1
|
Bai Y, Zhang X, Li Y, Qi F, Liu C, Ai X, Tang M, Szeto C, Gao E, Hua X, Xie M, Wang X, Tian Y, Chen Y, Huang G, Zhang J, Xiao W, Zhang L, Liu X, Yang Q, Houser SR, Chen X. Protein Kinase A Is a Master Regulator of Physiological and Pathological Cardiac Hypertrophy. Circ Res 2024; 134:393-410. [PMID: 38275112 PMCID: PMC10923071 DOI: 10.1161/circresaha.123.322729] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. METHODS Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. RESULTS (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3β signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. CONCLUSIONS Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.
Collapse
Affiliation(s)
- Yingyu Bai
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Heping District, Tianjin, China
| | - Xiaoying Zhang
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Li
- The Second Artillery General Hospital, Beijing, China
| | - Fei Qi
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Heping District, Tianjin, China
| | - Chong Liu
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiaojie Ai
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Mingxin Tang
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Christopher Szeto
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiang Hua
- Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xuejun Wang
- Division of Basic Biomedical Science, University of S Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Ying Tian
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yongjie Chen
- Department of Epidemiology and Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Guowei Huang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University IUSM, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University IUSM, Indianapolis, IN 46202, USA
| | - Lili Zhang
- Research Vector Core, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xueyuan Liu
- Research Vector Core, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Qing Yang
- Department of Cardiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Steven R. Houser
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiongwen Chen
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Heping District, Tianjin, China
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Cardiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| |
Collapse
|
2
|
Abstract
Each heartbeat is initiated by the action potential, an electrical signal that depolarizes the plasma membrane and activates a cycle of calcium influx via voltage-gated calcium channels, calcium release via ryanodine receptors, and calcium reuptake and efflux via calcium-ATPase pumps and sodium-calcium exchangers. Agonists of the sympathetic nervous system bind to adrenergic receptors in cardiomyocytes, which, via cascading signal transduction pathways and protein kinase A (PKA), increase the heart rate (chronotropy), the strength of myocardial contraction (inotropy), and the rate of myocardial relaxation (lusitropy). These effects correlate with increased intracellular concentration of calcium, which is required for the augmentation of cardiomyocyte contraction. Despite extensive investigations, the molecular mechanisms underlying sympathetic nervous system regulation of calcium influx in cardiomyocytes have remained elusive over the last 40 years. Recent studies have uncovered the mechanisms underlying this fundamental biologic process, namely that PKA phosphorylates a calcium channel inhibitor, Rad, thereby releasing inhibition and increasing calcium influx. Here, we describe an updated model for how signals from adrenergic agonists are transduced to stimulate calcium influx and contractility in the heart.
Collapse
Affiliation(s)
- Arianne Papa
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jared Kushner
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Muller GK, Song J, Jani V, Wu Y, Liu T, Jeffreys WPD, O’Rourke B, Anderson ME, Kass DA. PDE1 Inhibition Modulates Ca v1.2 Channel to Stimulate Cardiomyocyte Contraction. Circ Res 2021; 129:872-886. [PMID: 34521216 PMCID: PMC8553000 DOI: 10.1161/circresaha.121.319828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Grace K Muller
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joy Song
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vivek Jani
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yuejin Wu
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ting Liu
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William PD Jeffreys
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Brian O’Rourke
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Pharmacology and Molecular Sciences and Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mark E Anderson
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - David A Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Pharmacology and Molecular Sciences and Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
4
|
Werhahn SM, Kreusser JS, Hagenmüller M, Beckendorf J, Diemert N, Hoffmann S, Schultz JH, Backs J, Dewenter M. Adaptive versus maladaptive cardiac remodelling in response to sustained β-adrenergic stimulation in a new 'ISO on/off model'. PLoS One 2021; 16:e0248933. [PMID: 34138844 PMCID: PMC8211211 DOI: 10.1371/journal.pone.0248933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/08/2021] [Indexed: 12/28/2022] Open
Abstract
On the one hand, sustained β-adrenergic stress is a hallmark of heart failure (HF) and exerts maladaptive cardiac remodelling. On the other hand, acute β-adrenergic stimulation maintains cardiac function under physiological stress. However, it is still incompletely understood to what extent the adaptive component of β-adrenergic signaling contributes to the maintenance of cardiac function during chronic β-adrenergic stress. We developed an experimental catecholamine-based protocol to distinguish adaptive from maladaptive effects. Mice were for 28 days infused with 30 mg/kg body weight/day isoproterenol (ISO) by subcutaneously implanted osmotic minipumps ('ISO on'). In a second and third group, ISO infusion was stopped after 26 days and the mice were observed for additional two or seven days without further ISO infusion ('ISO off short', 'ISO off long'). In this setup, 'ISO on' led to cardiac hypertrophy and slightly improved cardiac contractility. In stark contrast, 'ISO off' mice displayed progressive worsening of left ventricular ejection fraction that dropped down below 40%. While fetal and pathological gene expression (increase in Nppa, decrease in Myh6/Myh7 ratios, increase in Xirp2) was not induced in 'ISO on', it was activated in 'ISO off' mice. After ISO withdrawal, phosphorylation of phospholamban (PLN) at the protein kinase A (PKA) phosphorylation site Ser-16 dropped down to 20% as compared to only 50% at the Ca2+/Calmodulin-dependent kinase II (CaMKII) phosphorylation site Thr-17 in 'ISO off' mice. PKA-dependent cardioprotective production of the N-terminal proteolytic product of histone deacetylase 4 (HDAC4-NT) was reduced in 'ISO off' as compared to 'ISO on'. Taken together, these data indicate that chronic ISO infusion induces besides maladaptive remodelling also adaptive PKA signalling to maintain cardiac function. The use of the 'ISO on/off' model will further enable the separation of the underlying adaptive from maladaptive components of β-adrenergic signalling and may help to better define and test therapeutic targets downstream of β-adrenergic receptors.
