1
|
Sobolevskaya EV, Shumkov OA, Smagin MA, Guskov AE, Malysheva AV, Atuchin VV, Nimaev VV. Markers of Restenosis after Percutaneous Transluminal Balloon Angioplasty in Patients with Critical Limb Ischemia. Int J Mol Sci 2023; 24:ijms24109096. [PMID: 37240440 DOI: 10.3390/ijms24109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Among cardiovascular diseases, chronic obliterating lesions of the arteries of lower extremities, which are one of the important problems of modern healthcare, are distinguished. In most cases, the cause of damage to the arteries of lower extremities is atherosclerosis. The most severe form is chronic ischemia, characterized by pain at rest and ischemic ulcers, ultimately increasing the risk of limb loss and cardiovascular mortality. Therefore, patients with critical limb ischemia need limb revascularization. Percutaneous transluminal balloon angioplasty is one of the least invasive and safe approaches, with advantages for patients with comorbidities. However, after this procedure, restenosis is still possible. Early detection of changes in the composition of some molecules as markers of restenosis will help screen patients at the risk of restenosis, as well as find ways to apply efforts for further directions of inhibition of this process. The purpose of this review is to provide the most important and up-to-date information on the mechanisms of restenosis development, as well as possible predictors of their occurrence. The information collected in this publication may be useful in predicting outcomes after surgical treatment and will also find new ways for the target implication to the mechanisms of development of restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Elvira V Sobolevskaya
- Laboratory of Surgical Lymphology and Lymph-Detoxication, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, SB RAS, Novosibirsk 630117, Russia
| | - Oleg A Shumkov
- Laboratory of Surgical Lymphology and Lymph-Detoxication, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, SB RAS, Novosibirsk 630117, Russia
| | - Mikhail A Smagin
- Laboratory of Surgical Lymphology and Lymph-Detoxication, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, SB RAS, Novosibirsk 630117, Russia
| | - Andrey E Guskov
- Laboratory of Scientometrics and Scientific Communications, Russian Research Institute of Economics, Politics and Law in Science and Technology, Moscow 127254, Russia
| | - Alexandra V Malysheva
- Laboratory of Scientometrics and Scientific Communications, Russian Research Institute of Economics, Politics and Law in Science and Technology, Moscow 127254, Russia
| | - Victor V Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia
- Research and Development Department, Kemerovo State University, Kemerovo 650000, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk 630073, Russia
- R&D Center "Advanced Electronic Technologies", Tomsk State University, Tomsk 634034, Russia
| | - Vadim V Nimaev
- Laboratory of Surgical Lymphology and Lymph-Detoxication, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, SB RAS, Novosibirsk 630117, Russia
| |
Collapse
|
2
|
Kim JH, Jang EH, Ryu JY, Lee J, Kim JH, Ryu W, Youn YN. Sirolimus-Embedded Silk Microneedle Wrap to Prevent Neointimal Hyperplasia in Vein Graft Model. Int J Mol Sci 2023; 24:ijms24043306. [PMID: 36834717 PMCID: PMC9967879 DOI: 10.3390/ijms24043306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
We investigated the role of a sirolimus-embedded silk microneedle (MN) wrap as an external vascular device for drug delivery efficacy, inhibition of neointimal hyperplasia, and vascular remodeling. Using dogs, a vein graft model was developed to interpose the carotid or femoral artery with the jugular or femoral vein. The control group contained four dogs with only interposed grafts; the intervention group contained four dogs with vein grafts in which sirolimus-embedded silk-MN wraps were applied. After 12-weeks post-implantation, 15 vein grafts in each group were explanted and analyzed. Vein grafts applied with the rhodamine B-embedded silk-MN wrap showed far higher fluorescent signals than those without the wrap. The diameter of vein grafts in the intervention group decreased or remained stable without dilatation; however, it increased in the control group. The intervention group had femoral vein grafts with a significantly lower mean neointima-to-media ratio, and had vein grafts with an intima layer showing a significantly lower collagen density ratio than the control group. In conclusion, sirolimus-embedded silk-MN wrap in a vein graft model successfully delivered the drug to the intimal layer of the vein grafts. It prevented vein graft dilatation, avoiding shear stress and decreasing wall tension, and it inhibited neointimal hyperplasia.
Collapse
Affiliation(s)
- Jung-Hwan Kim
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eui Hwa Jang
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji-Yeon Ryu
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jiyong Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Ho Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Wonhyoung Ryu
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Correspondence: ; Tel.: +82-2-2228-8487
| |
Collapse
|
3
|
McQueen LW, Ladak SS, Zakkar M. Acute shear stress and vein graft disease. Int J Biochem Cell Biol 2022; 144:106173. [PMID: 35151879 DOI: 10.1016/j.biocel.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The long saphenous vein is commonly used in cardiac surgery to bypass occluded coronary arteries. Its use is complicated by late stenosis and occlusion due to the development of intimal hyperplasia. It is accepted that intimal hyperplasia is a multifactorial inflammatory process that starts immediately after surgery. The role of acute changes in haemodynamic conditions when the vein is implanted into arterial circulation, especially shear stress, is not fully appreciated. This review provides an overview of intimal hyperplasia and the effect of acute shear stress changes on the activation of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Liam W McQueen
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Shameem S Ladak
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Mustafa Zakkar
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
4
|
de Jong A, Sier VQ, Peters HAB, Schilder NKM, Jukema JW, Goumans MJTH, Quax PHA, de Vries MR. Interfering in the ALK1 Pathway Results in Macrophage-Driven Outward Remodeling of Murine Vein Grafts. Front Cardiovasc Med 2022; 8:784980. [PMID: 35187106 PMCID: PMC8850982 DOI: 10.3389/fcvm.2021.784980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/29/2021] [Indexed: 01/09/2023] Open
Abstract
Aims Vein grafts are frequently used to bypass coronary artery occlusions. Unfortunately, vein graft disease (VGD) causes impaired patency rates. ALK1 mediates signaling by TGF-β via TGFβR2 or BMP9/10 via BMPR2, which is an important pathway in fibrotic, inflammatory, and angiogenic processes in vascular diseases. The role of the TGF-β pathway in VGD is previously reported, however, the contribution of ALK1 signaling is not known. Therefore, we investigated ALK1 signaling in VGD in a mouse model for vein graft disease using either genetic or pharmacological inhibition of the Alk1 signaling. Methods and Results Male ALK1 heterozygous (ALK1+/−), control C57BL/6, as well as hypercholesterolemic ApoE3*Leiden mice, underwent vein graft surgery. Histologic analyses of ALK1+/− vein grafts demonstrated increased outward remodeling and macrophage accumulation after 28 days. In hypercholesterolemic ApoE3*Leiden mice receiving weekly ALK1-Fc injections, ultrasound imaging showed 3-fold increased outward remodeling compared to controls treated with control-Fc, which was confirmed histologically. Moreover, ALK1-Fc treatment reduced collagen and smooth muscle cell accumulation, increased macrophages by 1.5-fold, and resulted in more plaque dissections. No difference was observed in intraplaque neovessel density. Flow cytometric analysis showed increased systemic levels of Ly6CHigh monocytes in ALK1-Fc treated mice, supported by in vitro increased MCP-1 and IL-6 production of LPS-stimulated and ALK1-Fc-treated murine monocytes and macrophages. Conclusion Reduced ALK1 signaling in VGD promotes outward remodeling, increases macrophage influx, and promotes an unstable plaque phenotype. Translational Perspective Vein graft disease (VGD) severely hampers patency rates of vein grafts, necessitating research of key disease-driving pathways like TGF-β. The three-dimensional nature of VGD together with the multitude of disease driving factors ask for a comprehensive approach. Here, we combined in vivo ultrasound imaging, histological analyses, and conventional in vitro analyses, identifying the ambiguous role of reduced ALK1 signaling in vein graft disease. Reduced ALK1 signaling promotes outward remodeling, increases macrophage influx, and promotes an unstable plaque phenotype in murine vein grafts. Characterization of in vivo vascular remodeling over time is imperative to monitor VGD development and identify new therapies.
Collapse
Affiliation(s)
- Alwin de Jong
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrika A. B. Peters
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Natalia K. M. Schilder
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Margreet R. de Vries
| |
Collapse
|
5
|
Translational model of vein graft failure following coronary artery bypass graft in atherosclerotic microswine. Gen Thorac Cardiovasc Surg 2021; 70:445-454. [PMID: 34699002 DOI: 10.1007/s11748-021-01725-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Vein graft failure is a major complication following coronary artery bypass graft surgery. There is no translational model to understand the molecular mechanisms underlying vein-graft failure. We established a clinically relevant bypass graft model to investigate the underlying pathophysiological mechanisms of vein-graft failure and identify molecular targets for novel therapies. METHODS Six female Yucatan microswine fed with high cholesterol diet underwent off-pump bypass, using superficial epigastric vein graft, which was anastomosed to an internal mammary artery and distal left anterior descending artery. Vein-graft patency was examined 10-months after bypass surgery by echocardiography, coronary angiography, and optical coherence tomography followed by euthanasia. Coronary tissues were collected for histomorphometry studies. RESULTS Atherosclerotic microswine were highly susceptible to sudden ventricular fibrillation with any cardiac intervention. Two out of six animals died during surgery due to ventricular fibrillation. Selection of the anesthetics and titration of their doses with careful use of inotropic drugs were the key to successful swine cardiac anesthesia. The hypotensive effects of amiodarone and the incidence of arrhythmia were avoided by the administration of magnesium sulfate. The vein-graft control tissue displayed intact endothelium with well-organized medial layer. The grafted vessels revealed complete occlusion and were covered with fibrous tissues. Expression of CD31 in the graft was irregular as the layers were not clearly defined due to fibrosis. CONCLUSION This model represents the clinical vein-graft failure and offers a novel platform to investigate the underlying molecular mechanisms of vein-graft disease and investigate novel therapeutic approaches to prevent its progression.
