1
|
Ogilvie LM, Coyle-Asbil B, Brunt KR, Petrik J, Simpson JA. Therapy-naïve malignancy causes cardiovascular disease: a state-of-the-art cardio-oncology perspective. Am J Physiol Heart Circ Physiol 2024; 326:H1515-H1537. [PMID: 38639740 DOI: 10.1152/ajpheart.00795.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are the leading causes of mortality worldwide. Although generally thought of as distinct diseases, the intersectional overlap between CVD and cancer is increasingly evident in both causal and mechanistic relationships. The field of cardio-oncology is largely focused on the cardiotoxic effects of cancer therapies (e.g., chemotherapy, radiation). Furthermore, the cumulative effects of cardiotoxic therapy exposure and the prevalence of CVD risk factors in patients with cancer lead to long-term morbidity and poor quality of life in this patient population, even when patients are cancer-free. Evidence from patients with cancer and animal models demonstrates that the presence of malignancy itself, independent of cardiotoxic therapy exposure or CVD risk factors, negatively impacts cardiac structure and function. As such, the primary focus of this review is the cardiac pathophysiological and molecular features of therapy-naïve cancer. We also summarize the strengths and limitations of preclinical cancer models for cardio-oncology research and discuss therapeutic strategies that have been tested experimentally for the treatment of cancer-induced cardiac atrophy and dysfunction. Finally, we explore an adjacent area of interest, called "reverse cardio-oncology," where the sequelae of heart failure augment cancer progression. Here, we emphasize the cross-disease communication between malignancy and the injured heart and discuss the importance of chronic low-grade inflammation and endocrine factors in the progression of both diseases.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| |
Collapse
|
2
|
Iskra BS, Davis LR, Miller HE, Chiu YC, Bishop AJR, Chen Y, Aune GJ. Development and Characterization of a Mass Cytometry Panel for Detecting the Effect of Acute Doxorubicin Exposure on Murine Cardiac Non-myocytes. Am J Physiol Heart Circ Physiol 2022; 323:H130-H145. [PMID: 35657614 DOI: 10.1152/ajpheart.00514.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Childhood cancer survivors (CCSs) face lifelong side effects related to their treatment with chemotherapy. Anthracycline agents, such as doxorubicin (DOX), are important in the treatment of childhood cancers but are associated with cardiotoxicity. Cardiac toxicities represent a significant source of chronic disability that cancer survivors face; despite this, the chronic cardiotoxicity phenotype and how it relates to acute toxicity remains poorly defined., To address this critical knowledge gap, we studied the acute effect of DOX on murine cardiac non-myocytes in vivo. Determination of the acute cellular effects of DOX on non-myocytes, a cell pool with finite replicative capacity, provides a basis for understanding the pathogenesis of the chronic heart disease that CCSs face. To investigate the acute cellular effects of DOX, we present scRNAseq data from homeostatic cardiac non-myocytes and compare it to pre-existing datasets as well as a novel CyTOF datasets. SCANPY, a python-based single cell analysis, was used to assess the heterogeneity of cells detected in scRNAseq and CyTOF. To further assist in CyTOF data annotation, joint analyses of scRNAseq and CyTOF data using an artificial neural network known as sparse autoencoder for clustering, imputation, and embedding (SAUCIE) are performed. Lastly, the panel is tested on a mouse model of acute DOX exposure at two time points (24 and 72 hours) after the last dose of doxorubicin and examined with joint clustering. In sum, we report the first ever CyTOF study of cardiac non-myocytes and characterize the effect of acute DOX exposure with scRNAseq and CyTOF.