Collapse
Affiliation(s)
- Stefanie Maria Werhahn
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
- Department of Cardiology and Pneumology, University Medicine Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Julia S. Kreusser
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marco Hagenmüller
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Jan Beckendorf
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalie Diemert
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Sophia Hoffmann
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Jobst-Hendrik Schultz
- Department of General Internal Medicine and Psychosomatics, University of Heidelberg, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Matthias Dewenter
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| |
Collapse
|
5
|
Liu C, Ke P, Zhang J, Zhang X, Chen X. Protein Kinase Inhibitor Peptide as a Tool to Specifically Inhibit Protein Kinase A. Front Physiol 2020; 11:574030. [PMID: 33324237 PMCID: PMC7723848 DOI: 10.3389/fphys.2020.574030] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
The protein kinase enzyme family plays a pivotal role in almost every aspect of cellular function, including cellular metabolism, division, proliferation, transcription, movement, and survival. Protein kinase A (PKA), whose activation is triggered by cyclic adenosine monophosphate (cAMP), is widely distributed in various systems and tissues throughout the body and highly related to pathogenesis and progression of various kinds of diseases. The inhibition of PKA activation is essential for the study of PKA functions. Protein kinase inhibitor peptide (PKI) is a potent, heat-stable, and specific PKA inhibitor. It has been demonstrated that PKI can block PKA-mediated phosphorylase activation. Since then, researchers have a lot of knowledge about PKI. PKI is considered to be the most effective and specific method to inhibit PKA and is widely used in related research. In this review, we will first introduce the knowledge on the activation of PKA and mechanisms related on the inhibitory effects of PKI on PKA. Then, we will compare PKI-mediated PKA inhibition vs. several popular methods of PKA inhibition.
Collapse
Affiliation(s)
- Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Jingjing Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiaoying Zhang
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Zhang X, Li Y, Zhang X, Piacentino V, Harris DM, Berretta R, Margulies KB, Houser SR, Chen X. A low voltage activated Ca 2+ current found in a subset of human ventricular myocytes. Channels (Austin) 2020; 14:231-245. [PMID: 32684070 PMCID: PMC7515576 DOI: 10.1080/19336950.2020.1794420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Low voltage activated (ICa-LVA) calcium currents including Cav1.3 and T-type calcium current (ICa-T) have not been reported in adult human left ventricular myocytes (HLVMs). We tried to examine their existence and possible correlation with etiology and patient characteristics in a big number of human LVMs isolated from explanted terminally failing (F) hearts, failing hearts with left ventricular assist device (F-LVAD) and nonfailing (NF) human hearts. LVA (ICa-LVA) was determined by subtracting L-type Ca2+ current (ICa-L) recorded with the holding potential of −50 mV from total Ca2+ current recorded with the holding potential of −90 mV or −70 mV. ICa- LVA was further tested with its sensitivity to 100 µM CdCl2 and tetrodotoxin. Three HLVMs (3 of 137 FHLVMs) from 2 (N = 30 hearts) failing human hearts, of which one was idiopathic and the other was due to primary pulmonary hypertension, were found with ICa-LVA. ICa-LVA in one FHLVM was not sensitive to 100 µM CdCl2 while ICa-LVA in another two FHLVMs was not sensitive to tetrodotoxin. It peaked at the voltage of −40~-20 mV and had a time-dependent decay faster than ICa-L but slower than sodium current (INa). ICa-LVA was not found in any HLVMs from NF (75 HLVMs from 17 hearts) or F-LVAD hearts (82 HLVMs from 18 hearts) but a statistically significant correlation could not be established. In conclusion, ICa-LVA was detected in some HLVMs of a small portion of human hearts that happened to be nonischemic failing hearts.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Infection Diseases The First Affiliated Hospital of China Medical University , Shenyang China.,Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Yijia Li
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Xiaoying Zhang
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Valentino Piacentino
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,Department Grand Strand Surgical Care, Grand Strand Regional Medical Center , Myrtle Beach, SC
| | - David M Harris
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Remus Berretta
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Steven R Houser
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Xiongwen Chen
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| |
Collapse
|
7
|