Collapse
|
6
|
Kuan R, Agrawal DK, Thankam FG. Treg cells in atherosclerosis. Mol Biol Rep 2021; 48:4897-4910. [PMID: 34117978 DOI: 10.1007/s11033-021-06483-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
Atherosclerosis involves both innate and adaptive immunity. Here, we provide an overview of the role of regulatory T (Treg) cells in atherosclerotic diseases. Treg cells and their inhibitory cytokines, IL-10 and TGF-β, have been identified in atherosclerotic lesions and to inhibit progression through lipoprotein metabolism modulation. Treg cells have also been found to convert to T follicular helper (Tfh) cells and promote atherosclerosis progression. Treg cell involvement in different stages of atherosclerotic progression and Treg cell-mediated modulation of plaque development occurs via inflammation suppression and atheroma formation has been focused. Moreover, existing knowledge suggests that Treg cells are likely involved in the pathology of other specific circumstances including in-stent restenosis, neointimal hyperplasia, vessel graft failure, and ischemic arterial injury; however, there remain gaps regarding their specific contribution. Hence, advancements in the knowledge regarding Treg cells in diverse aspects of atherosclerosis offer translational significance for the management of atherosclerosis and associated diseases.
Collapse
Affiliation(s)
- Rebecca Kuan
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
7
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
8
|
Qi X, Wang F, Chun C, Saldarriaga L, Jiang Z, Pruitt EY, Arnaoutakis GJ, Upchurch GR, Jiang Z. A validated mouse model capable of recapitulating the protective effects of female sex hormones on ascending aortic aneurysms and dissections (AADs). Physiol Rep 2020; 8:e14631. [PMID: 33242364 PMCID: PMC7690909 DOI: 10.14814/phy2.14631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Fewer females develop AADs (ascending aortic aneurysms and dissections) and the reasons for this protection remain poorly understood. The present study seeks to develop a mouse model that may be utilized to address this sexual dimorphism. Adult normolipidemic mice were challenged with BAPN (β-aminopropionitrile), AngII (angiotensin II), or BAPN + AngII. An initial protocol optimization found that 0.2% BAPN in drinking water plus AngII-infusion at 1,000 ng kg-1 min-1 produced favorable rates of AAD rupture (~50%) and dilation (~40%) in 28 days. Using these dosages, further experiments revealed that BAPN is toxic to naïve mature aortas and it acted synergistically with AngII to promote aortic tears and dissections. BAPN + AngII provoked early infiltration of myeloid cells and subsequent recruitment of lymphoid cells to the aortic wall. AADs established with BAPN + AngII, but not AngII alone, continued to expand after the cessation of AngII-infusion. This indefinite growth precipitated a 61% increase in the AAD diameter in 56 days. More importantly, with the optimized protocol, significant differences in AAD dilation (p = .012) and medial degeneration (p = .036) were detected between male and female mice. Treatment of ovariectomized mice with estradiol protected AAD formation (p = .014). In summary, this study developed a powerful mouse AAD model that can be used to study the sexual dimorphism in AAD formation.
Collapse
Affiliation(s)
- Xiaoyan Qi
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
- Institute of Cardiovascular DiseaseUniversity of South ChinaHengyangChina
| | - Fen Wang
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Changzoon Chun
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Lennon Saldarriaga
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Zhisheng Jiang
- Institute of Cardiovascular DiseaseUniversity of South ChinaHengyangChina
| | - Eric Y. Pruitt
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| | - George J. Arnaoutakis
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
- Division of Thoracic and Cardiovascular SurgeryUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Gilbert R. Upchurch
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| |
Collapse
|
9
|
Zhou G, Liao M, Wang F, Qi X, Yang P, Berceli SA, Sharma AK, Upchurch GR, Jiang Z. Cyclophilin A contributes to aortopathy induced by postnatal loss of smooth muscle TGFBR1. FASEB J 2019; 33:11396-11410. [PMID: 31311317 PMCID: PMC6766662 DOI: 10.1096/fj.201900601rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Recent recognition that TGF-β signaling disruption is involved in the development of aortic aneurysms has led to renewed investigations into the role of TGF-β biology in the aortic wall. We previously found that the type I receptor of TGF-β (TGFBR2) receptor contributes to formation of ascending aortic aneurysms and dissections (AADs) induced by smooth muscle cell (SMC)-specific, postnatal deletion of Tgfbr1 (Tgfbr1iko). Here, we aimed to decipher the mechanistic signaling pathway underlying the pathogenic effects of TGFBR2 in this context. Gene expression profiling demonstrated that Tgfbr1iko triggers an acute inflammatory response in developing AADs, and Tgfbr1iko SMCs express an inflammatory phenotype in culture. Comparative proteomics profiling and mass spectrometry revealed that Tgfbr1iko SMCs respond to TGF-β1 stimulation via robust up-regulation of cyclophilin A (CypA). This up-regulation is abrogated by inhibition of TGFBR2 kinase activity, small interfering RNA silencing of Tgfbr2 expression, or inhibition of SMAD3 activation. In mice, Tgfbr1iko rapidly promotes CypA production in SMCs of developing AADs, whereas treatment with a CypA inhibitor attenuates aortic dilation by 56% (P = 0.003) and ameliorates aneurysmal degeneration (P = 0.016). These protective effects are associated with reduced aneurysm-promoting inflammation. Collectively, these results suggest a novel mechanism, wherein loss of type I receptor of TGF-β triggers promiscuous, proinflammatory TGFBR2 signaling in SMCs, thereby promoting AAD formation.-Zhou, G., Liao, M., Wang, F., Qi, X., Yang, P., Berceli, S. A., Sharma, A. K., Upchurch, G. R., Jr., Jiang, Z. Cyclophilin A contributes to aortopathy induced by postnatal loss of smooth muscle TGFBR1.
Collapse
Affiliation(s)
- Guannan Zhou
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mingmei Liao
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Fen Wang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Xiaoyan Qi
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Pu Yang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Ashish K. Sharma
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Gilbert R. Upchurch
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
10
|
Ryu JH, Jeon EY, Kim SJ. Indoxyl Sulfate-Induced Extracellular Vesicles Released from Endothelial Cells Stimulate Vascular Smooth Muscle Cell Proliferation by Inducing Transforming Growth Factor-Beta Production. J Vasc Res 2019; 56:129-138. [PMID: 31085925 DOI: 10.1159/000496796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/10/2019] [Indexed: 11/19/2022] Open
Abstract
Vascular access stenosis predominantly occurs as a result of neointimal hyperplasia (NH) formation at the anastomosis. Moreover, in the presence of NH, transforming growth factor-beta (TGF-β) promotes vascular smooth muscle cell (VSMC) proliferation. Extracellular vesicles (EVs) released by endothelial cells are closely associated with vascular dysfunction. Here, we investigated the effects of EVs on TGF-β signaling and VSMC proliferation. Specifically, EVs were collected from the culture medium of indoxyl sulfate (IS)-treated human umbilical vein endothelial cells and used (2 × 106) to stimulate human aortic smooth muscle cells (SMCs) (1 × 106). Western blotting was performed to assess the levels of Akt, ERK1/2, p38 MAPK, and Smad3. BrdU proliferation assays, quantitative PCR, and ELISA assays were performed to evaluate SMC proliferation and TGF-β production. The IS-induced EVs stimulated the proliferation of aortic SMCs in a concentration-dependent manner. The EVs both contained TGF-β and promoted TGF-β production by SMCs by phosphorylating Akt, ERK1/2, p38 MAPK, and Smad3, which was significantly inhibited by an anti-TGF-β antibody. SMC proliferation was suppressed by both an anti-TGF-β antibody and inhibitors of the downstream factors. These results suggest that EVs are involved in the pathogenesis of vascular access stenosis by modulating TGF-β signaling in VSMCs under uremic conditions.