Collapse
Affiliation(s)
- Brian S Iskra
- South Texas Medical Scientist Training Program, University of Texas Health Science Center San Antonio, San Antonio, TX, United States.,Integrated Biomedical Sciences Graduate Program, University of Texas Health Science Center San Antonio, San Antonio, TX, United States.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Logan R Davis
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Henry E Miller
- Integrated Biomedical Sciences Graduate Program, University of Texas Health Science Center San Antonio, San Antonio, TX, United States.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Yu-Chiao Chiu
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States.,Computational Biology and Bioinformatics Initiative, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Alexander J R Bishop
- Integrated Biomedical Sciences Graduate Program, University of Texas Health Science Center San Antonio, San Antonio, TX, United States.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Yidong Chen
- Integrated Biomedical Sciences Graduate Program, University of Texas Health Science Center San Antonio, San Antonio, TX, United States.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States.,Computational Biology and Bioinformatics Initiative, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Gregory J Aune
- Integrated Biomedical Sciences Graduate Program, University of Texas Health Science Center San Antonio, San Antonio, TX, United States.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States.,Department of Pediatrics, Division of Hematology-Oncology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| |
Collapse
|
3
|
Wang F, Chandra J, Kleinerman ES. Exercise intervention decreases acute and late doxorubicin-induced cardiotoxicity. Cancer Med 2021; 10:7572-7584. [PMID: 34523825 PMCID: PMC8559466 DOI: 10.1002/cam4.4283] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox) is one of the most effective chemotherapy agents used to treat adolescent and young adult sarcoma patients. Unfortunately, Dox causes cardiotoxicities that compromise long-term survival. We investigated whether exercise prevented cardiotoxicity and increased survival following myocardial infarction. METHODS Juvenile mice received Dox, Dox + exercise (Exer), Dox then exercise or were exercised during and after Dox. Mice were evaluated by echocardiography and histology immediately after therapy and 12 weeks later. Mice subjected to permanent ligation of the left anterior descending artery 90 days after therapy were assessed for survival at 45 and 100 days. RESULTS Mice treated with Dox, but not Dox + Exer, had decreased ejection fraction (EF) and fractional shortening (FS) immediately after Dox therapy, which continued to deteriorate over 12 weeks with the development of diastolic failure and fibrosis. Acute Dox-induced cardiotoxicity was documented by induction of autophagy and abnormal mitochondria and vascular architecture with decreased pericytes. These abnormalities persisted 12 weeks after therapy. These acute and late changes were not seen in the Dox + Exer group. Initiating exercise after Dox therapy promoted recovery of EF and FS with no functional or histologic evidence of Dox-induced damage 12 weeks after therapy. Survival rates at 100 days after MI were 67% for control mice, 22% for mice that received Dox alone, and 56% for mice that received Dox + Exer. CONCLUSIONS Exercise inhibited both early and late Dox-induced cardiotoxicity and increased recovery from an ischemic event. Exercise interventions have the potential to decrease Dox-induced cardiac morbidity.
Collapse
Affiliation(s)
- Fei Wang
- Division of PediatricsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Joya Chandra
- Division of PediatricsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Eugenie S. Kleinerman
- Division of PediatricsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
4
|
Thiopyrimidine derivatives induce cytotoxicity, cell cycle arrest and oxidative stress in breast cancer 3D-spheroids. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Mancilla TR, Davis LR, Aune GJ. Doxorubicin-induced p53 interferes with mitophagy in cardiac fibroblasts. PLoS One 2020; 15:e0238856. [PMID: 32960902 PMCID: PMC7508395 DOI: 10.1371/journal.pone.0238856] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Anthracyclines are the critical component in a majority of pediatric chemotherapy regimens due to their broad anticancer efficacy. Unfortunately, the vast majority of long-term childhood cancer survivors will develop a chronic health condition caused by their successful treatments and severe cardiac disease is a common life-threatening outcome that is unequivocally linked to previous anthracycline exposure. The intricacies of how anthracyclines such as doxorubicin, damage the heart and initiate a disease process that progresses over multiple decades is not fully understood. One area left largely unstudied is the role of the cardiac fibroblast, a key cell type in cardiac maturation and injury response. In this study, we demonstrate the effect of doxorubicin on cardiac fibroblast function in the presence and