Zhang Y, Wang WE, Zhang X, Li Y, Chen B, Liu C, Ai X, Zhang X, Tian Y, Zhang C, Tang M, Szeto C, Hua X, Xie M, Zeng C, Wu Y, Zhou L, Zhu W, Yu D, Houser SR, Chen X. Cardiomyocyte PKA Ablation Enhances Basal Contractility While Eliminates Cardiac β-Adrenergic Response Without Adverse Effects on the Heart. Circ Res 2019; 124:1760-1777. [PMID: 30982412 DOI: 10.1161/circresaha.118.313417] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE PKA (Protein Kinase A) is a major mediator of β-AR (β-adrenergic) regulation of cardiac function, but other mediators have also been suggested. Reduced PKA basal activity and activation are linked to cardiac diseases. However, how complete loss of PKA activity impacts on cardiac physiology and if it causes cardiac dysfunction have never been determined. OBJECTIVES We set to determine how the heart adapts to the loss of cardiomyocyte PKA activity and if it elicits cardiac abnormalities. METHODS AND RESULTS (1) Cardiac PKA activity was almost completely inhibited by expressing a PKA inhibitor peptide in cardiomyocytes (cPKAi) in mice; (2) cPKAi reduced basal phosphorylation of 2 myofilament proteins (TnI [troponin I] and cardiac myosin binding protein C), and one longitudinal SR (sarcoplasmic reticulum) protein (PLB [phospholamban]) but not of the sarcolemmal proteins (Cav1.2 α1c and PLM [phospholemman]), dyadic protein RyR2, and nuclear protein CREB (cAMP response element binding protein) at their PKA phosphorylation sites; (3) cPKAi increased the expression of CaMKII (Ca2+/calmodulin-dependent kinase II), the Cav1.2 β subunits and current, but decreased CaMKII phosphorylation and CaMKII-mediated phosphorylation of PLB and RyR2; (4) These changes resulted in significantly enhanced myofilament Ca2+ sensitivity, prolonged contraction, slowed relaxation but increased myocyte Ca2+ transient and contraction amplitudes; (5) Isoproterenol-induced PKA and CaMKII activation and their phosphorylation of proteins were prevented by cPKAi; (6) cPKAi abolished the increases of heart rate, and cardiac and myocyte contractility by a β-AR agonist (isoproterenol), showing an important role of PKA and a minimal role of PKA-independent β-AR signaling in acute cardiac regulation; (7) cPKAi mice have partial exercise capability probably by enhancing vascular constriction and ventricular filling during β-AR stimulation; and (8) cPKAi mice did not show any cardiac functional or structural abnormalities during the 1-year study period. CONCLUSIONS PKA activity suppression induces a unique Ca2+ handling phenotype, eliminates β-AR regulation of heart rates and cardiac contractility but does not cause cardiac abnormalities.
Collapse
Affiliation(s)
- Ying Zhang
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
- Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University (Y.Z.)
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Wei Eric Wang
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Xiaoying Zhang
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Ying Li
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- The General Hospital of The PLA Rocket Force, Beijing, China (Y.L.)
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine (B.C.)
| | - Chong Liu
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- Pharmacology, Second Military Medical University, Shanghai (C.L.)
| | - Xiaojie Ai
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University (X.A.)
| | - Xiaoxiao Zhang
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan (X.Z., M.X.)
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine (Y.T., W.Z.), Temple University School of Medicine, Philadelphia, PA
| | - Chen Zhang
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Mingxin Tang
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Christopher Szeto
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Xiang Hua
- Fox Chase Cancer Center, Philadelphia, PA (X.H.)
| | - Mingxin Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan (X.Z., M.X.)
| | | | - Yingjie Wu
- Institute of Genome Engineered Animal Models for Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Liaoning (Y.W.)
| | - Lin Zhou
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
| | - Weizhong Zhu
- Department of Pharmacology, Center for Translational Medicine (Y.T., W.Z.), Temple University School of Medicine, Philadelphia, PA
- Pharmacology, School of Pharmacy, Nantong University, Jiangsu (W.Z.)
| | - Daohai Yu
- Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (D.Y.)
| | - Steven R Houser
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Xiongwen Chen
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
8
|
Yang L, Katchman A, Kushner J, Kushnir A, Zakharov SI, Chen BX, Shuja Z, Subramanyam P, Liu G, Papa A, Roybal D, Pitt GS, Colecraft HM, Marx SO. Cardiac CaV1.2 channels require β subunits for β-adrenergic-mediated modulation but not trafficking. J Clin Invest 2019; 129:647-658. [PMID: 30422117 DOI: 10.1172/jci123878] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023] Open
Abstract
Ca2+ channel β-subunit interactions with pore-forming α-subunits are long-thought to be obligatory for channel trafficking to the cell surface and for tuning of basal biophysical properties in many tissues. Unexpectedly, we demonstrate that transgenic expression of mutant α1C subunits lacking capacity to bind CaVβ can traffic to the sarcolemma in adult cardiomyocytes in vivo and sustain normal excitation-contraction coupling. However, these β-less Ca2+ channels cannot be stimulated by β-adrenergic pathway agonists, and thus adrenergic augmentation of contractility is markedly impaired in isolated cardiomyocytes and in hearts. Similarly, viral-mediated expression of a β-subunit-sequestering peptide sharply curtailed β-adrenergic stimulation of WT Ca2+ channels, identifying an approach to specifically modulate β-adrenergic regulation of cardiac contractility. Our data demonstrate that β subunits are required for β-adrenergic regulation of CaV1.2 channels and positive inotropy in the heart, but are dispensable for CaV1.2 trafficking to the adult cardiomyocyte cell surface, and for basal function and excitation-contraction coupling.
