein B-100, and increased high-density lipoprotein cholesterol (all P < 0.05). Capsaicin alleviated the plaque area (-17.9-70.5%), plaque area to intima ratio (-18.0-73.6%), and intima thickness (-20.5-83.6%) (all P < 0.05). Capsaicin decreased MDA (-45.5-76.1%), ET-1 (-19.6-51.6%), and average gray value (AGV) of eNOS (-10.9-48.8%), and increased SOD activity (+31.7-76.1%), NO (+11.2-36.8%), and AGV of iNOS (+6.8-+93.0%) (all P < 0.05). Similar changes were observed with simvastatin. Capsaicin is beneficial to hyperlipidemia and atherosclerosis in guinea pigs fed on a high-fat diet. Reduced oxidative stress and endothelial dysfunction were involved in these benefits. This could represent a novel approach to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Siyuan Yang
- Division of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| | - Lin Liu
- Department of Respiratory & Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Like Meng
- School of Principle Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Xuanyi Hu
- Division of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| |
Collapse
|
7
|
Randhawa PK, Jaggi AS. TRPV1 channels in cardiovascular system: A double edged sword? Int J Cardiol 2017; 228:103-113. [DOI: 10.1016/j.ijcard.2016.11.205] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/06/2016] [Indexed: 02/08/2023]
|
8
|
Wang Q, Zhang Y, Li D, Zhang Y, Tang B, Li G, Yang Y, Yang D. Transgenic overexpression of transient receptor potential vanilloid subtype 1 attenuates isoproterenol-induced myocardial fibrosis in mice. Int J Mol Med 2016; 38:601-9. [PMID: 27314441 DOI: 10.3892/ijmm.2016.2648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 06/08/2016] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel with high permeability to Ca2+. Intracellular Ca2+ signaling is an essential regulator of endothelial nitric oxide (NO) synthase (eNOS) that plays a beneficial role in myocardial fibrosis. The aim of the present study was to determine the role of TRPV1 in isoproterenol-induced myocardial fibrosis. Transgenic mice overexpressing TRPV1 were generated on a C57BL/6J genetic background. An animal model of myocardial fibrosis was created by subcutaneously injecting the mice with isoproterenol. We found that the wild-type mice exhibited a significant increase in heart/body weight ratio, left ventricle/body weight ratio, left ventricular end-diastolic pressure (LVEDP), the cardiac fibrotic lesion area and collagen content, as well as a marked decrease in eNOS phosphorylation and NO/cyclic guanosine monophosphate (cGMP) levels at 2 weeks after the administration of isoproterenol (all p<0.01). However, these changes were significantly attenuated in the TRPV1 transgenic mice (p<0.05 or p<0.01). Moreover, the beneficial effects on myocardial fibrosis exerted by the overexpression of TRPV1 were attenuated by the administration of the eNOS inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (all p<0.05). Similar anti-fibrotic effects were observed in in vitro experiments with primary cultured cardiac fibroblasts. The findings of our study suggest that TRPV1 overexpression attenuates isoproterenol‑induced myocardial fibrosis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Yunrong Zhang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Yan Zhang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Bing Tang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Gang Li
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Dachun Yang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
9
|
Dutta A, Akella A, Deshpande SB. A study to investigate capsaicin-induced pressure response in vagotomized rats. Indian J Pharmacol 2013; 45:365-70. [PMID: 24014912 PMCID: PMC3757605 DOI: 10.4103/0253-7613.115019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 02/25/2013] [Accepted: 04/23/2013] [Indexed: 12/02/2022] Open
Abstract
Objectives: Capsaicin is used to evoke pulmonary C reflexes and produces complex pressure responses along with apnea/tachypnea, and bradycardia. In the present study, the mechanisms involved in capsaicin-induced pressure responses were explored. Materials and Methods: Tracheal, jugular venous, and femoral artery cannulations were performed in anesthetized adult rats. Blood pressure, respiratory excursions, and electrocardiogram were recorded. Cardiorespiratory reflex changes evoked by jugular venous injection of capsaicin (10 μg/kg) were recorded in vagotomized and antagonist pretreated animals. Results: Capsaicin produced triphasic pressure response exhibiting immediate hypotension, intermediate recovery, and delayed hypotension. Time-matched respiratory changes showed apnea, bradypnea, and tachypnea, respectively. Bradycardia occurred at immediate and intermediate phases. After vagotomy, immediate hypotension was abolished; the intermediate recovery was potentiated as hypertensive response; and the delayed hypotension persisted. In case of respiration, the immediate bradypnea persisted and delayed tachypnea was abolished; while heart rate changes at immediate and intermediate phases were abolished. Antagonists of α1-adrenoceptor (prazosin or terazosin, 0.5 mg/kg), β-adrenoceptor (propranolol, 1 mg/kg), AT1 receptor (losartan, 10 mg/kg) and Ca2+ channel (diltiazem, 1 mg/kg) failed to block the capsaicin-induced intermediate hypertensive response in vagotomized animals. Conclusions: These observations implicate the existence of mechanisms other than adrenergic, angiotensinergic, or Ca2+ channel-dependent mechanisms for mediating the capsaicin-induced intermediate hypertensive response in vagotomized animals.