Collapse
Affiliation(s)
- Jung-Hwa Ryu
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Young Jeon
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seung-Jung Kim
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea,
| |
Collapse
|
11
|
The BD2 domain of BRD4 is a determinant in EndoMT and vein graft neointima formation. Cell Signal 2019; 61:20-29. [PMID: 31075399 DOI: 10.1016/j.cellsig.2019.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Vein-graft bypass is commonly performed to overcome atherosclerosis but is limited by high failure rates, principally due to neointimal wall thickening. Recent studies reveal that endothelial-mesenchymal transition (EndoMT) is critical for vein-graft neointima formation. BETs are a family of Bromo/ExtraTerminal domains-containing epigenetic reader proteins (BRD2, BRD3, BRD4). They bind acetylated histones through their unique tandem bromodomains (BD1, BD2), facilitating transcriptional complex formation and cell-state transitions. The role for BETs, including individual BRDs and their unique BDs, is not well understood in EndoMT and neointimal formation. METHODS AND RESULTS Repression of BRD4 expression abrogated TGFβ1-induced EndoMT, with greater effects than BRD2 or BRD3 knockdown. An inhibitor selective for BD2 in all BETs, but not that for BD1, blocked EndoMT. Moreover, expression of a dominant-negative BRD4-specific BD2 fully abolished EndoMT. Concordantly, BRD4 knockdown repressed TGFβ1-stimulated increase of ZEB1 protein - a transcription factor integral in EndoMT. In vivo, lentiviral gene transfer of either BRD4 shRNA or dominant negative BRD4-specific BD2 mitigated neointimal development in rat jugular veins grafted to carotid arteries. CONCLUSIONS Our data reveal the BD2 domain of BRD4 as a determinant driving EndoMT in vitro and neointimal formation in vivo. These findings provide new insight into BET biology, while offering prospects of specific BET domain targeting as an approach to limiting neointima and extending vein graft patency.
Collapse
|
12
|
Zhang Y, Fang Q, Niu K, Gan Z, Yu Q, Gu T. Time-dependently slow-released multiple-drug eluting external sheath for efficient long-term inhibition of saphenous vein graft failure. J Control Release 2019; 293:172-182. [DOI: 10.1016/j.jconrel.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
|
13
|
Low EL, Baker AH, Bradshaw AC. TGFβ, smooth muscle cells and coronary artery disease: a review. Cell Signal 2019; 53:90-101. [PMID: 30227237 PMCID: PMC6293316 DOI: 10.1016/j.cellsig.2018.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the primary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia, while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling. Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia.
Collapse
Affiliation(s)
- Emma L Low
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew H Baker
- Queen's Medical Research Institute, University of Edinburgh, 47 Little Crescent, Edinburgh EH16 4TJ, UK
| | - Angela C Bradshaw
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
14
|
Lee KW, Gade PS, Dong L, Zhang Z, Aral AM, Gao J, Ding X, Stowell CE, Nisar MU, Kim K, Reinhardt DP, Solari MG, Gorantla VS, Robertson AM, Wang Y. A biodegradable synthetic graft for small arteries matches the performance of autologous vein in rat carotid arteries. Biomaterials 2018; 181:67-80. [DOI: 10.1016/j.biomaterials.2018.07.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022]
|
15
|
Kenagy RD, Kikuchi S, Evanko SP, Ruiter MS, Piola M, Longchamp A, Pesce M, Soncini M, Deglise S, Fiore GB, Haefliger JA, Schmidt TA, Majesky MW, Sobel M, Wight TN. Versican is differentially regulated in the adventitial and medial layers of human vein grafts. PLoS One 2018; 13:e0204045. [PMID: 30265729 PMCID: PMC6161854 DOI: 10.1371/journal.pone.0204045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Changes in extracellular matrix proteins may contribute significantly to the adaptation of vein grafts to the arterial circulation. We examined the production and distribution of versican and hyaluronan in intact human vein rings cultured ex vivo, veins perfused ex vivo, and cultured venous adventitial and smooth muscle cells. Immunohistochemistry revealed higher levels of versican in the intima/media compared to the adventitia, and no differences in hyaluronan. In the vasa vasorum, versican and hyaluronan associated with CD34+ progenitor cells. Culturing the vein rings for 14 days revealed increased versican immunostaining of 30–40% in all layers, with no changes in hyaluronan. Changes in versican accumulation appear to result from increased synthesis in the intima/media and decreased degradation in the adventitia as versican transcripts were increased in the intima/media, but unchanged in the adventitia, and versikine (the ADAMTS-mediated cleavage product of versican) was increased in the intima/media, but decreased in the adventitia. In perfused human veins, versican was specifically increased in the intima/media in the presence of venous pressure, but not with arterial pressure. Unexpectedly, cultured adventitial cells express and accumulate more versican and hyaluronan than smooth muscle cells. These data demonstrate a differential regulation of versican and hyaluronan in human venous adventitia vs. intima/media and suggest distinct functions for these extracellular matrix macromolecules in these venous wall compartments during the adaptive response of vein grafts to the arterial circulation.
Collapse
Affiliation(s)
- Richard D. Kenagy
- Center for Cardiovascular Biology, Institute for Stem Cells and Regenerative Medicine, and Department of Surgery, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Steve P. Evanko
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States of America
| | - Matthijs S. Ruiter
- Cardiovascular Tissue Engineering Unit—Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan, Italy
| | - Marco Piola
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Alban Longchamp
- Department of Vascular Surgery, CHUV | Lausanne University Hospital, Lausanne, Switzerland
| | - Maurizio Pesce
- Cardiovascular Tissue Engineering Unit—Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan, Italy
| | - Monica Soncini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Sébastien Deglise
- Department of Vascular Surgery, CHUV | Lausanne University Hospital, Lausanne, Switzerland
| | - Gianfranco B. Fiore
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | | | - Tannin A. Schmidt
- Biomedical Engineering Department, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Michael Sobel
- Division of Vascular Surgery, VA Puget Sound Health Care System, University of Washington, Seattle, WA, United States of America
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States of America
| |
Collapse
|
16
|
Kwon SH, Li L, Terry CM, Shiu YT, Moos PJ, Milash BA, Cheung AK, Blumenthal DK. Differential gene expression patterns in vein regions susceptible versus resistant to neointimal hyperplasia. Physiol Genomics 2018; 50:615-627. [PMID: 29750603 PMCID: PMC6139633 DOI: 10.1152/physiolgenomics.00082.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Arteriovenous hemodialysis graft (AVG) stenosis results in thrombosis and AVG failure, but prevention of stenosis has been unsuccessful due in large part to our limited understanding of the molecular processes involved in neointimal hyperplasia (NH) formation. AVG stenosis develops chiefly as a consequence of highly localized NH formation in the vein-graft anastomosis region. Surprisingly, the vein region just downstream of the vein-graft anastomosis (herein termed proximal vein region) is relatively resistant to NH. We hypothesized that the gene expression profiles of the NH-prone and NH-resistant regions will be different from each other after graft placement, and analysis of their genomic profiles may yield potential therapeutic targets to prevent AVG stenosis. To test this, we evaluated the vein-graft anastomosis (NH-prone) and proximal vein (NH-resistant) regions in a porcine model of AVG stenosis with a porcine microarray. Gene expression changes in these two distinct vein regions, relative to the gene expression in unoperated control veins, were examined at early (5 days) and later (14 days) time points following graft placement. Global genomic changes were much greater in the NH-prone region than in the NH-resistant region at both time points. In the NH-prone region, genes related to regulation of cell proliferation and osteo-/chondrogenic vascular remodeling were most enriched among the significantly upregulated genes, and genes related to smooth muscle phenotype were significantly downregulated. These results provide insights into the spatial and temporal genomic modulation underlying NH formation in AVG and suggest potential therapeutic strategies to prevent and/or limit AVG stenosis.
Collapse
Affiliation(s)
- Sun Hyung Kwon
- Department of Pharmacology and Toxicology, University of Utah , Salt Lake City, Utah
| | - Li Li
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah , Salt Lake City, Utah
| | - Christi M Terry
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah , Salt Lake City, Utah
| | - Yan-Ting Shiu
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah , Salt Lake City, Utah
| | - Philip J Moos
- Department of Pharmacology and Toxicology, University of Utah , Salt Lake City, Utah
| | - Brett A Milash
- Bioinformatics Shared Resource, University of Utah, Huntsman Cancer Institute , Salt Lake City, Utah
| | - Alfred K Cheung
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah , Salt Lake City, Utah
- Medical Service, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah
- Department of Nephrology, The Second Xiangya Hospital, Central South University , Changsha, Hunan , People's Republic of China
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
17
|
Campos LCG, Ribeiro-Silva JC, Menegon AS, Barauna VG, Miyakawa AA, Krieger JE. Cyclic stretch-induced Crp3 sensitizes vascular smooth muscle cells to apoptosis during vein arterialization remodeling. Clin Sci (Lond) 2018; 132:CS20171601. [PMID: 29437853 DOI: 10.1042/cs20171601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 02/28/2024]
Abstract
Vein graft failure limits the long-term patency of the saphenous vein used as a conduit for coronary artery bypass graft. Early graft adaptation involves some degree of intima hyperplasia to sustain the hemodynamic stress, but the progress to occlusion in some veins remains unclear. We have demonstrated that stretch-induced up-regulation of cysteine and glycine-rich protein 3 (Crp3) in rat jugular vein and human saphenous vein in response to arterialization. Here, we developed a Crp3-KO rat to investigate the role of Crp3 in vascular remodeling. After 28 days jugular vein arterialization, the intima layer was 3-fold thicker in the Crp3-KO that showed comparable smooth muscle cells (SMC) proliferation but an absence of early apoptosis observed in the wild-type rat (WT). We then investigated the role of Crp3 in early integrin-mediated signaling apoptosis in isolated jugular SMC. Interestingly, under basal conditions, ceramide treatment failed to induce apoptosis in both WT and Crp3-KO SMC. Under stretch, Crp3 expression increased in WT SMC and ceramide induced apoptosis. Immunoblotting analysis indicated that ceramide stretch-induced apoptosis in SMC is accompanied by a decrease in the phosphorylation status of both Fak and Akt, leading to an increase in Bax expression and caspase-3 cleavage. In contrast, ceramide failed to decrease Fak and Akt phosphorylation in Crp3-KO SMC and, therefore, there was no downstream induction of Bax expression and effector caspase-3 cleavage. Taken together, we provide evidence that stretch-induced Crp3 modulates vein remodeling in response to arterialization by sensitizing SMC to apoptosis.