Collapse
Affiliation(s)
- Lin Yang
- Division of Cardiology, Department of Medicine, Columbia University
| | | | - Jared Kushner
- Division of Cardiology, Department of Medicine, Columbia University
| | | | | | - Bi-Xing Chen
- Division of Cardiology, Department of Medicine, Columbia University
| | - Zunaira Shuja
- Department of Physiology and Cellular Biophysics, and
| | | | - Guoxia Liu
- Division of Cardiology, Department of Medicine, Columbia University
| | - Arianne Papa
- Department of Physiology and Cellular Biophysics, and
| | - Daniel Roybal
- Department of Pharmacology, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, and.,Department of Pharmacology, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Columbia University.,Department of Pharmacology, Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
9
|
Li Y, Zhang X, Zhang C, Zhang X, Li Y, Qi Z, Szeto C, Tang M, Peng Y, Molkentin JD, Houser SR, Xie M, Chen X. Increasing T-type calcium channel activity by β-adrenergic stimulation contributes to β-adrenergic regulation of heart rates. J Physiol 2018; 596:1137-1151. [PMID: 29274077 PMCID: PMC5878229 DOI: 10.1113/jp274756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/13/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cav3.1 T-type Ca2+ channel current (ICa-T ) contributes to heart rate genesis but is not known to contribute to heart rate regulation by the sympathetic/β-adrenergic system (SAS). We show that the loss of Cav3.1 makes the beating rates of the heart in vivo and perfused hearts ex vivo, as well as sinoatrial node cells, less sensitive to β-adrenergic stimulation; it also renders less conduction acceleration through the atrioventricular node by β-adrenergic stimulation. Increasing Cav3.1 in cardiomyocytes has the opposite effects. ICa-T in sinoatrial nodal cells can be upregulated by β-adrenergic stimulation. The results of the present study add a new contribution to heart rate regulation by the SAS system and provide potential new mechanisms for the dysregulation of heart rate and conduction by the SAS in the heart. T-type Ca2+ channel can be a target for heart disease treatments that aim to slow down the heart rate ABSTRACT: Cav3.1 (α1G ) T-type Ca2+ channel (TTCC) is expressed in mouse sinoatrial node cells (SANCs) and atrioventricular (AV) nodal cells and contributes to heart rate (HR) genesis and AV conduction. However, its role in HR regulation and AV conduction acceleration by the β-adrenergic system (SAS) is unclear. In the present study, L- (ICa-L ) and T-type (ICa-T ) Ca2+ currents were recorded in SANCs from Cav3.1 transgenic (TG) and knockout (KO), and control mice. ICa-T was absent in KO SANCs but enhanced in TG SANCs. In anaesthetized animals, different doses of isoproterenol (ISO) were infused via the jugular vein and the HR was recorded. The EC50 of the HR response to ISO was lower in TG mice but higher in KO mice, and the maximal percentage of HR increase by ISO was greater in TG mice but less in KO mice. In Langendorff-perfused hearts, ISO increased HR and shortened PR intervals to a greater extent in TG but to a less extent in KO hearts. KO SANCs had significantly slower spontaneous beating rates than control SANCs before and after ISO; TG SANCs had similar basal beating rates as control SANCs probably as a result of decreased ICa-L but a greater response to ISO than control SANCs. ICa-T in SANCs was significantly increased by ISO. ICa-T upregulation by β-adrenergic stimulation contributes to HR and conduction regulation by the SAS. TTCC can be a target for slowing the HR.
Collapse
MESH Headings
- Adrenergic Agents/pharmacology
- Animals
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Calcium Channels, T-Type/physiology
- Heart Rate/drug effects
- Heart Rate/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction
- Sinoatrial Node/cytology
- Sinoatrial Node/drug effects
- Sinoatrial Node/metabolism
Collapse
Affiliation(s)
- Yingxin Li
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Xiaoxiao Zhang
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyHubei Provincial Key Laboratory of Molecular ImagineWuhanChina
| | - Chen Zhang
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Xiaoying Zhang
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Ying Li
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
- The General Hospital of The PLA Rocket ForceBeijingChina
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of TraumaThird Military Medical UniversityChongqingChina
| | - Zhao Qi
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Christopher Szeto
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Mingxin Tang
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of TraumaThird Military Medical UniversityChongqingChina
| | - Jeffery D. Molkentin
- Howard Hughes Medical Institute & Cincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Steven R. Houser
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyHubei Provincial Key Laboratory of Molecular ImagineWuhanChina
| | - Xiongwen Chen
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| |
Collapse
|
10
|
Function of Adenylyl Cyclase in Heart: the AKAP Connection. J Cardiovasc Dev Dis 2018; 5:jcdd5010002. [PMID: 29367580 PMCID: PMC5872350 DOI: 10.3390/jcdd5010002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP), synthesized by adenylyl cyclase (AC), is a universal second messenger that regulates various aspects of cardiac physiology from contraction rate to the initiation of cardioprotective stress response pathways. Local pools of cAMP are maintained by macromolecular complexes formed by A-kinase anchoring proteins (AKAPs). AKAPs facilitate control by bringing together regulators of the cAMP pathway including G-protein-coupled receptors, ACs, and downstream effectors of cAMP to finely tune signaling. This review will summarize the distinct roles of AC isoforms in cardiac function and how interactions with AKAPs facilitate AC function, highlighting newly appreciated roles for lesser abundant AC isoforms.
Collapse
|
11
|
Exclusion of alternative exon 33 of Ca V1.2 calcium channels in heart is proarrhythmogenic. Proc Natl Acad Sci U S A 2017; 114:E4288-E4295. [PMID: 28490495 DOI: 10.1073/pnas.1617205114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alternative splicing changes the CaV1.2 calcium channel electrophysiological property, but the in vivo significance of such altered channel function is lacking. Structure-function studies of heterologously expressed CaV1.2 channels could not recapitulate channel function in the native milieu of the cardiomyocyte. To address this gap in knowledge, we investigated the role of alternative exon 33 of the CaV1.2 calcium channel in heart function. Exclusion of exon 33 in CaV1.2 channels has been reported to shift the activation potential -10.4 mV to the hyperpolarized direction, and increased expression of CaV1.2Δ33 channels was observed in rat myocardial infarcted hearts. However, how a change in CaV1.2 channel electrophysiological property, due to alternative splicing, might affect cardiac function in vivo is unknown. To address these questions, we generated mCacna1c exon 33-/--null mice. These mice contained CaV1.2Δ33 channels with a gain-of-function that included conduction of larger currents that reflects a shift in voltage dependence and a modest increase in single-channel open probability. This altered channel property underscored the development of ventricular arrhythmia, which is reflected in significantly more deaths of exon 33-/- mice from β-adrenergic stimulation. In vivo telemetric recordings also confirmed increased frequencies in premature ventricular contractions, tachycardia, and lengthened QT interval. Taken together, the significant decrease or absence of exon 33-containing CaV1.2 channels is potentially proarrhythmic in the heart. Of clinical relevance, human ischemic and dilated cardiomyopathy hearts showed increased inclusion of exon 33. However, the possible role that inclusion of exon 33 in CaV1.2 channels may play in the pathogenesis of human heart failure remains unclear.