absence of the critical DNA damage response protein p53. In wildtype cardiac fibroblasts, doxorubicin-induced damage correlated with decreased proliferation and migration, cell cycle arrest, and a dilated cardiomyopathy gene expression profile. Interestingly, these doxorubicin-induced changes were completely or partially restored in p53-/- cardiac fibroblasts. Moreover, in wildtype cardiac fibroblasts, doxorubicin produced DNA damage and mitochondrial dysfunction, both of which are well-characterized cell stress responses induced by cytotoxic chemotherapy and varied forms of heart injury. A 3-fold increase in p53 (p = 0.004) prevented the completion of mitophagy (p = 0.032) through sequestration of Parkin. Interactions between p53 and Parkin increased in doxorubicin-treated cardiac fibroblasts (p = 0.0003). Finally, Parkin was unable to localize to the mitochondria in wildtype cardiac fibroblasts, but mitochondrial localization was restored in p53-/- cardiac fibroblasts. These findings strongly suggest that cardiac fibroblasts are an important myocardial cell type that merits further study in the context of doxorubicin treatment. A more robust knowledge of the role cardiac fibroblasts play in the development of doxorubicin-induced cardiotoxicity will lead to novel clinical strategies that will improve the quality of life of cancer survivors.
Collapse
Affiliation(s)
- T. R. Mancilla
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| | - L. R. Davis
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| | - G. J. Aune
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
- Department of Pediatrics, Division of Hematology-Oncology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| |
Collapse
|
6
|
DeLeon-Pennell KY, Barker TH, Lindsey ML. Fibroblasts: The arbiters of extracellular matrix remodeling. Matrix Biol 2020; 91-92:1-7. [PMID: 32504772 PMCID: PMC7434687 DOI: 10.1016/j.matbio.2020.05.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is the foundation on which all cells and organs converge to orchestrate normal physiological functions. In the setting of pathology, the ECM is modified to incorporate additional roles, with modifications including turnover of existing ECM and deposition of new ECM. The fibroblast is center stage in coordinating both normal tissue homeostasis and response to disease. Understanding how fibroblasts work under normal conditions and are activated in response to injury or stress will provide mechanistic insight that triggers discovery of new therapeutic treatments for a wide range of disease. We highlight here fibroblast roles in the cancer, lung, and heart as example systems where fibroblasts are major contributors to homeostasis and pathology.
Collapse
Affiliation(s)
- Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, and Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29425, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22903, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA; and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105.
| |
Collapse
|
7
|
Saxena A, Izmirly PM, Bomar RP, Golpanian RS, Friedman DM, Eisenberg R, Kim MY, Buyon JP. Factors associated with long-term cardiac dysfunction in neonatal lupus. Ann Rheum Dis 2020; 79:217-224. [PMID: 31672776 PMCID: PMC11545888 DOI: 10.1136/annrheumdis-2019-215900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Cardiac manifestations of neonatal lupus (NL) have been associated with significant morbidity and mortality; however, there is minimal information on long-term outcomes of affected individuals. This study was initiated to evaluate the presence of and the risk factors associated with cardiac dysfunction in NL after birth in multiple age groups to improve counselling, to further understand pathogenesis and to provide potential preventative strategies. METHODS Echocardiogram reports were evaluated in 239 individuals with cardiac NL: 143 from age 0-1 year, 176 from age >1-17 years and 64 from age >17 years. Logistic regression analyses evaluated associations of cardiac dysfunction at each age group with demographic, fetal and postnatal factors, using imputation to address missing data. RESULTS Cardiac dysfunction was identified in 22.4% at age 0-1 year, 14.8% at age >1-17 years and 28.1% at age >17 years. Dysfunction in various age groups was significantly associated with male sex, black race, lower fetal heart rates, fetal extranodal cardiac disease and length of time paced. In 106 children with echocardiograms at ages 0-1 year and >1-17 years, 43.8% with dysfunction at age 0-1 year were also affected at age >1-17 years, while the others reverted to normal. Of children without dysfunction at age 0-1 year, 8.9% developed new dysfunction between ages >1 and 17 years. Among 34 with echocardiograms at ages >1-17 years and >17 years, 6.5% with normal function at age >1-17 years developed dysfunction in adulthood. CONCLUSIONS Risk factors in fetal life can influence cardiac morbidity into adulthood.Although limited by a small number of cases, cardiac dysfunction in the first year often normalises by later childhood. New-onset dysfunction, although rare, can occur de novo after the first year.