Collapse
Affiliation(s)
| | | | | | | | - Ayumi Aurea Miyakawa
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Jose Eduardo Krieger
- Department of Cardiopneumology, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, 05403-000, Brazil
| |
Collapse
|
18
|
Liao M, Yang P, Wang F, Berceli SA, Ali YH, Chan KL, Jiang Z. Smooth muscle cell-specific Tgfbr1 deficiency attenuates neointimal hyperplasia but promotes an undesired vascular phenotype for injured arteries. Physiol Rep 2018; 4:4/23/e13056. [PMID: 27923978 PMCID: PMC5357823 DOI: 10.14814/phy2.13056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022] Open
Abstract
Neointimal hyperplasia (NIH) and inward wall remodeling cause arterial restenosis and failure of bypass vein grafts. Previous studies from our group suggest that transforming growth factor (TGF) β promotes these pathologies via regulating cell kinetics at the early stage and matrix metabolism at the late stage. Although these temporal TGFβ effects may result from its signaling in different cell groups, the responsible cell type has not been identified. In the current study, we evaluated the effect of smooth muscle cell (SMC)‐specific TGFβ signaling through its type I receptor TGFBR1 on NIH and wall remodeling of the injured femoral arteries (FAs). An inducible Cre/loxP system was employed to delete SMC Tgfbr1 (Tgfbr1iko). Mice not carrying the Cre allele (Tgfbr1f/f) served as controls. The injured FAs were evaluated on d3, d7, and d28 postoperatively. Tgfbr1iko attenuated NIH by 92%, but had insignificant influence on arterial caliber when compared with Tgfbr1f/f controls on d28. This attenuation correlated with greater cellularity and reduced collagen content. Compared with Tgfbr1f/fFAs, however, Tgfbr1ikoFAs exhibited persistent neointimal cell proliferation and cell apoptosis, with both events at a greater rate on d28. Tgfbr1ikoFAs additionally contained fewer SMCs and more inflammatory infiltrates in the neointima and displayed a thicker adventitia than did Tgfbr1f/fFAs. More MMP9 proteins were detected in the adventitia of Tgfbr1ikoFAs than in that of Tgfbr1f/f controls. Our results suggest that disruption of SMC Tgfbr1 inhibits arterial NIH in the short term, but the overall vascular phenotype may not favor long‐term performance of the injured arteries.
Collapse
Affiliation(s)
- Mingmei Liao
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida.,Department of Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Pu Yang
- Department of Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Fen Wang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida
| | - Yasmin H Ali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida
| | - Kelvin L Chan
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
19
|
de Vries MR, Quax PHA. Inflammation in Vein Graft Disease. Front Cardiovasc Med 2018; 5:3. [PMID: 29417051 PMCID: PMC5787541 DOI: 10.3389/fcvm.2018.00003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
Bypass surgery is one of the most frequently used strategies to revascularize tissues downstream occlusive atherosclerotic lesions. For venous bypass surgery the great saphenous vein is the most commonly used vessel. Unfortunately, graft efficacy is low due to the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis. Moreover, failure of grafts leads to significant adverse outcomes and even mortality. The last couple of decades not much has changed in the treatment of vein graft disease (VGD). However, insight is the cellular and molecular mechanisms of VGD has increased. In this review, we discuss the latest insights on VGD and the role of inflammation in this. We discuss vein graft pathophysiology including hemodynamic changes, the role of vessel wall constitutions and vascular remodeling. We show that profound systemic and local inflammatory responses, including inflammation of the perivascular fat, involve both the innate and adaptive immune system.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Serralheiro P, Soares A, Costa Almeida CM, Verde I. TGF-β1 in Vascular Wall Pathology: Unraveling Chronic Venous Insufficiency Pathophysiology. Int J Mol Sci 2017; 18:E2534. [PMID: 29186866 PMCID: PMC5751137 DOI: 10.3390/ijms18122534] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic venous insufficiency and varicose veins occur commonly in affluent countries and are a socioeconomic burden. However, there remains a relative lack of knowledge about venous pathophysiology. Various theories have been suggested, yet the molecular sequence of events is poorly understood. Transforming growth factor-beta one (TGF-β1) is a highly complex polypeptide with multifunctional properties that has an active role during embryonic development, in adult organ physiology and in the pathophysiology of major diseases, including cancer and various autoimmune, fibrotic and cardiovascular diseases. Therefore, an emphasis on understanding its signaling pathways (and possible disruptions) will be an essential requirement for a better comprehension and management of specific diseases. This review aims at shedding more light on venous pathophysiology by describing the TGF-β1 structure, function, activation and signaling, and providing an overview of how this growth factor and disturbances in its signaling pathway may contribute to specific pathological processes concerning the vessel wall which, in turn, may have a role in chronic venous insufficiency.
Collapse
Affiliation(s)
- Pedro Serralheiro
- Norfolk and Norwich University Hospital, Colney Ln, Norwich NR47UY, UK.
- Faculty of Health Sciences, CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - Andreia Soares
- Norfolk and Norwich University Hospital, Colney Ln, Norwich NR47UY, UK.
| | - Carlos M Costa Almeida
- Department of General Surgery (C), Coimbra University Hospital Centre, Portugal; Faculty of Medicine, University of Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal.
| | - Ignacio Verde
- Faculty of Health Sciences, CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| |
Collapse
|
21
|
Ryu JH, Park H, Kim SJ. The effects of indoxyl sulfate-induced endothelial microparticles on neointimal hyperplasia formation in an ex vivo model. Ann Surg Treat Res 2017; 93:11-17. [PMID: 28706886 PMCID: PMC5507786 DOI: 10.4174/astr.2017.93.1.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/17/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022] Open
Abstract
Purpose Neointimal hyperplasia (NH) is considered to be one of the main causes of vascular access occlusion in patients receiving hemodialysis. Endothelial injury and TGF-β-mediated proliferation of vascular smooth muscle cells (VSMCs) induce NH. Endothelial microparticles (EMPs) are also increased by endothelial injury. We aimed to investigate the effects of EMPs and TGF-β expression on VSMC proliferation and their contributions to NH formation in an ex vivo model. Methods EMPs were collected from the culture media of human umbilical vein endothelial cells treated with indoxyl sulfate (IS, 250 µg/mL) after ultracentrifugation at 100,000 × g. Porcine internal jugular veins were isolated and treated with EMPs (2 × 106 /mL) or left untreated for 12 days and subsequently compared with TGF-β (10 ng/mL)-treated venous tissue. Intima-media thickness and NH area were assessed using a digital program. Masson's trichrome staining and immunohistochemistry (IHC) analysis for α-smooth muscle actin, phosphorylated Akt, ERK1/2, p38 mitogen-activated protein kinase (MAPK), and Smad3 were performed on each vein sample. Results NH and VSMC proliferation developed to a significantly greater degree in EMP-treated veins compared to controls, with similar patterns seen in TGF-β-stimulated samples. IHC analysis demonstrated that EMPs markedly increased phosphorylation of Akt, ERK1/2, p38 MAPK, and Smad3 in areas of venous NH formation. Conclusion Our results showed that IS-induced EMPs provoked massive VSMC proliferation and NH formation via activation of the TGF-β signaling pathways. Further investigation is needed to elucidate the precise mechanism of EMP activity on vascular access stenosis in vivo.
Collapse
Affiliation(s)
- Jung-Hwa Ryu
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - HeeJung Park
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Seung-Jung Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
22
|
Boire TC, Balikov DA, Lee Y, Guth CM, Cheung-Flynn J, Sung HJ. Biomaterial-Based Approaches to Address Vein Graft and Hemodialysis Access Failures. Macromol Rapid Commun 2016; 37:1860-1880. [PMID: 27673474 PMCID: PMC5156561 DOI: 10.1002/marc.201600412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/15/2016] [Indexed: 12/19/2022]
Abstract
Veins used as grafts in heart bypass or as access points in hemodialysis exhibit high failure rates, thereby causing significant morbidity and mortality for patients. Interventional or revisional surgeries required to correct these failures have been met with limited success and exorbitant costs, particularly for the US Centers for Medicare & Medicaid Services. Vein stenosis or occlusion leading to failure is primarily the result of neointimal hyperplasia. Systemic therapies have achieved little long-term success, indicating the need for more localized, sustained, biomaterial-based solutions. Numerous studies have demonstrated the ability of external stents to reduce neointimal hyperplasia. However, successful results from animal models have failed to translate to the clinic thus far, and no external stent is currently approved for use in the US to prevent vein graft or hemodialysis access failures. This review discusses current progress in the field, design considerations, and future perspectives for biomaterial-based external stents. More comparative studies iteratively modulating biomaterial and biomaterial-drug approaches are critical in addressing mechanistic knowledge gaps associated with external stent application to the arteriovenous environment. Addressing these gaps will ultimately lead to more viable solutions that prevent vein graft and hemodialysis access failures.
