1
|
The impact of repeated, local heating-induced increases in blood flow on lower limb endothelial function in young, healthy females. Eur J Appl Physiol 2021; 121:3017-3030. [PMID: 34251539 DOI: 10.1007/s00421-021-04749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The purpose of the present study was to examine the effect of repeated, single leg heating on lower limb endothelial function. METHODS Macrovascular function was assessed with superficial femoral artery (SFA) reactive hyperemia flow-mediated dilation (RH-FMD) and sustained stimulus FMD (SS-FMD). Calf microvascular function was assessed as the peak and area under the curve of SFA reactive hyperemia (RH). Participants (n = 13 females, 23 ± 2 yrs) had one leg randomized to the single leg heating intervention (EXP; other leg: control (CON)). The EXP leg underwent 8 weeks of single leg heating via immersion in 42.5 ℃ water for five 35-min sessions/week. At weeks 0, 2, 4, 6, and 8, SFA RH-FMD, SS-FMD (shear stress increased via plantar flexion exercise), and SFA RH flow were measured. RESULTS None of the variables changed with repeated, single leg heating (interaction week*limb RH-FMD: p = 0.076; SS-FMD: p = 0.958; RH flow p = 0.955). Covariation for the shear stress stimulus did not alter the FMD results. CONCLUSION Eight weeks of single leg heating did not change SFA endothelial or calf microvascular function. These results are in contrast with previous findings that limb heating improves upper limb endothelial function.
Collapse
|
2
|
Kim SK, Avila JJ, Massett MP. Interaction of genetic background and exercise training intensity on endothelial function in mouse aorta. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:53-68. [PMID: 31908575 PMCID: PMC6940500 DOI: 10.4196/kjpp.2020.24.1.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023]
Abstract
The purpose of this study was to characterize the genetic contribution to endothelial adaptation to exercise training. Vasoreactivity was assessed in aortas from four inbred mouse strains (129S1, B6, NON, and SJL) after 4 weeks of moderate intensity continuous exercise training (MOD), high intensity interval training (HIT) or in sedentary controls (SED). Intrinsic variations in endothelium-dependent vasorelaxation (EDR) to acetylcholine (ACh) as well as vasocontractile responses were observed across SED groups. For responses to exercise training, there was a significant interaction between mouse strain and training intensity on EDR. Exercise training had no effect on EDR in aortas from 129S1 and B6 mice. In NON, EDR was improved in aortas from MOD and HIT compared with respective SED, accompanied by diminished responses to PE in those groups. Interestingly, EDR was impaired in aorta from SJL HIT compared with SED. The transcriptional activation of endothelial genes was also influenced by the interaction between mouse strain and training intensity. The number of genes altered by HIT was greater than MOD, and there was little overlap between genes altered by HIT and MOD. HIT was associated with gene pathways for inflammatory responses. NON MOD genes showed enrichment for vessel growth pathways. These findings indicate that exercise training has non-uniform effects on endothelial function and transcriptional activation of endothelial genes depending on the interaction between genetic background and training intensity.
Collapse
Affiliation(s)
- Seung Kyum Kim
- Department of Sports Science, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Joshua J Avila
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Michael P Massett
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
PAULA SULIANAM, FERNANDES TIAGO, COUTO GISELEK, JORDÃO MARIAT, OLIVEIRA EDILAMARM, MICHELINI LISETEC, ROSSONI LUCIANAVENTURINI. Molecular Pathways Involved in Aerobic Exercise Training Enhance Vascular Relaxation. Med Sci Sports Exerc 2020; 52:2117-2126. [DOI: 10.1249/mss.0000000000002355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Montero D, Padilla J, Diaz-Cañestro C, Muris DMJ, Pyke KE, Obert P, Walther G. Flow-mediated dilation in athletes: influence of aging. Med Sci Sports Exerc 2015; 46:2148-58. [PMID: 24963792 DOI: 10.1249/mss.0000000000000341] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Controversy exists on whether endothelial function is enhanced in athletes. We sought to systematically review the literature and determine whether endothelial function, as assessed by flow-mediated dilation (FMD), is greater in athletes across all ages relative to that in their age-matched counterparts. METHODS We conducted a systematic search on MEDLINE, Cochrane, Scopus, and Web of Science since their inceptions until July 2013 for articles evaluating FMD in athletes. A meta-analysis was performed to compare the standardized mean difference (SMD) in FMD of the brachial artery between athletes and age-matched control subjects. Subgroup analyses and meta-regression were used to identify sources of heterogeneity. RESULTS Twenty-one articles were included in this analysis, comprising 530 athletes (452 endurance trained, 49 strength trained, and 29 endurance and strength trained) and 376 control subjects. After data pooling, FMD was higher in athletes than that in control groups (SMD, 0.48; P = 0.008). In subgroup analyses, young athletes (<40 yr) presented increased baseline brachial artery diameter (mean difference, 0.40 mm; P < 0.00001) and similar FMD (SMD, 0.27; P = 0.22) compared with those in controls. In contrast, master athletes (>;50 yr) showed similar baseline brachial artery diameter (mean difference, 0.04 mm; P = 0.69) and increased FMD (SMD, 0.99; P = 0.0005) compared with those in controls. CONCLUSIONS The current meta-analysis provides evidence that master athletes but not young athletes exhibit greater FMD compared with that in age-matched healthy controls, thus suggesting that the association between high levels of exercise training and increased FMD is age dependent.