Collapse
Affiliation(s)
- Amit Saxena
- Medicine, NYU School of Medicine, New York, New York, United States
| | - Peter M Izmirly
- Medicine, NYU School of Medicine, New York, New York, United States
| | - Rebecca P Bomar
- Medicine, NYU School of Medicine, New York, New York, United States
| | | | | | - Ruth Eisenberg
- Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mimi Y Kim
- Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jill P Buyon
- Medicine, NYU School of Medicine, New York, New York, United States
| |
Collapse
|
8
|
Boussada M, Ali RB, Chahbi A, Abdelkarim M, Fradj MKB, Dziri C, Bokri K, Akacha AB, El May MV. A new Thiocyanoacetamide protects rat sperm cells from Doxorubicin-triggered cytotoxicity whereas Selenium shows low efficacy: In vitro approach. Toxicol In Vitro 2019; 61:104587. [PMID: 31271807 DOI: 10.1016/j.tiv.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/29/2019] [Accepted: 06/29/2019] [Indexed: 11/26/2022]
Abstract
Doxorubicin (DOX) exhibits a wide-ranging spectrum of antitumor activities which maintain its clinical use despite its devastating impact on highly proliferating cells. The present work was designed to develop a new approach which aims to protect male germ cells from DOX cytotoxicity. Thus, an assessment of the protective potential of a new thioamide analog (thiocyanoacetamide; TA) compared to selenium (Se) was performed in rat sperms exposed to DOX in vitro. Oxygen consumption rate (OCR) was measured after exposure to three different doses (0.5, 1, 1.5 and 2 μM) of DOX, Se or TA, and the suitable concentrations were selected for further studies afterwards. Motility, OCR in a time-dependent manner, glucose extracellular concentration and lipid peroxidation (LPO) were measured. Fatty acid (FA) content was assessed by gas chromatography (GC-FID). Cell death, superoxide anion (O2-), mitochondrial membrane potential (MMP), and DNA damage were evaluated by flow cytometry. TA association with DOX increased OCR and glucose uptake, improved cell survival and decreased DNA damage. The co-administration of DOX with Se increased OCR, significantly prevented O2- overproduction, and decreased LPO. Collected data brought new insights regarding this transformed TA, which showed better efficiency than Se in reducing DOX cytotoxic stress in sperms.
Collapse
Affiliation(s)
- Marwa Boussada
- UR17/ES/13 Laboratory of Histology and Embryology, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia.
| | - Ridha Ben Ali
- UR17/ES/13 Laboratory of Histology and Embryology, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia; Unity of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia
| | - Ahlem Chahbi
- Laboratory of Hematology, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia.