Collapse
Affiliation(s)
- Timothy C Boire
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Yunki Lee
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Christy M Guth
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Joyce Cheung-Flynn
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, 120-752, Republic of Korea
| |
Collapse
|
23
|
Kahle B, Schmidtke C, Hunzelmann N, Bartels C, Sievers HH, Steenbock H, Reinhardt DP, Brinckmann J. The Extracellular Matrix Signature in Vein Graft Disease. Can J Cardiol 2016; 32:1008.e11-7. [DOI: 10.1016/j.cjca.2015.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022] Open
|
24
|
de Vries MR, Simons KH, Jukema JW, Braun J, Quax PHA. Vein graft failure: from pathophysiology to clinical outcomes. Nat Rev Cardiol 2016; 13:451-70. [PMID: 27194091 DOI: 10.1038/nrcardio.2016.76] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Occlusive arterial disease is a leading cause of morbidity and mortality worldwide. Aside from balloon angioplasty, bypass graft surgery is the most commonly performed revascularization technique for occlusive arterial disease. Coronary artery bypass graft surgery is performed in patients with left main coronary artery disease and three-vessel coronary disease, whereas peripheral artery bypass graft surgery is used to treat patients with late-stage peripheral artery occlusive disease. The great saphenous veins are commonly used conduits for surgical revascularization; however, they are associated with a high failure rate. Therefore, preservation of vein graft patency is essential for long-term surgical success. With the exception of 'no-touch' techniques and lipid-lowering and antiplatelet (aspirin) therapy, no intervention has hitherto unequivocally proven to be clinically effective in preventing vein graft failure. In this Review, we describe both preclinical and clinical studies evaluating the pathophysiology underlying vein graft failure, and the latest therapeutic options to improve patency for both coronary and peripheral grafts.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Karin H Simons
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - J Wouter Jukema
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
25
|
Hashimoto T, Tsuneki M, Foster TR, Santana JM, Bai H, Wang M, Hu H, Hanisch JJ, Dardik A. Membrane-mediated regulation of vascular identity. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:65-84. [PMID: 26992081 PMCID: PMC5310768 DOI: 10.1002/bdrc.21123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane-associated molecules, particularly the Eph-ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane-associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell-to-cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph- and ephrin-related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane-associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane-bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph- and ephrin-related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies.
Collapse
Affiliation(s)
- Takuya Hashimoto
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsuneki
- Division of Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Trenton R. Foster
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jeans M. Santana
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Hualong Bai
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Vascular Surgery, The 1st Affiliated Hospital of Zhengzhou University, Henan, China
| | - Mo Wang
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Haidi Hu
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jesse J. Hanisch
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Alan Dardik
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
| |
Collapse
|
26
|
Yang P, Hong MS, Fu C, Schmit BM, Su Y, Berceli SA, Jiang Z. Preexisting smooth muscle cells contribute to neointimal cell repopulation at an incidence varying widely among individual lesions. Surgery 2015; 159:602-12. [PMID: 26387788 DOI: 10.1016/j.surg.2015.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/01/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND With the diverse origin of neointimal cells, previous studies have documented differences of neointimal cell lineage composition across models, but the animal-to-animal difference has not attracted much attention, although the cellular heterogeneity may impact neointimal growth and its response to therapeutic interventions. METHODS R26R(+);Myh11-CreER(+), and R26R(+);Scl-CreER(+) mice were used to attach LacZ tags to the preexisting smooth muscle cells (SMCs) and endothelial cells (ECs), respectively. Neointimal lesions were created via complete ligation of the common carotid artery (CCA) and transluminal injury to the femoral artery (FA). RESULTS LacZ-tagged SMCs were physically relocated from media to neointima and changed to a dedifferentiated phenotype in both CCA and FA lesions. The content of SMCs in the neointimal tissue, however, varied widely among specimens, ranging from 5 to 70% and 0 to 85%, with an average at low levels of 27% and 29% in CCA (n = 15) and FA (n = 15) lesions, respectively. Bone marrow cells, although able to home to the injured arteries, did not differentiate fully into SMCs after either type of injury. Preexisting ECs were located in the subendothelial region and produced mesenchymal marker α-actin, indicating endothelial-mesenchymal transition (EndoMT); however, EC-derived cells represented only 7% and 3% of the total neointimal cell pool of CCA (n = 7) and FA (n = 7) lesions, respectively. ECs located on the luminal surface exhibited little evidence of EndoMT. CONCLUSION Neointimal hyperplasia proceeds with a wide range of variation in its cellular composition between individual lesions. Relative to ECs, SMCs are major contributors to the lesion-to-lesion heterogeneity in neointimal cell lineage composition.
Collapse
Affiliation(s)
- Pu Yang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael S Hong
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Chunhua Fu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Bradley M Schmit
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States; The Malcom Randall VAMC, Gainesville, FL, United States
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
27
|
Cooley BC, Nevado J, Mellad J, Yang D, St Hilaire C, Negro A, Fang F, Chen G, San H, Walts AD, Schwartzbeck RL, Taylor B, Lanzer JD, Wragg A, Elagha A, Beltran LE, Berry C, Feil R, Virmani R, Ladich E, Kovacic JC, Boehm M. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med 2014; 6:227ra34. [PMID: 24622514 DOI: 10.1126/scitranslmed.3006927] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Veins grafted into an arterial environment undergo a complex vascular remodeling process. Pathologic vascular remodeling often results in stenosed or occluded conduit grafts. Understanding this complex process is important for improving the outcome of patients with coronary and peripheral artery disease undergoing surgical revascularization. Using in vivo murine cell lineage-tracing models, we show that endothelial-derived cells contribute to neointimal formation through endothelial-to-mesenchymal transition (EndMT), which is dependent on early activation of the Smad2/3-Slug signaling pathway. Antagonism of transforming growth factor-β (TGF-β) signaling by TGF-β neutralizing antibody, short hairpin RNA-mediated Smad3 or Smad2 knockdown, Smad3 haploinsufficiency, or endothelial cell-specific Smad2 deletion resulted in decreased EndMT and less neointimal formation compared to controls. Histological examination of postmortem human vein graft tissue corroborated the changes observed in our mouse vein graft model, suggesting that EndMT is operative during human vein graft remodeling. These data establish that EndMT is an important mechanism underlying neointimal formation in interpositional vein grafts, and identifies the TGF-β-Smad2/3-Slug signaling pathway as a potential therapeutic target to prevent clinical vein graft stenosis.
Collapse
Affiliation(s)
- Brian C Cooley
- Department of Orthopaedic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Jose Nevado
- National Institutes of Health-University of the Philippines College of Medicine, Ermita, Manila.,Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jason Mellad
- William Harvey Research Institute, Barts and the London NHS Trust, London, EC1M 6BQ, UK
| | - Dan Yang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Cynthia St Hilaire
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Alejandra Negro
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Fang Fang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Guibin Chen
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Hong San
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Avram D Walts
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Robin L Schwartzbeck
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Brandi Taylor
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jan D Lanzer
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Andrew Wragg
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,William Harvey Research Institute, Barts and the London NHS Trust, London, EC1M 6BQ, UK
| | - Abdalla Elagha
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,Cardiovascular Department, Faculty of Medicine, Cairo University, Cairo 11559, Egypt
| | - Leilani E Beltran
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Colin Berry
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, UK
| | - Robert Feil
- Interfaculty Institute of Biochemistry, Universität Tübingen, 72074 Tübingen, Germany
| | - Renu Virmani
- CVPath Institute, Inc., Gaithersburg, Maryland, 20878, USA
| | - Elena Ladich
- CVPath Institute, Inc., Gaithersburg, Maryland, 20878, USA
| | - Jason C Kovacic
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Manfred Boehm
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
28
|
Su LC, Xu H, Tran RT, Tsai YT, Tang L, Banerjee S, Yang J, Nguyen KT. In situ re-endothelialization via multifunctional nanoscaffolds. ACS NANO 2014; 8:10826-36. [PMID: 25222570 PMCID: PMC4212783 DOI: 10.1021/nn504636n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/11/2014] [Indexed: 05/25/2023]
Abstract
The endothelium monolayer lining in the luminal side of blood vessels provides critical antithrombotic functions. Damage to these cells will expose a highly thrombogenic subendothelium, which leads to pathological vascular changes. Using combined tissue engineering and ligand-receptor targeting strategy, we developed a biodegradable urethane-doped polyester (UPE) multifunctional targeting nanoparticle (MTN) scaffold system with dual ligands: (1) glycoprotein 1b (GP1b) to target the injured arterial endothelium and subendothelium and (2) anti-CD34 antibodies to capture endothelial progenitor cells for endothelium regeneration. The fabricated spherical MTNs of 400 nm were found to be cytocompatible and hemocompatible. Both the in vitro and ex vivo targeting of these nanoscaffolds not only showed binding specificity of MTNs onto the von Willebrand factor -coated surfaces that simulate the injured arterial walls but also competed with platelets for binding onto these injured sites. Further in vivo study has revealed that a single delivery of MTNs upon vascular injury reduced neointimal hyperplasia by 57% while increased endothelium regeneration by ∼ 60% in 21 days. These results support the promise of using MTN nanoscaffolds for treating vascular injury in situ.