Collapse
Affiliation(s)
- David Montero
- 1Avignon University, Avignon, FRANCE; 2Department of Internal Medicine, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, the NETHERLANDS; 3Applied Biology Department, Institute of Bioengineering, Miguel Hernandez University, Elche, SPAIN; 4Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO; 5Department of Child Health, University of Missouri, Columbia, MO; 6Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO; and 7School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, CANADA
| | | | | | | | | | | | | |
Collapse
|
5
|
Phillips-Eakley AK, McKenney-Drake ML, Bahls M, Newcomer SC, Radcliffe JS, Wastney ME, Van Alstine WG, Jackson G, Alloosh M, Martin BR, Sturek M, Weaver CM. Effect of High-Calcium Diet on Coronary Artery Disease in Ossabaw Miniature Swine With Metabolic Syndrome. J Am Heart Assoc 2015; 4:e001620. [PMID: 26272654 PMCID: PMC4599451 DOI: 10.1161/jaha.114.001620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Calcium is a shortfall essential nutrient that has been a mainstay of osteoporosis management. Recent and limited findings have prompted concern about the contribution of calcium supplementation to cardiovascular risk. A proposed mechanism is through the acceleration of coronary artery calcification. Determining causality between calcium intake and coronary artery calcification has been hindered by a lack of sensitive methodology to monitor early vascular calcium accumulation. The primary study aim was to assess the impact of high calcium intake on coronary artery calcification using innovative calcium tracer kinetic modeling in Ossabaw swine with diet-induced metabolic syndrome. Secondary end points (in vitro wire myography, histopathology, intravascular ultrasound) assessed coronary disease. Methods and Results Pigs (n =24; aged ≈15 months) were fed an atherogenic diet with adequate calcium (0.33% by weight) or high calcium (1.90% from calcium carbonate or dairy) for 6 months. Following 5 months of feeding, all pigs were dosed intravenously with 41Ca, a rare isotope that can be measured in serum and tissues at a sensitivity of 10−18 mol/L by accelerator mass spectrometry. Kinetic modeling evaluated early coronary artery calcification using 41Ca values measured in serial blood samples (collected over 27 days) and coronary artery samples obtained at sacrifice. Serum disappearance of 41Ca and total coronary artery 41Ca accumulation did not differ among groups. Secondary end points demonstrated no treatment differences in coronary artery disease or function. Conclusion There was no detectable effect of high calcium diets (from dairy or calcium carbonate) on coronary artery calcium deposition in metabolic syndrome swine.
Collapse
Affiliation(s)
- Alyssa K Phillips-Eakley
- Department of Nutrition Science, Purdue University, West Lafayette, IN (A.K.P.E., M.E.W., B.R.M., C.M.W.)
| | - Mikaela L McKenney-Drake
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN (M.L.M.K.D., M.A., M.S.)
| | - Martin Bahls
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN (M.B., S.C.N.) Department of Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany (M.B.) German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany (M.B.)
| | - Sean C Newcomer
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN (M.B., S.C.N.) Department of Kinesiology, California State University San Marcos, San Marcos, CA (S.C.N.)
| | - John S Radcliffe
- Department of Animal Sciences, Purdue University, West Lafayette, IN (J.S.R.)
| | - Meryl E Wastney
- Department of Nutrition Science, Purdue University, West Lafayette, IN (A.K.P.E., M.E.W., B.R.M., C.M.W.)
| | - William G Van Alstine
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN (W.G.V.A.)
| | - George Jackson
- Purdue Rare Isotope Measurement Laboratory, Purdue University, West Lafayette, IN (G.J.)
| | - Mouhamad Alloosh
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN (M.L.M.K.D., M.A., M.S.)
| | - Berdine R Martin
- Department of Nutrition Science, Purdue University, West Lafayette, IN (A.K.P.E., M.E.W., B.R.M., C.M.W.)
| | - Michael Sturek
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN (M.L.M.K.D., M.A., M.S.)
| | - Connie M Weaver
- Department of Nutrition Science, Purdue University, West Lafayette, IN (A.K.P.E., M.E.W., B.R.M., C.M.W.)