| | - Mohamed Abdelkarim
- Laboratory of Hematology, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia
| | - Mohamed Kacem Ben Fradj
- UR05/08-08, LR99/ES/11, Department of Biochemistry, Rabta Hospital, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia
| | - Chadli Dziri
- Unity of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia
| | - Khouloud Bokri
- Laboratory of Organic Synthesis and Heterocyclic Chemistry Department, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Azaiez Ben Akacha
- Laboratory of Organic Synthesis and Heterocyclic Chemistry Department, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Michèle Véronique El May
- UR17/ES/13 Laboratory of Histology and Embryology, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007 Tunis, Tunisia
| |
Collapse
|
9
|
Abstract
Doxorubicin-induced cardiotoxicity in childhood cancer survivors is a growing problem. The population of patients at risk for cardiovascular disease is steadily increasing, as five-year survival rates for all types of childhood cancers continue to improve. Doxorubicin affects the developing heart differently from the adult heart and in a subset of exposed patients, childhood exposure leads to late, irreversible cardiomyopathy. Notably, the prevalence of late-onset toxicity is increasing in parallel with improved survival. By the year 2020, it is estimated that there will be 500,000 childhood cancer survivors and over 50,000 of them will suffer from doxorubicin-induced cardiotoxicity. The majority of the research to-date, concentrated on childhood cancer survivors, has focused mostly on clinical outcomes through well-designed epidemiological and retrospective cohort studies. Preclinical studies have elucidated many of the cellular mechanisms that elicit acute toxicity in cardiomyocytes. However, more research is needed in the areas of early- and late-onset cardiotoxicity and more importantly improving the scientific understanding of how other cells present in the cardiac milieu are impacted by doxorubicin exposure. The overall goal of this review is to succinctly summarize the major clinical and preclinical studies focused on doxorubicin-induced cardiotoxicity. As the prevalence of patients affected by doxorubicin exposure continues to increase, it is imperative that the major gaps in existing research are identified and subsequently utilized to develop appropriate research priorities for the coming years. Well-designed preclinical research models will enhance our understanding of the pathophysiology of doxorubicin-induced cardiotoxicity and directly lead to better diagnosis, treatment, and prevention. © 2019 American Physiological Society. Compr Physiol 9:905-931, 2019.
Collapse
Affiliation(s)
- Trevi R. Mancilla
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Brian Iskra
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Gregory J. Aune
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| |
Collapse
|
10
|
Mahrous E, Abdel-Sattar E, Abdelhady D, Ghazy E, Abdo W, Elbialy Z, Shukry M, Jandirk S. Proanthocyanidins rich extract of Calligonum comosum ameliorates doxorubicin-induced immunosuppression and hepatorenal toxicity. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_670_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Reyes ME, Ma J, Grove ML, Ater JL, Morrison AC, Hildebrandt MAT. RNA sequence analysis of inducible pluripotent stem cell-derived cardiomyocytes reveals altered expression of DNA damage and cell cycle genes in response to doxorubicin. Toxicol Appl Pharmacol 2018; 356:44-53. [PMID: 30031762 DOI: 10.1016/j.taap.2018.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 02/03/2023]
Abstract
Anthracyclines, such as doxorubicin, are highly effective chemotherapeutic agents, yet are associated with increased risk of cardiotoxicity. The genes and pathways involved in the development of heart damage following doxorubicin exposure in humans remain elusive. Our objective was to explore time- and dose-dependent changes in gene expression via RNA sequence (RNAseq) that mediate doxorubicin response in human iPSC-cardiomyocytes following 50, 150, or 450 nM exposure for 2, 7, or 12 days. Clustering and differential expression analyses were conducted to identify genes with altered expression. Samples clustered in dose and time-dependent manners, and MCM5, PRC1, NUSAP1, CENPF, CCNB1, MELK, AURKB, and RACGAP1 were consistently significantly differentially expressed between untreated and treated conditions. These genes were also significantly downregulated in pairwise analyses, which was validated by reverse transcription polymerase chain reaction (RT-PCR). Pathway analysis identified the top canonical pathways involved in response, implicating DNA damage repair response and the cell cycle as having roles in the development of doxorubicin-induced cardiotoxicity in the human cardiomyocyte.