Collapse
Affiliation(s)
- Abhaya Dutta
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
10
|
Kozhevnikova LM, Zharkikh IL, Avdonin PV. Calmodulin inhibitors suppress calcium signaling from serotonin receptors in smooth muscle cells and abolish vasoconstrictive response on intravenous introduction of serotonin. BIOL BULL+ 2013. [DOI: 10.1134/s1062359013040080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Sun J, Pu Y, Wang P, Chen S, Zhao Y, Liu C, Shang Q, Zhu Z, Liu D. TRPV1-mediated UCP2 upregulation ameliorates hyperglycemia-induced endothelial dysfunction. Cardiovasc Diabetol 2013; 12:69. [PMID: 23607427 PMCID: PMC3644255 DOI: 10.1186/1475-2840-12-69] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background Diabetic cardiovascular complications are characterised by oxidative stress-induced endothelial dysfunction. Uncoupling protein 2 (UCP2) is a regulator of mitochondrial reactive oxygen species (ROS) generation and can antagonise oxidative stress, but approaches that enhance the activity of UCP2 to inhibit ROS are scarce. Our previous studies show that activation of transient receptor potential vanilloid 1 (TRPV1) by capsaicin can prevent cardiometabolic disorders. In this study, we conducted experiments in vitro and in vivo to investigate the effect of capsaicin treatment on endothelial UCP2 and oxidative stress. We hypothesised that TRPV1 activation by capsaicin attenuates hyperglycemia-induced endothelial dysfunction through a UCP2-mediated antioxidant effect. Methods TRPV1-/-, UCP2 -/- and db/db mice, as well as matched wild type (WT) control mice, were included in this study. Some mice were subjected to dietary capsaicin for 14 weeks. Arteries isolated from mice and endothelial cells were cultured. Endothelial function was examined, and immunohistological and molecular analyses were performed. Results Under high-glucose conditions, TRPV1 expression and protein kinase A (PKA) phosphorylation were found to be decreased in the cultured endothelial cells, and the effects of high-glucose on these molecules were reversed by the administration of capsaicin. Furthermore, high-glucose exposure increased ROS production and reduced nitric oxide (NO) levels both in endothelial cells and in arteries that were evaluated respectively by dihydroethidium (DHE) and DAF-2 DA fluorescence. Capsaicin administration decreased the production of ROS, restored high-glucose-induced endothelial dysfunction through the activation of TRPV1 and acted in a UCP2-dependent manner in vivo. Administration of dietary capsaicin for 14 weeks increased the levels of PKA phosphorylation and UCP2 expression, ameliorated the vascular oxidative stress and increased NO levels observed in diabetic mice. Prolonged dietary administration of capsaicin promoted endothelium-dependent relaxation in diabetic mice. However, the beneficial effect of capsaicin on vasorelaxation was absent in the aortas of UCP2 -/- mice exposed to high-glucose levels. Conclusion TRPV1 activation by capsaicin might protect against hyperglycemia-induced endothelial dysfunction through a mechanism involving the PKA/UCP2 pathway.