Collapse
|
12
|
Sorrentino A, Borghetti G, Zhou Y, Cannata A, Meo M, Signore S, Anversa P, Leri A, Goichberg P, Qanud K, Jacobson JT, Hintze TH, Rota M. Hyperglycemia induces defective Ca2+ homeostasis in cardiomyocytes. Am J Physiol Heart Circ Physiol 2016; 312:H150-H161. [PMID: 27881388 DOI: 10.1152/ajpheart.00737.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/03/2023]
Abstract
Diabetes and other metabolic conditions characterized by elevated blood glucose constitute important risk factors for cardiovascular disease. Hyperglycemia targets myocardial cells rendering ineffective mechanical properties of the heart, but cellular alterations dictating the progressive deterioration of cardiac function with metabolic disorders remain to be clarified. In the current study, we examined the effects of hyperglycemia on cardiac function and myocyte physiology by employing mice with high blood glucose induced by administration of streptozotocin, a compound toxic to insulin-producing β-cells. We found that hyperglycemia initially delayed the electrical recovery of the heart, whereas cardiac function became defective only after ~2 mo with this condition and gradually worsened with time. Prolonged hyperglycemia was associated with increased chamber dilation, thinning of the left ventricle (LV), and myocyte loss. Cardiomyocytes from hyperglycemic mice exhibited defective Ca2+ transients before the appearance of LV systolic defects. Alterations in Ca2+ transients involved enhanced spontaneous Ca2+ releases from the sarcoplasmic reticulum (SR), reduced cytoplasmic Ca2+ clearance, and declined SR Ca2+ load. These defects have important consequences on myocyte contraction, relaxation, and mechanisms of rate adaptation. Collectively, our data indicate that hyperglycemia alters intracellular Ca2+ homeostasis in cardiomyocytes, hindering contractile activity and contributing to the manifestation of the diabetic cardiomyopathy. NEW & NOTEWORTHY We have investigated the effects of hyperglycemia on cardiomyocyte physiology and ventricular function. Our results indicate that defective Ca2+ handling is a critical component of the progressive deterioration of cardiac performance of the diabetic heart.
Collapse
Affiliation(s)
- Andrea Sorrentino
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Giulia Borghetti
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yu Zhou
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Antonio Cannata
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marianna Meo
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sergio Signore
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Piero Anversa
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Fondazione Cardiocentro Ticino, University of Zurich, Lugano, Switzerland
| | - Annarosa Leri
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Fondazione Cardiocentro Ticino, University of Zurich, Lugano, Switzerland
| | - Polina Goichberg
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Khaled Qanud
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York; and.,Department of Cardiology, Westchester Medical Center, Valhalla, New York
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Marcello Rota
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; .,Department of Physiology, New York Medical College, Valhalla, New York; and
| |
Collapse
|
13
|
Dietary nitrate improves cardiac contractility via enhanced cellular Ca²⁺ signaling. Basic Res Cardiol 2016; 111:34. [PMID: 27071401 DOI: 10.1007/s00395-016-0551-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 03/29/2016] [Indexed: 01/18/2023]
Abstract
The inorganic anion nitrate (NO3 (-)), which is naturally enriched in certain vegetables (e.g., spinach and beetroot), has emerged as a dietary component that can regulate diverse bodily functions, including blood pressure, mitochondrial efficiency, and skeletal muscle force. It is not known if dietary nitrate improves cardiac contractility. To test this, mice were supplemented for 1-2 weeks with sodium nitrate in the drinking water at a dose similar to a green diet. The hearts from nitrate-treated mice showed increased left ventricular pressure and peak rate of pressure development as measured with the Langendorff heart technique. Cardiomyocytes from hearts of nitrate-treated and control animals were incubated with the fluorescent indicator Fluo-3 to measure cytoplasmic free [Ca(2+)] and fractional shortening. Cardiomyocytes from nitrate-treated mice displayed increased fractional shortening, which was linked to larger Ca(2+) transients. Moreover, nitrate hearts displayed increased protein expression of the L-type Ca(2+) channel/dihydropyridine receptor and peak L-type Ca(2+) channel currents. The nitrate-treated hearts displayed increased concentration of cAMP but unchanged levels of cGMP compared with controls. These findings provide the first evidence that dietary nitrate can affect the expression of important Ca(2+) handling proteins in the heart, resulting in increased cardiomyocyte Ca(2+) signaling and improved left ventricular contractile function. Our observation shows that dietary nitrate impacts cardiac function and adds understanding to inorganic nitrate as a physiological modulator.