Collapse
Affiliation(s)
- Lee-Chun Su
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Hao Xu
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Richard T. Tran
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yi-Ting Tsai
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Subhash Banerjee
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76010, United States
| |
Collapse
|
29
|
Owens CD. Commentary: is the drug-eluting balloon the answer to the epidemic of restenosis? J Endovasc Ther 2014; 21:22-4. [PMID: 24502480 DOI: 10.1583/13-4473c.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Christopher D Owens
- Department of Surgery and Endovascular Surgery, University of California San Francisco, California, USA
| |
Collapse
|
30
|
Lu DY, Chen EY, Wong DJ, Yamamoto K, Protack CD, Williams WT, Assi R, Hall MR, Sadaghianloo N, Dardik A. Vein graft adaptation and fistula maturation in the arterial environment. J Surg Res 2014; 188:162-73. [PMID: 24582063 DOI: 10.1016/j.jss.2014.01.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/25/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022]
Abstract
Veins are exposed to the arterial environment during two common surgical procedures, creation of vein grafts and arteriovenous fistulae (AVF). In both cases, veins adapt to the arterial environment that is characterized by different hemodynamic conditions and increased oxygen tension compared with the venous environment. Successful venous adaptation to the arterial environment is critical for long-term success of the vein graft or AVF and, in both cases, is generally characterized by venous dilation and wall thickening. However, AVF are exposed to a high flow, high shear stress, low-pressure arterial environment and adapt mainly via outward dilation with less intimal thickening. Vein grafts are exposed to a moderate flow, moderate shear stress, high-pressure arterial environment and adapt mainly via increased wall thickening with less outward dilation. We review the data that describe these differences, as well as the underlying molecular mechanisms that mediate these processes. Despite extensive research, there are few differences in the molecular pathways that regulate cell proliferation and migration or matrix synthesis, secretion, or degradation currently identified between vein graft adaptation and AVF maturation that account for the different types of venous adaptation to arterial environments.
Collapse
Affiliation(s)
- Daniel Y Lu
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Y Chen
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel J Wong
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Kota Yamamoto
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut
| | - Clinton D Protack
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Willis T Williams
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Roland Assi
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Michael R Hall
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Nirvana Sadaghianloo
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; Department of Vascular Surgery, University Hospital of Nice, Nice, France
| | - Alan Dardik
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut.
| |
Collapse
|
31
|
Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis. J Vasc Surg 2014; 59:210-9. [DOI: 10.1016/j.jvs.2013.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/15/2013] [Accepted: 03/04/2013] [Indexed: 11/17/2022]
|
32
|
Owens CD, Gasper WJ, Rahman AS, Conte MS. Vein graft failure. J Vasc Surg 2013; 61:203-16. [PMID: 24095042 DOI: 10.1016/j.jvs.2013.08.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 02/06/2023]
Abstract
After the creation of an autogenous lower extremity bypass graft, the vein must undergo a series of dynamic structural changes to stabilize the arterial hemodynamic forces. These changes, which are commonly referred to as remodeling, include an inflammatory response, the development of a neointima, matrix turnover, and cellular proliferation and apoptosis. The sum total of these processes results in dramatic alterations in the physical and biomechanical attributes of the arterialized vein. The most clinically obvious and easily measured of these is lumen remodeling of the graft. However, although somewhat less precise, wall thickness, matrix composition, and endothelial changes can be measured in vivo within the healing vein graft. Recent translational work has demonstrated the clinical relevance of remodeling as it relates to vein graft patency and the systemic factors influencing it. By correlating histologic and molecular changes in the vein, insights into potential therapeutic strategies to prevent bypass failure and areas for future investigation are explored.
Collapse
Affiliation(s)
- Christopher D Owens
- Division of Vascular and Endovascular Surgery, University of California San Francisco Medical Center, San Francisco, Calif.
| | - Warren J Gasper
- Division of Vascular and Endovascular Surgery, University of California San Francisco Medical Center, San Francisco, Calif
| | - Amreen S Rahman
- Division of Vascular and Endovascular Surgery, University of California San Francisco Medical Center, San Francisco, Calif
| | - Michael S Conte
- Division of Vascular and Endovascular Surgery, University of California San Francisco Medical Center, San Francisco, Calif
| |
Collapse
|
33
|
Mild anastomotic stenosis in patient-specific CABG model may enhance graft patency: a new hypothesis. PLoS One 2013; 8:e73769. [PMID: 24058488 PMCID: PMC3772875 DOI: 10.1371/journal.pone.0073769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/02/2013] [Indexed: 12/05/2022] Open
Abstract
It is well known that flow patterns at the anastomosis of coronary artery bypass graft (CABG) are complex and may affect the long-term patency. Various attempts at optimal designs of anastomosis have not improved long-term patency. Here, we hypothesize that mild anastomotic stenosis (area stenosis of about 40–60%) may be adaptive to enhance the hemodynamic conditions, which may contribute to slower progression of atherosclerosis. We further hypothesize that proximal/distal sites to the stenosis have converse changes that may be a risk factor for the diffuse expansion of atherosclerosis from the site of stenosis. Twelve (12) patient-specific models with various stenotic degrees were extracted from computed tomography images using a validated segmentation software package. A 3-D finite element model was used to compute flow patterns including wall shear stress (WSS) and its spatial and temporal gradients (WSS gradient, WSSG, and oscillatory shear index, OSI). The flow simulations showed that mild anastomotic stenosis significantly increased WSS (>15 dynes⋅cm−2) and decreased OSI (<0.02) to result in a more uniform distribution of hemodynamic parameters inside anastomosis albeit proximal/distal sites to the stenosis have a decrease of WSS (<4 dynes⋅cm−2). These findings have significant implications for graft adaptation and long-term patency.
Collapse
|
34
|
Stack A, Derksen FJ, Sordillo LM, Williams KJ, Stick JA, Brandenberger C, Steibel JP, Robinson NE. Effects of exercise on markers of venous remodeling in lungs of horses. Am J Vet Res 2013; 74:1231-8. [DOI: 10.2460/ajvr.74.9.1231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Hwang M, Garbey M, Berceli SA, Wu R, Jiang Z, Tran-Son-Tay R. Rule-based model of vein graft remodeling. PLoS One 2013; 8:e57822. [PMID: 23533576 PMCID: PMC3606352 DOI: 10.1371/journal.pone.0057822] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/26/2013] [Indexed: 11/18/2022] Open
Abstract
When vein segments are implanted into the arterial system for use in arterial bypass grafting, adaptation to the higher pressure and flow of the arterial system is accomplished thorough wall thickening and expansion. These early remodeling events have been found to be closely coupled to the local hemodynamic forces, such as shear stress and wall tension, and are believed to be the foundation for later vein graft failure. To further our mechanistic understanding of the cellular and extracellular interactions that lead to global changes in tissue architecture, a rule-based modeling method is developed through the application of basic rules of behaviors for these molecular and cellular activities. In the current method, smooth muscle cell (SMC), extracellular matrix (ECM), and monocytes are selected as the three components that occupy the elements of a grid system that comprise the developing vein graft intima. The probabilities of the cellular behaviors are developed based on data extracted from in vivo experiments. At each time step, the various probabilities are computed and applied to the SMC and ECM elements to determine their next physical state and behavior. One- and two-dimensional models are developed to test and validate the computational approach. The importance of monocyte infiltration, and the associated effect in augmenting extracellular matrix deposition, was evaluated and found to be an important component in model development. Final model validation is performed using an independent set of experiments, where model predictions of intimal growth are evaluated against experimental data obtained from the complex geometry and shear stress patterns offered by a mid-graft focal stenosis, where simulation results show good agreements with the experimental data.
Collapse
Affiliation(s)
- Minki Hwang
- Departments of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Marc Garbey
- Department of Computer Science, University of Houston, Houston, Texas, United States of America
| | - Scott A. Berceli
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, United States of America
| | - Rongling Wu
- Center for Statistical Genetics, Division of Biostatistics, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Zhihua Jiang
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, United States of America
| | - Roger Tran-Son-Tay
- Departments of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
Gene therapy for cardiovascular disease: perspectives and potential. Vascul Pharmacol 2012; 58:174-81. [PMID: 23142171 DOI: 10.1016/j.vph.2012.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is the most frequent cause of mortality in the western world, accounting for over 800,000 premature deaths per year in the EU alone. Cardiovascular disease is the second most common application for gene therapy clinical trials, which most frequently employ adenovirus serotype 5 (Ad5)-based vectors as delivery vehicles. Although interactions of Ad5 vectors with circulating proteins and cells can limit their efficacy after systemic administration, local gene delivery strategies show great potential in the cardiovascular setting, notably in the context of vascular delivery. Here we review the pathogenesis of bypass graft failure and in-stent restenosis, identifying potential therapeutic targets and discussing recent advances in the field of adenovirus biology and retargeting that, in concert, will potentially translate in coming years to more effective gene therapies for cardiovascular applications.