| |
Collapse
|
6
|
Ried-Larsen M, Grøntved A, Østergaard L, Cooper AR, Froberg K, Andersen LB, Møller NC. Associations between bicycling and carotid arterial stiffness in adolescents: The European Youth Hearts Study. Scand J Med Sci Sports 2014; 25:661-9. [PMID: 25156494 DOI: 10.1111/sms.12296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 12/13/2022]
Abstract
The aim of the study was to investigate the associations between bicycling and carotid arterial stiffness, independent of objectively measured moderate-and-vigorous physical activity. This cross-sectional study included 375 adolescents (age 15.7 ± 0.4 years) from the Danish site of the European Youth Heart Study. Total frequency of bicycle usage was assessed by self-report, and carotid arterial stiffness was assessed using B-mode ultrasound. After adjusting for pubertal status, body height, and objectively measured physical activity and other personal lifestyle and demographic factors, boys using their bicycle every day of the week displayed a higher carotid arterial compliance {standard beta 0.47 [95% confidence interval (CI) 0.07-0.87]} and distension [standard beta 0.38 (95% CI -0.04 to 0.81)]. Boys using their bicycle every day of the week furthermore displayed a lower Young's elastic modulus [standard beta -0.48 (95% CI -0.91 to -0.06)]. Similar trends were observed when investigating the association between commuter bicycling and carotid arterial stiffness. These associations were not observed in girls. Our observations suggest that increasing bicycling in adolescence may be beneficial to carotid arterial health among boys.
Collapse
Affiliation(s)
- M Ried-Larsen
- The Centre of Inflammation and Metabolism (CIM), Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark.,The Danish Diabetes Academy, Odense, Denmark
| | - A Grøntved
- Department of Sport Science and Clinical Biomechanics, Research Unit for Exercise Epidemiology, Centre of Research in Childhood Health, University of Southern Denmark, Odense, Denmark
| | - L Østergaard
- Department of Sport Science and Clinical Biomechanics, Research Unit for Exercise Epidemiology, Centre of Research in Childhood Health, University of Southern Denmark, Odense, Denmark
| | - A R Cooper
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| | - K Froberg
- Department of Sport Science and Clinical Biomechanics, Research Unit for Exercise Epidemiology, Centre of Research in Childhood Health, University of Southern Denmark, Odense, Denmark
| | - L B Andersen
- Department of Sport Science and Clinical Biomechanics, Research Unit for Exercise Epidemiology, Centre of Research in Childhood Health, University of Southern Denmark, Odense, Denmark.,Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - N C Møller
- Department of Sport Science and Clinical Biomechanics, Research Unit for Exercise Epidemiology, Centre of Research in Childhood Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Jenkins NT, Padilla J, Thorne PK, Martin JS, Rector RS, Davis JW, Laughlin MH. Transcriptome-wide RNA sequencing analysis of rat skeletal muscle feed arteries. I. Impact of obesity. J Appl Physiol (1985) 2014; 116:1017-32. [PMID: 24436298 PMCID: PMC4035791 DOI: 10.1152/japplphysiol.01233.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/14/2014] [Indexed: 01/13/2023] Open
Abstract
We employed next-generation RNA sequencing (RNA-Seq) technology to determine the influence of obesity on global gene expression in skeletal muscle feed arteries. Transcriptional profiles of the gastrocnemius and soleus muscle feed arteries (GFA and SFA, respectively) and aortic endothelial cell-enriched samples from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats were examined. Obesity produced 282 upregulated and 133 downregulated genes in SFA and 163 upregulated and 77 downregulated genes in GFA [false discovery rate (FDR) < 10%] with an overlap of 93 genes between the arteries. In LETO rats, there were 89 upregulated and 114 downregulated genes in the GFA compared with the SFA. There were 244 upregulated and 275 downregulated genes in OLETF rats (FDR < 10%) in the GFA compared with the SFA, with an overlap of 76 differentially expressed genes common to both LETO and OLETF rats in both the GFA and SFA. A total of 396 transcripts were found to be differentially expressed between LETO and OLETF in aortic endothelial cell-enriched samples. Overall, we found 1) the existence of heterogeneity in the transcriptional profile of the SFA and GFA within healthy LETO rats, 2) that this between-vessel heterogeneity was markedly exacerbated in the hyperphagic, obese OLETF rat, and 3) a greater number of genes whose expression was altered by obesity in the SFA compared with the GFA. Also, results indicate that in OLETF rats the GFA takes on a relatively more proatherogenic phenotype compared with the SFA.