Collapse
|
14
|
Zhang X, Ai X, Nakayama H, Chen B, Harris DM, Tang M, Xie Y, Szeto C, Li Y, Li Y, Zhang H, Eckhart AD, Koch WJ, Molkentin JD, Chen X. Persistent increases in Ca(2+) influx through Cav1.2 shortens action potential and causes Ca(2+) overload-induced afterdepolarizations and arrhythmias. Basic Res Cardiol 2015; 111:4. [PMID: 26611208 DOI: 10.1007/s00395-015-0523-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/15/2022]
Abstract
Persistent elevation of Ca(2+) influx due to prolongation of the action potential (AP), chronic activation of the β-adrenergic system and molecular remodeling occurs in stressed and diseased hearts. Increases in Ca(2+) influx are usually linked to prolonged myocyte action potentials and arrhythmias. However, the contribution of chronic enhancement of Cav1.2 activity on cardiac electrical remodeling and arrhythmogenicity has not been completely defined and is the subject of this study. Chronically increased Cav1.2 activity was produced with a cardiac specific, inducible double transgenic (DTG) mouse system overexpressing the β2a subunit of Cav (Cavβ2a). DTG myocytes had increased L-type Ca(2+) current (ICa-L), myocyte shortening, and Ca(2+) transients. DTG mice had enhanced cardiac performance, but died suddenly and prematurely. Telemetric electrocardiograms revealed shortened QT intervals in DTG mice. The action potential duration (APD) was shortened in DTG myocytes due to significant increases of potassium currents and channel abundance. However, shortened AP in DTG myocytes did not fully limit excess Ca(2+) influx and increased the peak and tail ICa-L. Enhanced ICa promoted sarcoplasmic reticulum (SR) Ca(2+) overload, diastolic Ca(2+) sparks and waves, and increased NCX activity, causing increased occurrence of early and delayed afterdepolarizations (EADs and DADs) that may contribute to premature ventricular beats and ventricular tachycardia. AV blocks that could be related to fibrosis of the AV node were also observed. Our study suggests that increasing ICa-L does not necessarily result in AP prolongation but causes SR Ca(2+) overload and fibrosis of AV node and myocardium to induce cellular arrhythmogenicity, arrhythmias, and conduction abnormalities.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Daping Hospital, The Third Military Medical University, Chongqing, China.,Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Xiaojie Ai
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.,School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hiroyuki Nakayama
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Biyi Chen
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - David M Harris
- College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Mingxin Tang
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yuping Xie
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Christopher Szeto
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yingxin Li
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Ying Li
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.,The Second Artillery General Hospital, Beijing, 100088, China
| | - Hongyu Zhang
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | | | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Xiongwen Chen
- Daping Hospital, The Third Military Medical University, Chongqing, China. .,Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
15
|
Signore S, Sorrentino A, Borghetti G, Cannata A, Meo M, Zhou Y, Kannappan R, Pasqualini F, O'Malley H, Sundman M, Tsigkas N, Zhang E, Arranto C, Mangiaracina C, Isobe K, Sena BF, Kim J, Goichberg P, Nahrendorf M, Isom LL, Leri A, Anversa P, Rota M. Late Na(+) current and protracted electrical recovery are critical determinants of the aging myopathy. Nat Commun 2015; 6:8803. [PMID: 26541940 PMCID: PMC4638135 DOI: 10.1038/ncomms9803] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
The aging myopathy manifests itself with diastolic dysfunction and preserved ejection fraction. We raised the possibility that, in a mouse model of physiological aging, defects in electromechanical properties of cardiomyocytes are important determinants of the diastolic characteristics of the myocardium, independently from changes in structural composition of the muscle and collagen framework. Here we show that an increase in the late Na(+) current (INaL) in aging cardiomyocytes prolongs the action potential (AP) and influences temporal kinetics of Ca(2+) cycling and contractility. These alterations increase force development and passive tension. Inhibition of INaL shortens the AP and corrects dynamics of Ca(2+) transient, cell contraction and relaxation. Similarly, repolarization and diastolic tension of the senescent myocardium are partly restored. Thus, INaL offers inotropic support, but negatively interferes with cellular and ventricular compliance, providing a new perspective of the biology of myocardial aging and the aetiology of the defective cardiac performance in the elderly.
Collapse
Affiliation(s)
- Sergio Signore
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Andrea Sorrentino
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Giulia Borghetti
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Antonio Cannata
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Marianna Meo
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Yu Zhou
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Ramaswamy Kannappan
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Francesco Pasqualini
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Heather O'Malley
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mark Sundman
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Nikolaos Tsigkas
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Eric Zhang
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Christian Arranto
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Chiara Mangiaracina
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Kazuya Isobe
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Brena F Sena
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Junghyun Kim
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Polina Goichberg
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Annarosa Leri
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Piero Anversa
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Marcello Rota
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
16
|
Sallam K, Li Y, Sager PT, Houser SR, Wu JC. Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes. Circ Res 2015; 116:1989-2004. [PMID: 26044252 DOI: 10.1161/circresaha.116.304494] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sudden cardiac death is a common cause of death in patients with structural heart disease, genetic mutations, or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with sudden cardiac death. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology, including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single-ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell-derived cardiomyocytes resemble, but are not identical, adult human cardiomyocytes and provide a new platform for studying arrhythmic disorders leading to sudden cardiac death. A variety of platforms exist to phenotype cellular models, including conventional and automated patch clamp, multielectrode array, and computational modeling. Induced pluripotent stem cell-derived cardiomyocytes have been used to study long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy, and other hereditary cardiac disorders. Although induced pluripotent stem cell-derived cardiomyocytes are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of sudden cardiac death.