Collapse
|
37
|
Fu C, Yu P, Tao M, Gupta T, Moldawer LL, Berceli SA, Jiang Z. Monocyte chemoattractant protein-1/CCR2 axis promotes vein graft neointimal hyperplasia through its signaling in graft-extrinsic cell populations. Arterioscler Thromb Vasc Biol 2012; 32:2418-26. [PMID: 22904274 DOI: 10.1161/atvbaha.112.255786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To evaluate direct versus indirect monocyte chemoattractant protein (MCP)-1/CCR2 signaling and to identify the cellular producers and effectors for MCP-1 during neointimal hyperplasia (NIH) development in vein grafts. METHODS AND RESULTS Genomic analysis revealed an overrepresentation of 13 inflammatory pathways in wild-type vein grafts compared with CCR2 knockout vein grafts. Further investigation with various vein graft-host combinations of MCP-1- and CCR2-deficient mice was used to modify the genotype of cells both inside (graft-intrinsic group) and outside (graft-extrinsic group) the vein wall. CCR2 deficiency inhibited NIH only when present in cells extrinsic to the graft wall, and MCP-1 deficiency required its effectiveness in cells both intrinsic and extrinsic to the graft wall to suppress NIH. Deletion of either MCP-1 or CCR2 was equally effective in inhibiting NIH. CCR2 deficiency in the predominant neointimal cell population had no impact on NIH. Direct MCP-1 stimulation of primary neointimal smooth muscle cells had minimal influence on cell proliferation and matrix turnover, confirming an indirect mechanism of action. CONCLUSIONS MCP-1/CCR2 axis accelerates NIH via its signaling in graft-extrinsic cells, particularly circulating inflammatory cells, with cells both intrinsic and extrinsic to the graft wall being critical MCP-1 producers. These findings underscore the importance of systemic treatment for anti-MCP-1/CCR2 therapies.
Collapse
Affiliation(s)
- Chunhua Fu
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Inhibition of transforming growth factor-β restores endothelial thromboresistance in vein grafts. J Vasc Surg 2011; 54:1117-1123.e1. [PMID: 21803524 DOI: 10.1016/j.jvs.2011.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 04/08/2011] [Accepted: 04/14/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thrombosis is a major cause of the early failure of vein grafts (VGs) implanted during peripheral and coronary arterial bypass surgeries. Endothelial expression of thrombomodulin (TM), a key constituent of the protein C anticoagulant pathway, is markedly suppressed in VGs after implantation and contributes to local thrombus formation. While stretch-induced paracrine release of transforming growth factor-β (TGF-β) is known to negatively regulate TM expression in heart tissue, its role in regulating TM expression in VGs remains unknown. METHODS Changes in relative mRNA expression of major TGF-β isoforms were measured by quantitative polymerase chain reaction (qPCR) in cultured human saphenous vein smooth muscle cells (HSVSMCs) subjected to cyclic stretch. To determine the effects of paracrine release of TGF-β on endothelial TM mRNA expression, human saphenous vein endothelial cells (HSVECs) were co-cultured with stretched HSVSMCs in the presence of 1D11, a pan-neutralizing TGF-β antibody, or 13C4, an isotype-control antibody. Groups of rabbits were then administered 1D11 or 13C4 and underwent interpositional grafting of jugular vein segments into the carotid circulation. The effect of TGF-β inhibition on TM gene expression was measured by qPCR; protein C activating capacity and local thrombus formation were measured by in situ chromogenic substrate assays; and VG remodeling was assessed by digital morphometry. RESULTS Cyclic stretch induced TGF-β(1) expression in HSVSMCs by 1.9 ± 0.2-fold (P < .001) without significant change in the expressions of TGF-β(2) and TGF-β(3). Paracrine release of TGF-β(1) by stretched HSVSMCs inhibited TM expression in stationary HSVECs placed in co-culture by 57 ± 12% (P = .03), an effect that was abolished in the presence of 1D11. Similarly, TGF-β(1) was the predominant isoform induced in rabbit VGs 7 days after implantation (3.5 ± 0.4-fold induction; P < .001). TGF-β(1) protein expression localized predominantly to the developing neointima and coincided with marked suppression of endothelial TM expression (16% ± 2% of vein controls; P < .03), a reduction in situ activated protein C (APC)-generating capacity (53% ± 9% of vein controls; P = .001) and increased local thrombus formation (3.7 ± 0.8-fold increase over vein controls; P < .01). External stenting of VGs to limit vessel distension significantly reduced TGF-β(1) induction and TM downregulation. Systemic administration of 1D11 also effectively prevented TM downregulation, preserved APC-generating capacity, and reduced local thrombus in rabbit VGs without observable effect on neointima formation and other morphometric parameters 6 weeks after implantation. CONCLUSION TM downregulation in VGs is mediated by paracrine release of TGF-β(1) caused by pressure-induced vessel stretch. Systemic administration of an anti-TGF-β antibody effectively prevented TM downregulation and preserved local thromboresistance without negative effect on VG remodeling.
Collapse
|
39
|
Dummler S, Eichhorn S, Tesche C, Schreiber U, Voss B, Deutsch MA, Hauner H, Lahm H, Lange R, Krane M. Pulsatile ex vivo perfusion of human saphenous vein grafts under controlled pressure conditions increases MMP-2 expression. Biomed Eng Online 2011; 10:62. [PMID: 21777461 PMCID: PMC3148203 DOI: 10.1186/1475-925x-10-62] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/21/2011] [Indexed: 11/16/2022] Open
Abstract
Background The use of human saphenous vein grafts (HSVGs) as a bypass conduit is a standard procedure in the treatment of coronary artery disease while their early occlusion remains a major problem. Methods We have developed an ex vivo perfusion system, which uses standardized and strictly controlled hemodynamic parameters for the pulsatile and non-static perfusion of HSVGs to guarantee a reliable analysis of molecular parameters under different pressure conditions. Cell viability of HSVGs (n = 12) was determined by the metabolic conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) into a purple formazan dye. Results Under physiological flow rates (10 mmHg) HSVGs remained viable for two weeks. Their exposure to arterial conditions (100 mmHg) was possible for one week without important reduction in viability. Baseline expression of matrix metalloproteinase-2 (MMP-2) after venous perfusion (2.2 ± 0.5, n = 5) was strongly up-regulated after exposure to arterial conditions for three days (19.8 ± 4.3) or five days (23.9 ± 6.1, p < 0.05). Zymographic analyses confirmed this increase on the protein level. Our results suggest that expression and activity of MMP-2 are strongly increased after exposure of HSVGs to arterial hemodynamic conditions compared to physiological conditions. Conclusion Therefore, our system might be helpful to more precisely understand the molecular mechanisms leading to an early failure of HSVGs.
Collapse
Affiliation(s)
- Sara Dummler
- German Heart Center Munich at the Technische Universität München, Department of Cardiovascular Surgery, Lazarettstrasse 36, D-80636 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges. Cardiovasc Eng Technol 2011. [PMID: 23181145 DOI: 10.1007/s13239-011-0049-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.
Collapse
|
41
|
Hwang M, Berceli SA, Garbey M, Kim NH, Tran-Son-Tay R. The dynamics of vein graft remodeling induced by hemodynamic forces: a mathematical model. Biomech Model Mechanobiol 2011; 11:411-23. [PMID: 21691849 PMCID: PMC6459398 DOI: 10.1007/s10237-011-0321-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 06/03/2011] [Indexed: 11/25/2022]
Abstract
Although vein bypass grafting is one of the primary options for the treatment of arterial occlusive disease and provides satisfactory results at an early stage of the treatment, the patency is limited to a few months in many patients. When the vein is implanted in the arterial system, it adapts to the high flow rate and high pressure of the arterial environment by changing the sizes of its layers, and this remodeling is believed to be a precursor of future graft failure. Hemodynamic forces, such as wall shear stress (WSS) and wall tension, have been recognized as major factors impacting vein graft remodeling. Although a wide range of experimental evidence relating hemodynamic forces to vein graft remodeling has been reported, a comprehensive mathematical model describing the relationship among WSS, wall tension, and the structural adaptation of each individual layer of the vein graft wall is lacking. The current manuscript presents a comprehensive and robust framework for treating the complex interaction between the WSS, wall tension, and the structural adaptation of each individual layer of the vein graft wall. We modeled the intimal and medial area and the radius of external elastic lamina, which in combination dictate luminal narrowing and the propensity for graft occlusion. Central to our model is a logistic relationship between independent and dependent variables to describe the initial increase and later decrease in the growth rate. The detailed understanding of the temporal changes in vein graft morphology that can be extracted from the current model is critical in identifying the dominant contributions to vein graft failure and the further development of strategies to improve their longevity.
Collapse
Affiliation(s)
- Minki Hwang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
42
|
Alapati D, Rong M, Chen S, Hehre D, Rodriguez MM, Lipson KE, Wu S. Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats. Am J Respir Cell Mol Biol 2011; 45:1169-77. [PMID: 21659659 DOI: 10.1165/rcmb.2011-0023oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in neonatal intensive care and surfactant therapy, bronchopulmonary dysplasia (BPD) continues to be one of the most common long-term pulmonary complications associated with preterm birth. Clinical efforts to prevent and treat BPD have been largely unsuccessful due to its multifactorial nature and poorly understood disease process. Connective tissue growth factor (CTGF) is a matricellular protein that plays an important role in tissue development and remodeling. Previous studies have demonstrated that hyperoxia exposure up-regulates CTGF expression in neonatal rat lungs. Whether CTGF overexpression plays a role in the pathogenesis of BPD, and whether CTGF antagonism has a therapeutic potential for BPD, are unknown. In the present study, we examined CTGF expression in lung autopsy specimens from patients with BPD and control subjects with no BPD. We assessed the effect of a CTGF-neutralizing monoclonal antibody (CTGF Ab) on preventing hyperoxia-induced lung injury in neonatal rats. Our study demonstrates that CTGF expression is increased in BPD lungs. In newborn rats, exposure to 90% oxygen for 14 days resulted in activation of β-catenin signaling, decreased alveolarization and vascular development, and physiological and histological evidence of pulmonary hypertension (PH). However, treatment with CTGF Ab prevented β-catenin signaling activation, improved alveolarization and vascular development, and attenuated PH during hyperoxia. These data indicate that CTGF-β-catenin signaling plays a critical role in the pathogenesis of experimental BPD. CTGF antagonism may offer a novel therapeutic strategy to alleviate BPD and PH in neonates.