Collapse
Affiliation(s)
- Monica E Reyes
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianzhong Ma
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joann L Ater
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michelle A T Hildebrandt
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Subbarao RB, Ok SH, Lee SH, Kang D, Kim EJ, Kim JY, Sohn JT. Lipid Emulsion Inhibits the Late Apoptosis/Cardiotoxicity Induced by Doxorubicin in Rat Cardiomyoblasts. Cells 2018; 7:cells7100144. [PMID: 30241326 PMCID: PMC6209885 DOI: 10.3390/cells7100144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 11/23/2022] Open
Abstract
This study aimed to examine the effect of lipid emulsion on the cardiotoxicity induced by doxorubicin in H9c2 rat cardiomyoblasts and elucidates the associated cellular mechanism. The effects of lipid emulsion on cell viability, Bax, cleaved caspase-8, cleaved capase-3, Bcl-XL, apoptosis, reactive oxygen species (ROS), malondialdehyde, superoxide dismutase (SOD), catalase and mitochondrial membrane potential induced by doxorubicin were examined. Treatment with doxorubicin decreased cell viability, whereas pretreatment with lipid emulsion reduced the effect of doxorubicin by increasing cell viability. Lipid emulsion also suppressed the increased expression of cleaved caspase-3, cleaved caspase-8, and Bax induced by doxorubicin. Moreover, pretreatment with lipid emulsion decreased the increased Bax/Bcl-XL ratio induced by doxorubicin. Doxorubicin-induced late apoptosis was reduced by treatment with lipid emulsion. In addition, pretreatment with lipid emulsion prior to doxorubicin enhanced glycogen synthase kinase-3β phosphorylation. The increased malondialdehyde and ROS levels by doxorubicin were reduced by lipid emulsion pretreatment. Furthermore, lipid emulsion attenuated the reduced SOD and catalase activity and the decreased mitochondrial membrane potential induced by doxorubicin. Taken together, these results suggest that lipid emulsion attenuates doxorubicin-induced late apoptosis, which appears to be associated with the inhibition of oxidative stress induced by doxorubicin.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si 52727, Korea.
- Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
| | - Seong-Ho Ok
- Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon 51427, Korea.
| | - Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si 52727, Korea.
| | - Dawon Kang
- Department of Physiology, Gyeongsang National University School of Medicine, Jinju-si 52727, Korea.
| | - Eun-Jin Kim
- Department of Physiology, Gyeongsang National University School of Medicine, Jinju-si 52727, Korea.
| | - Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si 52727, Korea.
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si 52727, Korea.
- Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
| |
Collapse
|
13
|
Shi J, Surma M, Wei L. Disruption of ROCK1 gene restores autophagic flux and mitigates doxorubicin-induced cardiotoxicity. Oncotarget 2018; 9:12995-13008. [PMID: 29560126 PMCID: PMC5849190 DOI: 10.18632/oncotarget.24457] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/03/2018] [Indexed: 12/25/2022] Open
Abstract
Doxorubicin is among the essential medicines with a wide antitumor spectrum, but its clinical application is limited by its cardiotoxicity. We recently discovered that ROCK1 is a key molecule in mediating cardiac remodeling in response to various stresses. To determine the roles of ROCK1 in doxorubicin cardiotoxicity, we gave three doses of doxorubicin injections to wild type (WT) and ROCK1−/− mice with one week intervals between treatments, the cumulative dose being 24 mg/kg. ROCK1−/− mice exhibited preserved cardiac function, reduced apoptosis, autophagy and fibrosis compared to the WT mice. To further determine the cellular mechanisms, we have examined the role of ROCK1 in cardiomyocytes using cardiomyocyte-specific knockout mice, MHC-Cre/ROCK1fl/fl, which partially reproduced the cardioprotective characteristics of ROCK1−/− mice, indicating that ROCK1 in both cardiomyocytes and non-cardiomyocytes mediates doxorubicin cardiotoxicity. To elucidate the molecular mechanisms, a detailed time course study after a single doxorubicin injection at 10 mg/kg was performed in ROCK1−/− and MHC-Cre/ROCK1fl/fl mice. The molecular analysis revealed that both ROCK1−/− and MHC-Cre/ROCK1fl/fl hearts exhibited significant reduction of doxorubicin-induced early responses including increased apoptotic (Bax) and autophagic (p62/SQSTM1 and LC3-II) markers, associated with reduced Beclin 1 phosphorylation on Thr119, supporting reduced Beclin 1-mediated autophagy initiation due to increased association of Beclin 1 with Bcl 2 or Bcl-XL in these hearts compared to the WT or ROCK1fl/fl mice. These results support that ROCK1 deficiency is cardioprotective against doxorubicin-induced cardiotoxicity at least in part through reducing Beclin 1-mediated autophagy initiation in cardiomyocytes and restoring autophagic flux to ameliorate doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Michelle Surma