Collapse
Affiliation(s)
- Nathan T Jenkins
- Department of Kinesiology, University of Georgia, Athens, Georgia
| | | | | | | | | | | | | |
Collapse
|
8
|
Crissey JM, Jenkins NT, Lansford KA, Thorne PK, Bayless DS, Vieira-Potter VJ, Rector RS, Thyfault JP, Laughlin MH, Padilla J. Adipose tissue and vascular phenotypic modulation by voluntary physical activity and dietary restriction in obese insulin-resistant OLETF rats. Am J Physiol Regul Integr Comp Physiol 2014; 306:R596-606. [PMID: 24523340 DOI: 10.1152/ajpregu.00493.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue (AT)-derived cytokines are proposed to contribute to obesity-associated vascular insulin resistance. We tested the hypothesis that voluntary physical activity and diet restriction-induced maintenance of body weight would both result in decreased AT inflammation and concomitant improvements in insulin-stimulated vascular relaxation in the hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF) rat. Rats (aged 12 wk) were randomly assigned to sedentary (SED; n = 10), wheel running (WR; n = 10), or diet restriction (DR; n = 10; fed 70% of SED) for 8 wk. WR and DR rats exhibited markedly lower adiposity (7.1 ± 0.4 and 15.7 ± 1.1% body fat, respectively) relative to SED (27 ± 1.2% body fat), as well as improved blood lipid profiles and systemic markers of insulin resistance. Reduced adiposity in both WR and DR was associated with decreased AT mRNA expression of inflammatory genes (e.g., MCP-1, TNF-α, and IL-6) and markers of immune cell infiltration (e.g., CD8, CD11c, and F4/80). The extent of these effects were most pronounced in visceral AT compared with subcutaneous and periaortic AT. Markers of inflammation in brown AT were upregulated with WR but not DR. In periaortic AT, WR- and DR-induced reductions in expression and secretion of cytokines were accompanied with a more atheroprotective gene expression profile in the adjacent aortic wall. WR, but not DR, resulted in greater insulin-stimulated relaxation in the aorta; an effect that was, in part, mediated by a decrease in insulin-induced endothelin-1 activation in WR aorta. Collectively, we show in OLETF rats that lower adiposity leads to less AT and aortic inflammation, as well as an exercise-specific improvement in insulin-stimulated vasorelaxation.
Collapse
|
9
|
Padilla J, Jenkins NT, Thorne PK, Martin JS, Rector RS, Davis JW, Laughlin MH. Transcriptome-wide RNA sequencing analysis of rat skeletal muscle feed arteries. II. Impact of exercise training in obesity. J Appl Physiol (1985) 2014; 116:1033-47. [PMID: 24408995 DOI: 10.1152/japplphysiol.01234.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We employed next-generation RNA sequencing (RNA-Seq) technology to determine the extent to which exercise training alters global gene expression in skeletal muscle feed arteries and aortic endothelial cells of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Transcriptional profiles of the soleus and gastrocnemius muscle feed arteries (SFA and GFA, respectively) and aortic endothelial cell-enriched samples from rats that underwent an endurance exercise training program (EndEx; n = 12) or a interval sprint training program (IST; n = 12) or remained sedentary (Sed; n = 12) were examined. In response to EndEx, there were 39 upregulated (e.g., MANF) and 20 downregulated (e.g., ALOX15) genes in SFA and 1 upregulated (i.e., Wisp2) and 1 downregulated (i.e., Crem) gene in GFA [false discovery rate (FDR) < 10%]. In response to IST, there were 305 upregulated (e.g., MANF, HSPA12B) and 324 downregulated genes in SFA and 101 upregulated and 66 downregulated genes in GFA, with an overlap of 32 genes between arteries. Furthermore, in aortic endothelial cells, there were 183 upregulated (e.g., eNOS, SOD-3) and 141 downregulated (e.g., ATF3, Clec1b, npy, leptin) genes with EndEx and 71 upregulated and 69 downregulated genes with IST, with an overlap of 35 between exercise programs. Expression of only two genes (Tubb2b and Slc9a3r2) was altered (i.e., increased) by exercise in all three arteries. The finding that both EndEx and IST produced greater transcriptional changes in the SFA compared with the GFA is intriguing when considering the fact that treadmill bouts of exercise are associated with greater relative increases in blood flow to the gastrocnemius muscle compared with the soleus muscle.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | | | | | | | | | | |
Collapse
|
10
|
Simmons GH, Padilla J, Jenkins NT, Laughlin MH. Exercise training and vascular cell phenotype in a swine model of familial hypercholesterolaemia: conduit arteries and veins. Exp Physiol 2013; 99:454-65. [PMID: 24213857 DOI: 10.1113/expphysiol.2013.075838] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does endurance exercise training cause anti-atherogenic effects on the endothelium in a swine model of familial hypercholesterolaemia (FH), and how are these effects distributed across veins, arteries and multiple vascular territories within each system? What is the main finding and its importance? Coronary artery endothelium-dependent vasomotor function was depressed in sedentary FH pigs compared with sedentary control animals, and exercise training did not change vasomotor function within FH. In systemic conduit arteries and veins, few effects of FH on endothelial cell protein expression were noted, including both pro- and anti-atherogenic changes. These findings suggest that exercise training does not produce a consistently improved endothelial cell phenotype in either coronary or systemic conduit vessels in this swine model of FH. Exercise training has emerged as an intervention for the primary and secondary prevention of coronary artery disease, but the mechanisms through which training reduces relative risk are not completely understood. The goal of this study was to investigate the impact of endurance exercise training on vasomotor function and vascular cell phenotype in coronary arteries and systemic conduit arteries and veins against a background of advanced atherosclerosis. We tested the hypothesis that exercise training restores endothelial vasomotor function and produces an anti-atherogenic endothelial and smooth muscle cell phenotype in familial hypercholesterolaemic (FH) swine. The study included 30 FH (15 exercised and 15 sedentary) and 13 non-FH control male castrated swine. The exercise-training intervention consisted of treadmill running 5 days per week for 16-20 weeks. Tissues sampled at sacrifice included vascular rings from the coronary circulation for vasomotor function experiments (dose-dependent bradykinin-induced vasorelaxation) and endothelial cells (ECs) from isolated segments of the thoracic aorta, the carotid, brachial, femoral and renal arteries, as well as each corresponding regionally associated vein, and from the abdominal vena cava, the right coronary and internal mammary arteries. Smooth muscle cells were sampled from the right coronary artery only. Vascular cell phenotype was assessed by immunoblotting for a host of both pro- and anti-atherogenic markers [e.g. endothelial nitric oxide synthase, p67phox, superoxide dismutase 1 (SOD1)]. Coronary artery endothelium-dependent vasomotor function was depressed in sedentary FH pigs compared with sedentary control pigs, and exercise training did not change vasomotor function within FH. In contrast, only scattered effects of FH on EC phenotype were noted across the vasculature, which included both pro- and anti-atherogenic changes in EC protein expression (e.g. increased endothelial nitric oxide synthase in carotid artery ECs, decreased p67phox in brachial artery ECs, but decreased expression of the antioxidant protein SOD1 in thoracic vena cava; all P < 0.05). In thoracic vena cava ECs, this deficit was corrected by exercise training, while no other effects of exercise were observed in conduit vessel EC phenotype. Thus, while exercise training abrogated the adverse effect of hypercholesterolaemia on thoracic vena cava SOD1 expression, it appears that exercise training does not produce a consistently improved EC phenotype in either coronary or systemic conduit vessels in this FH swine model.
Collapse
Affiliation(s)
- Grant H Simmons
- * Nike Sport Research Laboratory - MH1, 1 Bowerman Drive, Beaverton, OR 97005, USA.
| | | | | | | |
Collapse
|
11
|
Fain JN, Company JM, Booth FW, Laughlin MH, Padilla J, Jenkins NT, Bahouth SW, Sacks HS. Exercise training does not increase muscle FNDC5 protein or mRNA expression in pigs. Metabolism 2013; 62:1503-11. [PMID: 23831442 PMCID: PMC3779497 DOI: 10.1016/j.metabol.2013.05.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Exercise training elevates circulating irisin and induces the expression of the FNDC5 gene in skeletal muscles of mice. Our objective was to determine whether exercise training also increases FNDC5 protein or mRNA expression in the skeletal muscles of pigs as well as plasma irisin. METHODS Castrated male pigs of the Rapacz familial hypercholesterolemic (FHM) strain and normal (Yucatan miniature) pigs were sacrificed after 16-20 weeks of exercise training. Samples of cardiac muscle, deltoid and triceps brachii muscle, subcutaneous and epicardial fat were obtained and FNDC5 mRNA, along with that of 6 other genes, was measured in all tissues of FHM pigs by reverse transcription polymerase chain reaction. FNDC protein in deltoid and triceps brachii was determined by Western blotting in both FHM and normal pigs. Citrate synthase activity was measured in the muscle samples of all pigs as an index of exercise training. Irisin was measured by an ELISA assay. RESULTS There was no statistically significant effect of exercise training on FNDC5 gene expression in epicardial or subcutaneous fat, deltoid muscle, triceps brachii muscle or heart muscle. Exercise-training elevated circulating levels of irisin in the FHM pigs and citrate synthase activity in deltoid and triceps brachii muscle. A similar increase in citrate synthase activity was seen in muscle extracts of exercise-trained normal pigs but there was no alteration in circulating irisin. CONCLUSION Exercise training in pigs does not increase FNDC5 mRNA or protein in the deltoid or triceps brachii of FHM or normal pigs while increasing circulating irisin only in the FHM pigs. These data indicate that the response to exercise training in normal pigs is not comparable to that seen in mice.
Collapse
Affiliation(s)
- John N Fain
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis TN 38163, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Masseau I, Davis MJ, Bowles DK. Carotid inflammation is unaltered by exercise in hypercholesterolemic Swine. Med Sci Sports Exerc 2013; 44:2277-89. [PMID: 22776877 DOI: 10.1249/mss.0b013e318266af0a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Reduction of vascular inflammation might contribute to the beneficial effects of exercise. We hypothesized that 1) exercise would reduce carotid endothelial vascular cell adhesion molecule-1 (VCAM-1) and that 2) in vivo detection of carotid inflammation can be achieved in a large animal model using contrast-enhanced ultrasound (CEU) with VCAM-1-targeted microbubbles (MBs). METHODS Familial hypercholesterolemic (FH) swine were divided into sedentary (Sed) and exercise-trained (Ex) groups. Ex pigs underwent 16-20 wk of treadmill aerobic exercise. At the end of the study, in vivo CEU with VCAM-1-targeted MBs and assessment of endothelial-dependent dilation (EDD) were performed in carotid arteries. VCAM-1 mRNA and protein expression were compared with markers of atherosclerotic disease and health, and in vitro EDD was assessed in carotid arteries. RESULTS Exercise training neither reduced inflammation nor improved EDD in carotid arteries of FH swine. Markers of atherosclerosis including VCAM-1 were prominent in the bifurcation compared with the proximal or distal common carotid artery and inversely associated with phosphorylated and total endothelial nitric oxide synthase. Signal intensity from VCAM-1-to-control MBs positively correlated with carotid VCAM-1 protein expression, validating our technique. CONCLUSION These results first demonstrate that aerobic exercise has no effect on carotid endothelial inflammatory markers and EDD in FH swine. Second, our findings indicate that CEU using VCAM-1-targeted MBs can detect inflammation in vivo, providing strong foundations for longitudinal studies examining the effect of therapeutic interventions on the inflammatory status of the endothelium.