Collapse
Affiliation(s)
- Jing Sun
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kaßmann M, Harteneck C, Zhu Z, Nürnberg B, Tepel M, Gollasch M. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol (Oxf) 2013; 207:546-64. [PMID: 23253200 DOI: 10.1111/apha.12051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/15/2012] [Accepted: 12/11/2012] [Indexed: 12/13/2022]
Abstract
Recent preclinical data indicate that activators of transient receptor potential channels of the vanilloid receptor subtype 1 (TRPV1) may improve the outcome of ischaemic acute kidney injury (AKI). The underlying mechanisms are unclear, but may involve TRPV1 channels in dorsal root ganglion neurones that innervate the kidney. Recent data identified TRPV4, together with TRPV1, to serve as major calcium influx channels in endothelial cells. In these cells, gating of individual TRPV4 channels within a four-channel cluster provides elementary calcium influx (calcium sparklets) to open calcium-activated potassium channels and promote vasodilation. The TRPV receptors can also form heteromers that exhibit unique conductance and gating properties, further increasing their spatio-functional diversity. This review summarizes data on electrophysiological properties of TRPV1/4 and their modulation by endogenous channel agonists such as 20-HETE, phospholipase C and phosphatidylinositide 3-kinase (PI3 kinase). We review important roles of TRPV1 and TRPV4 in kidney physiology and renal ischaemia reperfusion injury; further studies are warranted to address renoprotective mechanism of vanilloid receptors in ischaemic AKI including the role of the capsaicin receptor TRPV1 in primary sensory nerves and/or endothelium. Particular attention should be paid to understand the kidneys' ability to respond to ischaemic stimuli after catheter-based renal denervation therapy in man, whereas the discovery of novel pharmacological TRPV modulators may be a successful strategy for better treatment of acute or chronic kidney failure.
Collapse
Affiliation(s)
- M. Kaßmann
- Charité University Medicine, Section Nephrology/Intensive Care, Campus Virchow, and Experimental and Clinical Research Center (ECRC); Berlin; Germany
| | - C. Harteneck
- Institut für Experimentelle & Klinische Pharmakologie & Toxikologie and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICePhA); Eberhard-Karls-Universität; Tübingen; Germany
| | - Z. Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases; Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension; Chongqing; China
| | - B. Nürnberg
- Institut für Experimentelle & Klinische Pharmakologie & Toxikologie and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICePhA); Eberhard-Karls-Universität; Tübingen; Germany
| | - M. Tepel
- Department of Nephrology, and University of Southern Denmark, Institute of Molecular Medicine, Cardiovascular and Renal Research, Institute of Clinical Research; Odense University Hospital; Odense; Denmark
| | - M. Gollasch
- Charité University Medicine, Section Nephrology/Intensive Care, Campus Virchow, and Experimental and Clinical Research Center (ECRC); Berlin; Germany
| |
Collapse
|
13
|
Marshall NJ, Liang L, Bodkin J, Dessapt-Baradez C, Nandi M, Collot-Teixeira S, Smillie SJ, Lalgi K, Fernandes ES, Gnudi L, Brain SD. A role for TRPV1 in influencing the onset of cardiovascular disease in obesity. Hypertension 2012; 61:246-52. [PMID: 23150506 DOI: 10.1161/hypertensionaha.112.201434] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Obesity induced by Western diets is associated with type 2 diabetes mellitus and cardiovascular diseases, although underlying mechanisms are unclear. We investigated a murine model of diet-induced obesity to determine the effect of transient potential receptor vanilloid 1 (TRPV1) deletion on hypertension and metabolic syndrome. Wild-type and TRPV1 knockout mice were fed normal or high-fat diet from 3 to 15 weeks. High-fat diet-fed mice from both genotypes became obese, with similar increases in body and adipose tissue weights. High-fat diet-fed TRPV1 knockout mice showed significantly improved handling of glucose compared with high-fat diet-fed wild-type mice. Hypertension, vascular hypertrophy, and altered nociception were observed in high-fat diet-fed wild-type but not high-fat diet-fed TRPV1 knockout mice. Wild-type, but not high-fat diet-fed TRPV1 knockout, mice demonstrated remodeling in terms of aortic vascular hypertrophy and increased heart and kidney weight, although resistance vessel responses were similar in each. Moreover, the wild-type mice had significantly increased plasma levels of leptin, interleukin 10 and interleukin 1β, whereas samples from TRPV1 knockout mice did not show significant increases. Our results do not support the concept that TRPV1 plays a major role in influencing weight gain. However, we identified a role of TRPV1 in the deleterious effects observed with high-fat feeding in terms of inducing hypertension, impairing thermal nociception sensitivity, and reducing glucose tolerance. The observation of raised levels of adipokines in wild-type but not TRPV1 knockout mice is in keeping with TRPV1 involvement in stimulating the proinflammatory network that is central to obesity-induced hypertension and sensory neuronal dysfunction.