Collapse
Affiliation(s)
- Karim Sallam
- From the Division of Cardiology, Department of Medicine, Stanford Cardiovascular Institute (K.S., Y.L., P.T.S., J.C.W.), Institute of Stem Cell Biology and Regenerative Medicine (K.S., Y.L., J.C.W.), Stanford University School of Medicine, CA; and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Yingxin Li
- From the Division of Cardiology, Department of Medicine, Stanford Cardiovascular Institute (K.S., Y.L., P.T.S., J.C.W.), Institute of Stem Cell Biology and Regenerative Medicine (K.S., Y.L., J.C.W.), Stanford University School of Medicine, CA; and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Philip T Sager
- From the Division of Cardiology, Department of Medicine, Stanford Cardiovascular Institute (K.S., Y.L., P.T.S., J.C.W.), Institute of Stem Cell Biology and Regenerative Medicine (K.S., Y.L., J.C.W.), Stanford University School of Medicine, CA; and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Steven R Houser
- From the Division of Cardiology, Department of Medicine, Stanford Cardiovascular Institute (K.S., Y.L., P.T.S., J.C.W.), Institute of Stem Cell Biology and Regenerative Medicine (K.S., Y.L., J.C.W.), Stanford University School of Medicine, CA; and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.).
| | - Joseph C Wu
- From the Division of Cardiology, Department of Medicine, Stanford Cardiovascular Institute (K.S., Y.L., P.T.S., J.C.W.), Institute of Stem Cell Biology and Regenerative Medicine (K.S., Y.L., J.C.W.), Stanford University School of Medicine, CA; and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.).
| |
Collapse
|
17
|
Bondarenko VE. A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes. PLoS One 2014; 9:e89113. [PMID: 24586529 PMCID: PMC3931689 DOI: 10.1371/journal.pone.0089113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023] Open
Abstract
The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca2+]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol). The model describes biochemical reactions that occur during stimulation of β1-adrenoceptors, changes in ionic currents, and modifications of Ca2+ handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca2+ handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca2+]i transients; changes in intracellular and transmembrane Ca2+ fluxes; and [Na+]i fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of β1-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca2+]i transients. In particular, the model includes two subpopulations of the L-type Ca2+ channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca2+]i transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of mathematical models for other species or for pathological conditions.
Collapse
Affiliation(s)
- Vladimir E. Bondarenko
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Yang L, Katchman A, Samad T, Morrow J, Weinberg R, Marx SO. β-adrenergic regulation of the L-type Ca2+ channel does not require phosphorylation of α1C Ser1700. Circ Res 2013; 113:871-80. [PMID: 23825359 DOI: 10.1161/circresaha.113.301926] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RATIONALE Sympathetic nervous system triggered activation of protein kinase A, which phosphorylates several targets within cardiomyocytes, augments inotropy, chronotropy, and lusitropy. An important target of β-adrenergic stimulation is the sarcolemmal L-type Ca(2+) channel, CaV1.2, which plays a key role in cardiac excitation-contraction coupling. The molecular mechanisms of β-adrenergic regulation of CaV1.2 in cardiomyocytes, however, are incompletely known. Recently, it has been postulated that proteolytic cleavage at Ala(1800) and protein kinase A phosphorylation of Ser(1700) are required for β-adrenergic modulation of CaV1.2. OBJECTIVE To assess the role of Ala(1800) in the cleavage of α1C and the role of Ser(1700) and Thr(1704) in mediating the adrenergic regulation of CaV1.2 in the heart. METHODS AND RESULTS Using a transgenic approach that enables selective and inducible expression in mice of FLAG-epitope-tagged, dihydropyridine-resistant CaV1.2 channels harboring mutations at key regulatory sites, we show that adrenergic regulation of CaV1.2 current and fractional shortening of cardiomyocytes do not require phosphorylation of either Ser(1700) or Thr(1704) of the α1C subunit. The presence of Ala(1800) and the (1798)NNAN(1801) motif in α1C is not required for proteolytic cleavage of the α1C C-terminus, and deletion of these residues did not perturb adrenergic modulation of CaV1.2 current. CONCLUSIONS These results show that protein kinase A phosphorylation of α1C Ser(1700) does not have a major role in the sympathetic stimulation of Ca(2+) current and contraction in the adult murine heart. Moreover, this new transgenic approach enables functional and reproducible screening of α1C mutants in freshly isolated adult cardiomyocytes in a reliable, timely, cost-effective manner.
Collapse
Affiliation(s)
- Lin Yang
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Alexander Katchman
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Tahmina Samad
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - John Morrow
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Richard Weinberg
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, New York, NY 10032.,Department of Pharmacology Columbia University, College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
19
|
Prolonged Action Potential and After depolarizations Are Not due to Changes in Potassium Currents in NOS3 Knockout Ventricular Myocytes. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:645721. [PMID: 22970362 PMCID: PMC3434404 DOI: 10.1155/2012/645721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 02/01/2023]
Abstract
Ventricular myocytes deficient in endothelial nitric oxide synthase (NOS3(-/-)) exhibit prolonged action potential (AP) duration and enhanced spontaneous activity (early and delayed afterdepolarizations) during β-adrenergic (β-AR) stimulation. Studies have shown that nitric oxide is able to regulate various K(+) channels. Our objective was to examine if NOS3(-/-) myocytes had altered K(+) currents. APs, transient outward (I(to)), sustained (I(Ksus)), and inward rectifier (I(K1)) K(+) currents were measured in NOS3(-/-) and wild-type (WT) myocytes. During β-AR stimulation, AP duration (measured as 90% repolarization-APD(90)) was prolonged in NOS3(-/-) compared to WT myocytes. Nevertheless, we did not observe differences in I(to), I(Ksus), or I(K1) between WT and NOS3(-/-) myocytes. Our previous work showed that NOS3(-/-) myocytes had a greater Ca(2+) influx via L-type Ca(2+) channels with β-AR stimulation. Thus, we measured β-AR-stimulated SR Ca(2+) load and found a greater increase in NOS3(-/-) versus WT myocytes. Hence, our data suggest that the prolonged AP in NOS3(-/-) myocytes is not due to changes in I(to), I(Ksus), or I(K1). Furthermore, the increase in spontaneous activity in NOS3(-/-) myocytes may be due to a greater increase in SR Ca(2+) load. This may have important implications for heart failure patients, where arrhythmias are increased and NOS3 expression is decreased.