Collapse
Affiliation(s)
- Isabelle Masseau
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
13
|
Lakin RO, Zhu W, Feiten L, Kashyap VS. Techniques to harvest diseased human peripheral arteries and measure endothelial function in an ex vivo model. J Vasc Surg 2013; 58:470-7. [PMID: 23375603 DOI: 10.1016/j.jvs.2012.10.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/23/2012] [Accepted: 10/27/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Endothelial dysfunction has been studied in animal models. However, direct evidence of endothelial function from human vessels is limited. Our objectives were to optimize methods in harvesting human arteries from amputation specimens, determine endothelial function, and measure responsiveness to l-arginine, a nitric oxide precursor. METHODS Fresh amputation specimens were transferred expeditiously from the operating room to the bench laboratory for dissection and arterial harvest in an Investigational Review Board-approved protocol. Popliteal and tibial vessels were examined in pilot experiments leading to the use of the anterior tibial artery in consecutive experiments. Human lower extremity anterior tibial artery segments were harvested from 14 amputation specimens. Specimens were rapidly collected and divided for endothelial-dependent relaxation (EDR) studies in a tissue bath apparatus, immunohistochemistry, and intravascular ultrasound-derived virtual histology. A total of 47 ring segments were studied. The data were compared with two-way analysis of variance. RESULTS Human lower extremity arteries exhibited low responsiveness to acetylcholine (EDR, 24.9%; acetylcholine, 10(-4)). L-arginine supplementation enhanced EDR by 38.5% (P < .0001). N-nitro-L-arginine methyl ester abrogated EDR (P < .0001) in vessels exposed to L-arginine. Arterial responsiveness was intact in all vessels (endothelial independent relaxation to sodium nitroprusside, 113.2% ± 28.1%). Histology and immunohistochemistry confirmed intact endothelium by morphometric analysis, cluster of differentiation 31, endothelial nitric oxide synthase, and arginase II staining. Intravascular ultrasound-derived virtual histology indicated atheroma burden was 11.9 ± 4.7 mm(3)/cm, and plaque stratification indicated fibrous morphology was predominant (59.9%; necrotic core, 16.9%; calcium, 11.2%). Variations in plaque morphology did not correlate with endothelial function or responsiveness to L-arginine. CONCLUSIONS Human lower extremity arteries demonstrate low baseline endothelial function in patients requiring amputation. Endothelial dysfunction is improved by L-arginine supplementation in an ex vivo model. These results support strategies to increase local levels of nitric oxide in human vessels.
Collapse
Affiliation(s)
- Ryan O Lakin
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
14
|
Simmons GH, Padilla J, Laughlin MH. Heterogeneity of endothelial cell phenotype within and amongst conduit vessels of the swine vasculature. Exp Physiol 2012; 97:1074-82. [PMID: 22542613 DOI: 10.1113/expphysiol.2011.064006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to investigate the extent of endothelial cell phenotypic heterogeneity throughout the swine vasculature, with a focus on the conduit vessels of the arterial and venous circulations. We tested the hypothesis that atheroprone arteries exhibit higher expression of markers of inflammation and oxidative stress than do veins and atheroresistant arteries. The study sample included tissues from 79 castrated, male swine. Immediately after the animals were killed, endothelial cells were mechanically scraped from isolated segments of the thoracic and abdominal aorta, carotid, brachial, femoral and renal arteries, and the vein regionally associated with each of these vessels, as well as the internal mammary and right coronary arteries. Cells were also taken from two regions of the aortic arch contrasted by atheroprone versus atherosusceptible haemodynamics. Endothelial cell phenotype was assessed by either immunoblotting or quantitative real-time PCR for a host of both pro- and anti-atherogenic markers (e.g. endothelial nitric oxide synthase, p67phox, cyclo-oxygenase-1 and superoxide dismutase 1). Marked heterogeneity across the vasculature was observed in the expression of both pro- and anti-atherogenic markers, at both the protein and transcriptional levels. In particular, the coronary vascular endothelium expressed higher levels of the oxidative stress marker p67phox (P < 0.05 versus other arteries). In addition, differential expression of endothelial nitric oxide synthase and KLF4 was evident between atheroprone and atherosusceptible regions of the aorta, while expression of endothelial nitric oxide synthase, KLF2, KLF4 and cyclo-oxygenase-1 was lower in both areas of the aortic arch compared with the internal mammary artery. Conduit arteries typically expressed higher levels of both pro- and anti-atherogenic markers relative to their associated veins. We show, for the first time, that endothelial cell phenotype is variable within vessels, across six major vascular territories, and between the arterial and venous circulations. Importantly, even straight vessel segments from systemic conduit arteries (e.g. brachial and carotid arteries) exhibited regional phenotypic heterogeneity; a finding not expected on the basis of local haemodynamic forces alone.