Collapse
Affiliation(s)
- Nichola J Marshall
- British Heart Foundation Centre of Cardiovascular Excellence and Centre of Integrative Biomedicine, King’s College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Role of oxidative stress and Ca²⁺ signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 2012; 37:2065-75. [PMID: 22846968 DOI: 10.1007/s11064-012-0850-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus, a debilitating chronic disease, affects ~100 million people. Peripheral neuropathy is one of the most common early complications of diabetes in ~66 % of these patients. Altered Ca(2+) handling and Ca(2+) signaling were detected in a huge variety of preparations isolated from animals with experimentally induced type 1 and 2 diabetes as well as patients suffering from the disease. We reviewed the role of Ca(2+) signaling through cation channels and oxidative stress on diabetic neuropathic pain in sensory neurons. The pathogenesis of diabetic neuropathy involves the polyol pathway, advanced glycation end products, oxidative stress, protein kinase C activation, neurotrophism, and hypoxia. Experimental studies with respect to oxidative stress and Ca(2+) signaling, inhibitor roles of antioxidants in diabetic neuropathic pain are also summarized in the review. We hypothesize that deficits in insulin, triggers alterations of sensory neurone phenotype that are critical for the development of abnormal Ca(2+) homeostasis and oxidative stress and associated mitochondrial dysfunction. The transient receptor potential channels are a large family of proteins with six main subfamilies. The sheer number of different TRPs with distinct functions supports the statement that these channels are involved in a wide range of processes ranging in diabetic neuropathic pain and it seems that the TRPC, TRPM and TRPV groups are mostly responsible from diabetic neuropathic pain. In conclusion, the accumulating evidence implicating Ca(2+) dysregulation and over production of oxidative stress products in diabetic neuropathic pains, along with recent advances in understanding of genetic variations in cation channels such as TRP channels, makes modulation of neuronal Ca(2+) handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many diabetic neuropathies.
Collapse
|
15
|
Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca 2+ signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 2012; 3:127-58. [PMID: 22905291 PMCID: PMC3421132 DOI: 10.4331/wjbc.v3.i7.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Moccia
- Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies "Lazzaro Spallanzani", Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | |
Collapse
|
16
|
Guarini G, Ohanyan VA, Kmetz JG, DelloStritto DJ, Thoppil RJ, Thodeti CK, Meszaros JG, Damron DS, Bratz IN. Disruption of TRPV1-mediated coupling of coronary blood flow to cardiac metabolism in diabetic mice: role of nitric oxide and BK channels. Am J Physiol Heart Circ Physiol 2012; 303:H216-23. [PMID: 22610171 DOI: 10.1152/ajpheart.00011.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have previously shown transient receptor potential vanilloid subtype 1 (TRPV1) channel-dependent coronary function is compromised in pigs with metabolic syndrome (MetS). However, the mechanisms through which TRPV1 channels couple coronary blood flow to metabolism are not fully understood. We employed mice lacking TRPV1 [TRPV1((-/-))], db/db diabetic, and control C57BKS/J mice to determine the extent to which TRPV1 channels modulate coronary function and contribute to vascular dysfunction in diabetic cardiomyopathy. Animals were subjected to in vivo infusion of the TRPV1 agonist capsaicin to examine the hemodynamic actions of TRPV1 activation. Capsaicin (1-100 μg·kg(-1)·min(-1)) dose dependently increased coronary blood flow in control mice, which was inhibited by the TRPV1 antagonist capsazepine or the nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine methyl ester (L-NAME). In addition, the capsaicin-mediated increase in blood flow was attenuated in db/db mice. TRPV1((-/-)) mice exhibited no changes in coronary blood flow in response to capsaicin. Vasoreactivity studies in isolated pressurized mouse coronary microvessels revealed a capsaicin-dependent relaxation that was inhibited by the TRPV1 inhibitor SB366791 l-NAME and to the large conductance calcium-sensitive potassium channel (BK) inhibitors iberiotoxin and Penetrim A. Similar to in vivo responses, capsaicin-mediated relaxation was impaired in db/db mice compared with controls. Changes in pH (pH 7.4-6.0) relaxed coronary vessels contracted to the thromboxane mimetic U46619 in all three groups of mice; however, pH-mediated relaxation was blunted in vessels obtained from TRPV1((-/-)) and db/db mice compared with controls. Western blot analysis revealed decreased myocardial TRPV1 protein expression in db/db mice compared with controls. Our data reveal TRPV1 channels mediate coupling of myocardial blood flow to cardiac metabolism via a nitric oxide-dependent, BK channel-dependent pathway that is corrupted in diabetes.
Collapse
Affiliation(s)
- Giacinta Guarini
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Asano S, Bratz IN, Berwick ZC, Fancher IS, Tune JD, Dick GM. Penitrem A as a tool for understanding the role of large conductance Ca(2+)/voltage-sensitive K(+) channels in vascular function. J Pharmacol Exp Ther 2012; 342:453-60. [PMID: 22580348 DOI: 10.1124/jpet.111.191072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Large conductance, Ca(2+)/voltage-sensitive K(+) channels (BK channels) are well characterized, but their physiological roles, often determined through pharmacological manipulation, are less clear. Iberiotoxin is considered the "gold standard" antagonist, but cost and membrane-impermeability limit its usefulness. Economical and membrane-permeable alternatives could facilitate the study of BK channels. Thus, we characterized the effect of penitrem A, a tremorigenic mycotoxin, on BK channels and demonstrate its utility for studying vascular function in vitro and in vivo. Whole-cell currents from human embryonic kidney 293 cells transfected with hSlo α or α + β1 were blocked >95% by penitrem A (IC(50) 6.4 versus 64.4 nM; p < 0.05). Furthermore, penitrem A inhibited BK channels in inside-out and cell-attached patches, whereas iberiotoxin could not. Inhibitory effects of penitrem A on whole-cell K(+) currents were equivalent to iberiotoxin in canine coronary smooth muscle cells. As for specificity, penitrem A had no effect on native delayed rectifier K(+) currents, cloned voltage-dependent Kv1.5 channels, or native ATP-dependent K(ATP) current. Penitrem A enhanced the sensitivity to K(+)-induced contraction in canine coronary arteries by 23 ± 5% (p < 0.05) and increased the blood pressure response to phenylephrine in anesthetized mice by 36 ± 11% (p < 0.05). Our data indicate that penitrem A is a useful tool for studying the role of BK channels in vascular function and is practical for cell and tissue (in vitro) studies as well as anesthetized animal (in vivo) experiments.
Collapse
Affiliation(s)
- Shinichi Asano
- Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kawae T, Takahashi M, Konishi K, Sekikawa K, Inamizu T, Ishibashi F, Ito Y, Kimura H, Hamada H. Attenuation of the Muscle Metaboreflex in Patients with Type 2 Diabetes. J Phys Ther Sci 2012. [DOI: 10.1589/jpts.24.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Toshihiro Kawae
- Division of Rehabilitation, Clinical Support Department, Hiroshima University Hospital
| | | | - Kana Konishi
- Graduate School of Health Sciences, Hiroshima University
| | | | | | | | - Yoshihiro Ito
- Division of Rehabilitation, Clinical Support Department, Hiroshima University Hospital
| | - Hiroaki Kimura
- Department of Rehabilitation, Hiroshima University Hospital
| | | |
Collapse
|