Collapse
|
20
|
Raake PW, Zhang X, Vinge LE, Brinks H, Gao E, Jaleel N, Li Y, Tang M, Most P, Dorn GW, Houser SR, Katus HA, Chen X, Koch WJ. Cardiac G-protein-coupled receptor kinase 2 ablation induces a novel Ca2+ handling phenotype resistant to adverse alterations and remodeling after myocardial infarction. Circulation 2012; 125:2108-18. [PMID: 22496128 DOI: 10.1161/circulationaha.111.044255] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND G-protein-coupled receptor kinase 2 (GRK2) is a primary regulator of β-adrenergic signaling in the heart. G-protein-coupled receptor kinase 2 ablation impedes heart failure development, but elucidation of the cellular mechanisms has not been achieved, and such elucidation is the aim of this study. METHODS AND RESULTS Myocyte contractility, Ca(2+) handling and excitation-contraction coupling were studied in isolated cardiomyocytes from wild-type and GRK2 knockout (GRK2KO) mice without (sham) or with myocardial infarction (MI). In cardiac myocytes isolated from unstressed wild-type and GRK2KO hearts, myocyte contractions and Ca(2+) transients were similar, but GRK2KO myocytes had lower sarcoplasmic reticulum (SR) Ca(2+) content because of increased sodium-Ca(2+) exchanger activity and inhibited SR Ca(2+) ATPase by local protein kinase A-mediated activation of phosphodiesterase 4 resulting in hypophosphorylated phospholamban. This Ca(2+) handling phenotype is explained by a higher fractional SR Ca(2+) release induced by increased L-type Ca(2+) channel currents. After β-adrenergic stimulation, GRK2KO myocytes revealed significant increases in contractility and Ca(2+) transients, which were not mediated through cardiac L-type Ca(2+) channels but through an increased SR Ca(2+). Interestingly, post-MI GRK2KO mice showed better cardiac function than post-MI control mice, which is explained by an improved Ca(2+) handling phenotype. The SR Ca(2+) content was better maintained in post-MI GRK2KO myocytes than in post-MI control myocytes because of better-maintained L-type Ca(2+) channel current density and no increase in sodium-Ca(2+) exchanger in GRK2KO myocytes. An L-type Ca(2+) channel blocker, verapamil, reversed some beneficial effects of GRK2KO. CONCLUSIONS These data argue for novel differential regulation of L-type Ca(2+) channel currents and SR load by GRK2. G-protein-coupled receptor kinase 2 ablation represents a novel beneficial Ca(2+) handling phenotype resisting adverse remodeling after MI.
Collapse
Affiliation(s)
- Philip W Raake
- Department of Internal Medicine III, Cardiology, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen X, Nakayama H, Zhang X, Ai X, Harris DM, Tang M, Zhang H, Szeto C, Stockbower K, Berretta RM, Eckhart AD, Koch WJ, Molkentin JD, Houser SR. Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. J Mol Cell Cardiol 2010; 50:460-70. [PMID: 21111744 DOI: 10.1016/j.yjmcc.2010.11.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/21/2010] [Accepted: 11/11/2010] [Indexed: 01/20/2023]
Abstract
Pathological cardiac hypertrophy (PCH) is associated with the development of arrhythmia and congestive heart failure. While calcium (Ca(2+)) is implicated in hypertrophic signaling pathways, the specific role of Ca(2+) influx through the L-type Ca(2+) channel (I(Ca-L)) has been controversial and is the topic of this study. To determine if and how sustained increases in I(Ca-L) induce PCH, transgenic mouse models with low (LE) and high (HE) expression levels of the β2a subunit of Ca(2+) channels (β2a) and in cultured adult feline (AF) and neonatal rat (NR) ventricular myocytes (VMs) infected with an adenovirus containing a β2a-GFP were used. In vivo, β2a LE and HE mice had increased heart weight to body weight ratio, posterior wall and interventricular septal thickness, tissue fibrosis, myocyte volume, and cross-sectional area and the expression of PCH markers in a time- and dose-dependent manner. PCH was associated with a hypercontractile phenotype including enhanced I(Ca-L), fractional shortening, peak Ca(2+) transient, at the myocyte level, greater ejection fraction, and fractional shortening at the organ level. In addition, LE mice had an exaggerated hypertrophic response to transverse aortic constriction. In vitro overexpression of β2a in cultured AFVMs increased I(Ca-L), cell volume, protein synthesis, NFAT, and HDAC translocations and in NRVMs increased surface area. These effects were abolished by the blockade of I(Ca-L), intracellular Ca(2+), calcineurin, CaMKII, and SERCA. In conclusion, increasing I(Ca-L) is sufficient to induce PCH through the calcineurin/NFAT and CaMKII/HDAC pathways. Both cytosolic and SR/ER-nuclear envelop Ca(2+) pools were shown to be involved.
Collapse
Affiliation(s)
- Xiongwen Chen
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|