Collapse
Affiliation(s)
- Grant H Simmons
- Biomedical Sciences, University of Missouri, Columbia, MO, USA.
| | | | | |
Collapse
|
15
|
Rakobowchuk M, Harris E, Taylor A, Baliga V, Cubbon RM, Rossiter HB, Birch KM. Heavy and moderate interval exercise training alters low-flow-mediated constriction but does not increase circulating progenitor cells in healthy humans. Exp Physiol 2011; 97:375-85. [PMID: 22179420 PMCID: PMC3505374 DOI: 10.1113/expphysiol.2011.062836] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moderate-intensity endurance exercise training improves vascular endothelial vasomotor function; however, the impact of high-intensity exercise training has been equivocal. Thus, the effect of the physiological stress of the exercise remains poorly understood. Furthermore, enhanced vascular repair mediated by circulating progenitor cells may also be improved. To address whether the physiological stress of exercise training is an important factor contributing to these adaptations, 20 healthy participants trained for 6 weeks. Training involved either moderate (MSIT; n = 9) or heavy metabolic stress (HSIT; n = 11) interval exercise training programmes matched for total work and duration of exercise. Before and after training, flow-mediated dilatation, low-flow-mediated constriction and total vessel reactivity were measured at the brachial artery using Doppler ultrasound. Circulating progenitor cells (CD34(+), CD133(+) and CD309/KDR(+)) were measured by flow cytometry (means ± SD). Relative (MSIT pre- 5.5 ± 3.4 versus post-training 6.6 ± 2.5%; HSIT pre- 6.6 ± 4.1 versus post-training 7.0 ± 3.4%, P = 0.33) and normalized (P = 0.16) flow-mediated dilatation did not increase with either training programme. However, low-flow-mediated constriction was greater after training in both groups (MSIT pre- -0.5 ± 3.2 versus post-training -1.9 ± 3.1%; HSIT pre- -1.0 ± 1.7 versus post-training -2.9 ± 3.0%, P = 0.04) and contributed to greater total vessel reactivity (MSIT pre- 7.4 ± 3.3 versus post-training 10.1 ± 3.7%; HSIT pre- 10.9 ± 5.9 versus post-training 12.7 ± 6.2%, P = 0.01). Peak reactive hyperaemia and the area under the shear rate curve were not different between groups, either before or after training. Although circulating progenitor cell numbers increased following heavy-intensity interval exercise training, variability was great amongst participants [MSIT pre- 16 ± 18 versus post-training 14 ± 12 cells (ml whole blood)(-1); HSIT pre- 8 ± 6 versus post-training 19 ± 23 cells (ml whole blood)(-1), P = 0.50]. Overall, vasoconstrictor function may be augmented by moderate- and heavy-intensity interval exercise training in young adults. However, circulating progenitor cell numbers were not increased, suggesting that these cells are not likely to be upregulated as a result of training.
Collapse
Affiliation(s)
- Mark Rakobowchuk
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Padilla J, Simmons GH, Bender SB, Arce-Esquivel AA, Whyte JJ, Laughlin MH. Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology (Bethesda) 2011; 26:132-45. [PMID: 21670160 PMCID: PMC3286126 DOI: 10.1152/physiol.00052.2010] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Endothelial adaptations to exercise training are not exclusively conferred within the active muscle beds. Herein, we summarize key studies that have evaluated the impact of chronic exercise on the endothelium of vasculatures perfusing nonworking skeletal muscle, brain, viscera, and skin, concluding with discussion of potential mechanisms driving these endothelial adaptations.
Collapse
Affiliation(s)
- Jaume Padilla
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Padilla J, Simmons GH, Davis JW, Whyte JJ, Zderic TW, Hamilton MT, Bowles DK, Laughlin MH. Impact of exercise training on endothelial transcriptional profiles in healthy swine: a genome-wide microarray analysis. Am J Physiol Heart Circ Physiol 2011; 301:H555-64. [PMID: 21622830 DOI: 10.1152/ajpheart.00065.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While the salutary effects of exercise training on conduit artery endothelial cells have been reported in animals and humans with cardiovascular risk factors or disease, whether a healthy endothelium is alterable with exercise training is less certain. The purpose of this study was to evaluate the impact of exercise training on transcriptional profiles in normal endothelial cells using a genome-wide microarray analysis. Brachial and internal mammary endothelial gene expression was compared between a group of healthy pigs that exercise trained for 16-20 wk (n = 8) and a group that remained sedentary (n = 8). We found that a total of 130 genes were upregulated and 84 genes downregulated in brachial artery endothelial cells with exercise training (>1.5-fold and false discovery rate <15%). In contrast, a total of 113 genes were upregulated and 31 genes downregulated in internal mammary artery endothelial cells using the same criteria. Although there was an overlap of 66 genes (59 upregulated and 7 downregulated with exercise training) between the brachial and internal mammary arteries, the identified endothelial gene networks and biological processes influenced by exercise training were distinctly different between the brachial and internal mammary arteries. These data indicate that a healthy endothelium is indeed responsive to exercise training and support the concept that the influence of physical activity on endothelial gene expression is not homogenously distributed throughout the vasculature.
