1
|
Hirose K, Umezu S, Sato D. Fibroblast Density is a Risk Factor for Drug-induced Arrhythmias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.19.633080. [PMID: 39896541 PMCID: PMC11785117 DOI: 10.1101/2025.01.19.633080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
A recent study by Kawatou et al . has shown that the local heterogeneity of ion channel conductance is a critical substrate for focal or reentrant arrhythmias. However, the role of fibroblasts with repolarization heterogeneity in the initiation and maintenance of arrhythmias remains unknown. In this study, we investigated how diffuse fibrosis contributes to the formation of focal and reentrant arrhythmias under drug-induced heterogeneity using physiologically detailed mathematical models of the human heart. To simulate drug-induced heterogeneity, we varied the maximum conductance of transmembrane potassium and calcium currents, leading to heterogeneity in action potential duration (APD). Then, we assessed the effects of different fibrosis densities (FD) on the occurrence of premature ventricular complexes (PVCs). Fibroblasts were randomly and evenly inserted into the tissue, and various FD levels ranging from 0 to 35% were examined. We found a biphasic relationship between FD and drug-induced PVCs. Within a certain range of FD, FD positively correlated with PVC susceptibility. However, excessively high fibrosis levels were associated with reduced susceptibility to PVCs. In addition, the self-sustainability of arrhythmias exhibited a positive correlation with FD. This study demonstrates the interplay between the diffuse fibrosis and the drug-induced heterogeneity of APD in the genesis of ventricular arrhythmias. Author summary Sudden cardiac death remains a leading cause of death worldwide. Understanding the mechanisms underlying arrhythmia and its precursors is critical for the development of effective therapies and drugs. Repolarization heterogeneity plays a crucial role in both the initiation and maintenance of arrhythmias. Fibroblasts constitute a vital component of cardiac structure, originating from the remodeling of ventricular wall cells or the transformation of injured myocardial cells. Fibroblasts are known to couple with and alter the electrical properties of myocardial cells. However, our understanding of the role of fibroblasts in the development of arrhythmia remains limited. In this study, we employed a physiologically detailed mathematical model of cardiac tissue to investigate the roles of drug-induced heterogeneity and diffuse fibrosis in the initiation and maintenance of arrhythmias. We used 2D and 3D computational models to simulate various levels of drug-induced heterogeneity conditions with normal to pathological levels of fibroblast density (FD). We found that within a certain range of FD, fibroblasts promote PVCs under drug-induced heterogeneity. However, if FD exceeds 30%, the occurrence of PVCs decreases (biphasic relationship). On the other hand, the self-sustainability of VF (ventricular fibrillation) consistently increases with FD. This study implies that fibroblasts in cardiac tissue may play different roles in the initiation and maintenance of arrhythmia.
Collapse
|
2
|
Dong Y, Liu F. Modeling Fibroblast-Cardiomyocyte Interactions: Unveiling the Role of Ion Currents in Action Potential Modulation. Int J Mol Sci 2024; 25:13396. [PMID: 39769159 PMCID: PMC11677627 DOI: 10.3390/ijms252413396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Fibrotic cardiomyopathy represents a significant pathological condition characterized by the interaction between cardiomyocytes and fibroblasts in the heart, and it currently lacks an effective cure. In vitro platforms, such as engineered heart tissue (EHT) developed through the co-culturing of cardiomyocytes and fibroblasts, are under investigation to elucidate and manipulate these cellular interactions. We present the first integration of mathematical electrophysiological models that encapsulate fibroblast-cardiomyocyte interactions with experimental EHT studies to identify and modulate the ion channels governing these dynamics. Our findings resolve a long-standing debate regarding the effect of fibroblast coupling on cardiomyocyte action potential duration (APD). We demonstrate that these seemingly contradictory outcomes are contingent upon the specific properties of the cardiomyocyte to which the fibroblast is coupled, particularly the relative magnitudes of the fast Na+ and transient outward K+ currents within the cardiomyocyte. Our results emphasize the critical importance of detailed ionic current representation in cardiomyocytes for accurately predicting the interactions between cardiomyocytes and fibroblasts in EHT. Surprisingly, complex ion channel-based models of fibroblast electrophysiology did not outperform simplified resistance-capacitance models in this analysis. Collectively, our findings highlight the promising potential of synergizing in vitro and in silico approaches to identify therapeutic targets for cardiomyopathies.