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Lei Wei
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Zordoky BN, Radin MJ, Heller L, Tobias A, Matise I, Apple FS, McCune SA, Sharkey LC. The interplay between genetic background and sexual dimorphism of doxorubicin-induced cardiotoxicity. CARDIO-ONCOLOGY 2016; 2:4. [PMID: 28758028 PMCID: PMC5533296 DOI: 10.1186/s40959-016-0013-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Doxorubicin (DOX) is a very effective anticancer medication that is commonly used to treat hematological malignancies and solid tumors. Nevertheless, DOX is known to have cardiotoxic effects that may lead to cardiac dysfunction and failure. In experimental studies, female animals have been shown to be protected against DOX-induced cardiotoxicity; however, the evidence of this sexual dimorphism is inconclusive in clinical studies. Therefore, we sought to investigate whether genetic background could influence the sexual dimorphism of DOX-induced cardiotoxicity. Methods Male and female Wistar Kyoto (WKY) and Spontaneous Hypertensive Heart Failure (SHHF) rats were used. DOX was administered in eight doses of 2 mg/kg/week and the rats were followed for an additional 12 weeks. Cardiac function was assessed by trans-thoracic echocardiography, systolic blood pressure was measured by the tail cuff method, and heart and kidney tissues were collected for histopathology. Results Female sex protected against DOX-induced weight loss and increase in blood pressure in the WKY rats, whereas it protected against DOX-induced cardiac dysfunction and the elevation of cardiac troponin in SHHF rats. In both strains, female sex was protective against DOX-induced nephrotoxicity. There was a strong correlation between DOX-induced renal pathology and DOX-induced cardiac dysfunction. Conclusions This study highlights the importance of studying the interaction between sex and genetic background to determine the risk of DOX-induced cardiotoxicity. In addition, our findings suggest that DOX-induced nephrotoxicity may play a role in DOX-induced cardiac dysfunction in rodent models.
Collapse
Affiliation(s)
- Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota, 308 Harvard St S.E., Minneapolis, MN, 55455, USA.
| | - M Judith Radin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Lois Heller
- Department of Biomedical Sciences, University of Minnesota Medical School-Duluth, 1035 University Drive, Duluth, MN, 55812, USA
| | - Anthony Tobias
- Veterinary Clinical Sciences Department, University of Minnesota, 1352 Boyd Ave, St. Paul, MN, 55108, USA
| | - Ilze Matise
- Veterinary Population Medicine Department, University of Minnesota, 1365 Gortner Ave, St. Paul, MN, 55108, USA
| | - Fred S Apple
- Department of Laboratory Medicine and Pathology, Hennepin County Medical Center and University of Minnesota, 701 Park Ave S, Minneapolis, MN, 55404, USA
| | - Sylvia A McCune
- Department of Integrative Physiology, University of Colorado at Boulder, 354 UCB, Clare Small 114, Boulder, CO, 80309, USA
| | - Leslie C Sharkey
- Veterinary Clinical Sciences Department, University of Minnesota, 1352 Boyd Ave, St. Paul, MN, 55108, USA
| |
Collapse
|
15
|
Left Ventricular Aneurysm Presenting as a Late Complication of Childhood Chemotherapy. Case Rep Cardiol 2015; 2015:625451. [PMID: 26448882 PMCID: PMC4581496 DOI: 10.1155/2015/625451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/27/2015] [Indexed: 12/27/2022] Open
Abstract
Cardiotoxicity is a well known adverse effect of chemotherapy. Multiple cardiac injuries have been reported including cardiomyopathy, pericarditis, myocarditis, angina, arrhythmias, and myocardial infarction. A left ventricular aneurysm due to chemotherapy is
a rare and a dangerous complication which is particularly challenging in diagnosis requiring a high index of suspicion and periodic imaging. We present a case of a young Caucasian male with a past medical history of Acute Lymphocytic Leukemia status after chemotherapy during his childhood diagnosed with left ventricular aneurysm several years later.