Collapse
Affiliation(s)
- Deepthi Alapati
- Department of Pediatrics, Division of Neonatology, Batchelor Children’s Research Institute, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Chen S, Rong M, Platteau A, Hehre D, Smith H, Ruiz P, Whitsett J, Bancalari E, Wu S. CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2011; 300:L330-40. [PMID: 21239535 DOI: 10.1152/ajplung.00270.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pathological hallmarks of bronchopulmonary dysplasia (BPD), one of the most common long-term pulmonary complications associated with preterm birth, include arrested alveolarization, abnormal vascular growth, and variable interstitial fibrosis. Severe BPD is often complicated by pulmonary hypertension characterized by excessive pulmonary vascular remodeling and right ventricular hypertrophy that significantly contributes to the mortality and morbidity of these infants. Connective tissue growth factor (CTGF) is a multifunctional protein that coordinates complex biological processes during tissue development and remodeling. We have previously shown that conditional overexpression of CTGF in airway epithelium under the control of the Clara cell secretory protein promoter results in BPD-like architecture in neonatal mice. In this study, we have generated a doxycycline-inducible double transgenic mouse model with overexpression of CTGF in alveolar type II epithelial (AT II) cells under the control of the surfactant protein C promoter. Overexpression of CTGF in neonatal mice caused dramatic macrophage and neutrophil infiltration in alveolar air spaces and perivascular regions. Overexpression of CTGF also significantly decreased alveolarization and vascular development. Furthermore, overexpression of CTGF induced pulmonary vascular remodeling and pulmonary hypertension. Most importantly, we have also demonstrated that these pathological changes are associated with activation of integrin-linked kinase (ILK)/glucose synthesis kinase-3β (GSK-3β)/β-catenin signaling. These data indicate that overexpression of CTGF in AT II cells results in lung pathology similar to those observed in infants with severe BPD and that ILK/GSK-3β/β-catenin signaling may play an important role in the pathogenesis of severe BPD.
Collapse
Affiliation(s)
- Shaoyi Chen
- Department of Pediatrics, Division of Neonatology, Univ. of Miami Miller School of Medicine, FL 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nguyen BT, Vemula PK, Mitsouras D, Yu P, Tao M, Campagna C, Mulkern RV, Rybicki FJ, Karp JM, Ozaki CK. Immobilization of iron oxide magnetic nanoparticles for enhancement of vessel wall magnetic resonance imaging--an ex vivo feasibility study. Bioconjug Chem 2011; 21:1408-12. [PMID: 20608720 PMCID: PMC2923466 DOI: 10.1021/bc100138c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Emerging data supports a role for negative wall remodeling in the failure of vascular interventions such as vein grafts, yet clinicians/researchers currently lack the ability to temporally/efficiently investigate adventitial surface topography/total vascular wall anatomy in vivo. We established a strategy of immobilizing commercially available iron oxide magnetic nanoparticles (Fe-NPs) onto the surface of human vein conduits to facilitate high-throughput total vascular wall demarcation with magnetic resonance (MR). Binding of activated Fe-NPs to amine groups on the surface of the veins induced a thin layer of negative contrast that differentiated the adventitia from surrounding saline signal in all MR images, enabling delineation of total wall anatomy; this was not possible in simultaneously imaged unlabeled control veins. Under the conditions of this ex vivo experiment, stable covalent binding of Fe-NPs can be achieved (dose-dependent) on human vein surface for MR detection, suggesting a potential strategy for enhancing the ability of MRI to investigate total wall adaptation and remodeling in vein graft failure. Emerging data supports a role for negative wall remodeling in the failure of vascular interventions such as vein grafts, yet clinicians/researchers currently lack the ability to temporally/efficiently investigate adventitial surface topography/total vascular wall anatomy in vivo. We established a strategy of immobilizing commercially available iron oxide magnetic nanoparticles (Fe-NPs) onto the surface of human vein conduits to facilitate high-throughput total vascular wall demarcation with magnetic resonance (MR).
Collapse
Affiliation(s)
- Binh Thai Nguyen
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard-MIT Division of Heath Sciences &Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yuan SM, Wang YQ, Shen Y, Jing H. Transforming growth factor-β in graft vessels: histology and immunohistochemistry. Clinics (Sao Paulo) 2011; 66:895-901. [PMID: 21789397 PMCID: PMC3109392 DOI: 10.1590/s1807-59322011000500029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/14/2011] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES The biological functions of transforming growth factor-β signaling that involves Smad proteins have not been previously investigated with respect to coronary artery bypass grafts. The aim of the present study was to observe the immunostaining of proteins that are related to this signaling pathway. METHODS Fifteen remnants of coronary artery bypass grafts, including nine saphenous veins, three radial arteries and three mammary arteries, were collected from 12 patients who were undergoing coronary artery bypass. Hematoxylin and eosin, Masson's trichrome, and immunohistochemical staining of transforming growth factor-β1, type I receptor of transforming growth factor-β, Smad2/3, Smad4, and Smad7 were performed. RESULTS The saphenous veins showed more severe intimal degeneration, more severe smooth muscle cell proliferation and more collagen deposition than the arterial grafts, as evidenced by hematoxylin and eosin and Masson's trichrome stainings. Immunohistochemical assays demonstrated that the majority of the transforming growth factor-β1 signaling cytokines were primarily localized in the cytoplasm in the medial layers of all three types of grafts, whereas ectopic transforming growth factor-β1, type I receptor of transforming growth factor-β, and Smad7 overexpressions in the interstices were observed particularly in the saphenous vein and radial arterial grafts. CONCLUSION Enhanced transforming growth factor-β1 signal transduction with medial smooth muscle cell proliferation and ectopic transforming growth factor-β1, the presence of the type I receptor of transforming growth factor-β, and Smad7 overexpressions in the extracellular matrix may provide primary evidence for early or late graft failure.
Collapse
Affiliation(s)
- Shi-Min Yuan
- Department of Cardiothoracic Surgery, Jinling Hospital, School of Clinical Medicine, Nanjing University, No. 305 Zhongshan East Road, Nanjing 210002, Jiangsu Province, People's Republic of China
| | | | | | | |
Collapse
|
46
|
A novel cell permeant peptide inhibitor of MAPKAP kinase II inhibits intimal hyperplasia in a human saphenous vein organ culture model. J Vasc Surg 2010; 52:1596-607. [PMID: 20864298 DOI: 10.1016/j.jvs.2010.06.168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/14/2010] [Accepted: 06/17/2010] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The present study was aimed at developing a new cell-permeant peptide inhibitor (MK2i) of the kinase that phosphorylates and activates heat-shock protein (HSP)27 (MAPKAP kinase II), and evaluating the ability of this peptide to inhibit HSP27 phosphorylation and intimal thickening. METHODS The ability of MK2i to reduce HSP27 phosphorylation and cell migration was evaluated in A7R5 cells stimulated with arsenite or lysophosphatidic acid. Stable isotopic labeling using amino acids in cell culture, in combination with liquid chromatography mass spectrometry, was used to characterize the effect of MK2i on global protein expression in fibroblasts. The effect of MK2i on intimal thickening and connective tissue growth factor expression was evaluated in human saphenous vein (HSV) rings maintained with 30% fetal bovine serum for 14 days by light microscopy and immunoblotting. RESULTS Pretreatment of cells with MK2i (10 μM) prior to arsenite or lysophosphatidic acid stimulation decreased phosphorylation of HSP27 (36% ± 9% and 33% ± 10%, respectively) compared with control (not pretreated) cells. MK2i also inhibited A7R5 migration, and downregulated the transforming growth factor-induced expression of collagen and fibronectin in keloid cells, two major matrix proteins involved in the development of intimal hyperplasia. Treatment of HSV segments with MK2i enhanced relaxation, reduced HSP27 phosphorylation (40% ± 17%), connective tissue growth factor expression (17% ± 5%), and intimal thickness (48.2% ± 10.5%) compared with untreated segments. On the other hand, treatment with a recombinant fusion protein containing a cell-permeant peptide attached to the HSP27 sequence increased intimal thickness of HSV segments by 48% ± 14%. CONCLUSION Our results suggest that HSP27 may play a role in the development of processes leading to intimal hyperplasia in HSV, and reduction of HSP27 phosphorylation by MK2i may be a potential strategy to inhibit the development of intimal hyperplasia in HSV to prevent the autologous vascular graft failure.
Collapse
|
47
|
Wu J, Zhang C. Neointimal hyperplasia, vein graft remodeling, and long-term patency. Am J Physiol Heart Circ Physiol 2009; 297:H1194-5. [PMID: 19666837 DOI: 10.1152/ajpheart.00703.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|