Collapse
Affiliation(s)
- Jaume Padilla
- Dept. of Biomedical Sciences, E102 Veterinary Medicine, 1600 E. Rollins Rd., Univ. of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Jin CZ, Kim HS, Seo EY, Shin DH, Park KS, Chun YS, Zhang YH, Kim SJ. Exercise training increases inwardly rectifying K(+) current and augments K(+)-mediated vasodilatation in deep femoral artery of rats. Cardiovasc Res 2011; 91:142-50. [PMID: 21349874 DOI: 10.1093/cvr/cvr050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS A moderate increase in extracellular [K(+)] ([K(+)](e)) induces relaxation of small arteries by activating inwardly rectifying K(+) current (I(Kir)). The K(+)-induced vasodilatation is an important mechanism for exercise-induced hyperaemia in skeletal muscle. We investigated whether I(Kir) and K(+)-induced vasodilatation are enhanced in deep femoral arteries (DFAs) from exercise-trained rats (ET rats; treadmill running for 20 min at 20 m/min, 3 days/week for 2 weeks). The effects of exercise training on K(+)-induced vasodilatation and I(Kir) were also investigated in cerebral (CA) and mesenteric arteries. METHODS AND RESULTS The K(+)-induced vasodilatation of DFAs and the density of I(Kir) and voltage-gated K(+) current (I(Kv)) were increased in DFA myocytes of ET rats. The myogenic tone of the DFA was unchanged by exercise. Although similar functional up-regulations of I(Kir) and I(Kv) were observed in CA myocytes, the K(+)-induced vasodilatation was not increased in the CA of ET rats. Interestingly, concomitant to the increases in I(Kir) and I(Kv), background Na(+) conductance was also increased in the CA myocytes. However, such an effect was not observed in DFA myocytes from ET rats. Neither I(Kir) nor K(+)-induced vasodilatation was observed in mesenteric arteries of ET rats. CONCLUSION The present study provides evidence that regular exercise up-regulates I(Kir) in DFA and CA myocytes. Although the increase in I(Kir) was observed in two types of arteries, augmentation of K(+)-induced relaxation was observed only in the DFA of ET rats, possibly due to the increased Na(+) conductance in CA myocytes. The increases in I(Kir) and K(+)-induced vasodilatation of the arteries of skeletal muscle suggest novel mechanisms of improved exercise hyperaemia with physical training.
Collapse
Affiliation(s)
- Chun Zi Jin
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Padilla J, Simmons GH, Newcomer SC, Laughlin MH. Relationship between brachial and femoral artery endothelial vasomotor function/phenotype in pigs. Exp Biol Med (Maywood) 2010; 235:1287-91. [PMID: 20975078 DOI: 10.1258/ebm.2010.010148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In humans, the measurement of brachial artery endothelial vasomotor function is used as a surrogate index of systemic endothelial health; however, the applicability of brachial artery findings to other vasculatures needs to be examined. The purpose of the present investigation was to test the following hypotheses: (1) brachial and femoral artery endothelium-dependent/independent relaxation is correlated; (2) endothelial expression of pro-/antiatherogenic proteins is correlated between brachial and femoral arteries; and (3) within vessel, there is a positive correlation between expression of antiatherogenic proteins and endothelium-dependent/independent relaxation, and an inverse correlation between expression of proatherogenic proteins and relaxation. In vitro endothelium-dependent (bradykinin [BK] and acetylcholine [Ach]) and -independent (sodium nitroprusside [SNP]) relaxation were evaluated in harvested brachial and femoral arteries of 96 Yucatan miniature swine. In a subset of pigs (n = 32), expression of 18 pro-/antiatherogenic proteins was measured from brachial and femoral artery endothelial cell scrapes using immunoblot analysis. Vascular sensitivity (half-maximal effective dose) to BK, Ach and SNP was highly correlated between brachial and femoral arteries (P < 0.01). A significant correlation was found between brachial and femoral arteries for content of six of the 18 measured proteins (P < 0.01). Furthermore, expression of two proteins (eNOS and COX-1) was correlated with vasorelaxation function in the brachial artery (P < 0.01). We provide the first evidence of a relationship between brachial and femoral artery endothelium-dependent relaxation. Our data also suggest that, in general terms, endothelial expression of several established pro-/antiatherogenic proteins is not robustly associated between brachial and femoral arteries, and does not link strongly to vasorelaxation function.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|