Collapse
|
16
|
Abstract
Substances historically thought to cause direct vascular injury in laboratory animals are a heterogeneous group of toxic agents with varied mechanisms of action. Morphologically, the reviewed agents can be broadly categorized into those targeting endothelial cell (ECs) and those targeting smooth muscle cells (SMCs). Anticancer drugs, immunosuppressants, and heavy metals are targeting primarily ECs while allylamine, β-aminopropionitrile, and mitogen-activated protein kinase kinase inhibitors affect mainly SMCs. It is now recognized that the pathogenicity of some of these agents is often mediated through intermediary events, particularly vasoconstriction. There are clear similarities in the clinical and microscopic findings associated with many of these agents in animals and man, allowing the use of animal models to investigate mechanisms and pathogenesis. The molecular pathogenic mechanisms and comparative morphology in animals and humans will be reviewed.
Collapse
|
17
|
Wei L, Surma M, Gough G, Shi S, Lambert-Cheatham N, Chang J, Shi J. Dissecting the Mechanisms of Doxorubicin and Oxidative Stress-Induced Cytotoxicity: The Involvement of Actin Cytoskeleton and ROCK1. PLoS One 2015; 10:e0131763. [PMID: 26134406 PMCID: PMC4489912 DOI: 10.1371/journal.pone.0131763] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/05/2015] [Indexed: 01/13/2023] Open
Abstract
We have recently reported that ROCK1 deficiency in mouse embryonic fibroblasts (MEF) has superior anti-apoptotic and pro-survival effects than antioxidants against doxorubicin, a chemotherapeutic drug. Although oxidative stress is the most widely accepted mechanism, our studies suggest that ROCK1-dependent actin cytoskeleton remodeling plays a more important role in mediating doxorubicin cytotoxicity on MEFs. To further explore the contributions of ROCK1-dependent actin cytoskeleton remodeling in response to stress, this study investigates the mechanistic differences between the cytotoxic effects of doxorubicin versus hydrogen peroxide (H2O2), with a focus on cytoskeleton alterations, apoptosis and necrosis induction. We found that both types of stress induce caspase activation but with different temporal patterns and magnitudes in MEFs: H2O2 induces the maximal levels (2 to 4-fold) of activation of caspases 3, 8, and 9 within 4 h, while doxorubicin induces much higher maximal levels (15 to 25-fold) of caspases activation at later time points (16-24 h). In addition, necrosis induced by H2O2 reaches maximal levels within 4 h while doxorubicin-induced necrosis largely occurs at 16-24 h secondary to apoptosis. Moreover, both types of stress induce actin cytoskeleton remodeling but with different characteristics: H2O2 induces disruption of stress fibers associated with cytosolic translocation of phosphorylated myosin light chain (p-MLC) from stress fibers, while doxorubicin induces cortical F-actin formation associated with cortical translocation of p-MLC from central stress fibers. Furthermore, N-acetylcysteine (an antioxidant) is a potent suppressor for H2O2-induced cytotoxic effects including caspase activation, necrosis, and cell detachment, but shows a much reduced inhibition on doxorubicin-induced changes. On the other hand, ROCK1 deficiency is a more potent suppressor for the cytotoxic effects induced by doxorubicin than by H2O2. These results support the notion that doxorubicin induces caspase activation, necrosis, and actin cytoskeleton alterations largely through ROCK1-dependent and oxidative stress-independent pathways.
Collapse
Affiliation(s)
- Lei Wei
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (LW); (JS)
| | - Michelle Surma
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Gina Gough
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephanie Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Nathan Lambert-Cheatham
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Jiang Chang
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, United States of America
| | - Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (LW); (JS)
| |
Collapse
|