Collapse
Affiliation(s)
- Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an 710049, China
| | - Fusheng Liu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
3
|
Yuntao F, Jinjun L, Hua Fen L, Huiyu C, Dishiwen L, Zhen C, Wang Y, Wang X, Ke Y, Yanni C, Kexin G, Zhibin P, Mei Y, Zhao Q. Atrial fibroblast-derived exosomal miR-21 upregulate myocardial KCa3.1 via the PI3K-Akt pathway during rapid pacing. Heliyon 2024; 10:e33059. [PMID: 39040331 PMCID: PMC11260968 DOI: 10.1016/j.heliyon.2024.e33059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Background Fibroblast-derived exosomes can regulate the electrical remodeling of cardiomyocytes, and the intermediate-conductance calcium-activated potassium channel (KCa3.1) is important in atrial electrical remodeling. However, the underlying molecular mechanisms remain unclear. This study aimed to investigate the regulation of cardiac electrophysiology by exosomes linked to KCa3.1. Methods Atrial myocytes (AMs) and atrial fibroblasts were isolated from Sprague-Dawley suckling rats and cultured individually. The cellular atrial fibrillation (AF) model was established via electrical stimulation (1.0 v/cm, 10 Hz), and fibroblast-derived exosomes were isolated via ultracentrifugation. Exosomes were co-cultured with AMs to investigate their influences on KCa3.1 and the underlying mechanisms. Nanoparticle tracking analysis and transmission electron microscopy were used to measure exosome particle sizes and concentrations. Whole-cell patch clamp was applied to record the current density of KCa3.1 and action potential duration (APD). The expression of miR-21-5p was detected by reverse-transcription polymerase chain reaction (RT-PCR). Western blotting or immunofluorescence was used to measure the expression of exosomal markers, Akt phosphorylation, and KCa3.1. Results Rapid pacing promoted the secretion of exosomes from atrial fibroblasts and miR-21-5p expression in atrial fibroblasts and exosomes. KCa3.1 protein expression and current density significantly increased, and APD50 and APD90 were sharply shortened after rapid pacing in AMs. TRAM-34 (KCa3.1 blocker) extended APD and reduced susceptibility to AF. KCa3.1 and P-AKT expressions were amplified after co-culturing AMs with exosomes secreted by atrial fibroblasts. In contrast, the increase in KCa3.1 expression was reversed after the cells were co-cultured with exosomes secreted by atrial fibroblasts that were transfected with miR-21-5p inhibitors or after the use of LY294002, a PI3K/Akt pathway inhibitor. Conclusions Rapid pacing promoted the secretion of exosomes from fibroblasts, and miR-21-5p was upregulated in exosomes. Moreover, the miR-21-5p-enriched exosomes upregulated KCa3.1 expression in AMs via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Fu Yuntao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liang Jinjun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liu Hua Fen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chen Huiyu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liu Dishiwen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cao Zhen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xuewen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuanjia Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Yanni
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Guo Kexin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | | | - Yang Mei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
4
|
Sridhar S, Clayton RH. Fibroblast mediated dynamics in diffusively uncoupled myocytes: a simulation study using 2-cell motifs. Sci Rep 2024; 14:4493. [PMID: 38396245 PMCID: PMC10891142 DOI: 10.1038/s41598-024-54564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
In healthy hearts myocytes are typically coupled to nearest neighbours through gap junctions. Under pathological conditions such as fibrosis, or in scar tissue, or across ablation lines myocytes can uncouple from their neighbours. Electrical conduction may still occur via fibroblasts that not only couple proximal myocytes but can also couple otherwise unconnected regions. We hypothesise that such coupling can alter conduction between myocytes via introduction of delays or by initiation of premature stimuli that can potentially result in reentry or conduction blocks. To test this hypothesis we have developed several 2-cell motifs and investigated the effect of fibroblast mediated electrical coupling between uncoupled myocytes. We have identified various regimes of myocyte behaviour that depend on the strength of gap-junctional conductance, connection topology, and parameters of the myocyte and fibroblast models. These motifs are useful in developing a mechanistic understanding of long-distance coupling on myocyte dynamics and enable the characterisation of interaction between different features such as myocyte and fibroblast properties, coupling strengths and pacing period. They are computationally inexpensive and allow for incorporation of spatial effects such as conduction velocity. They provide a framework for constructing scar tissue boundaries and enable linking of cellular level interactions with scar induced arrhythmia.
Collapse
Affiliation(s)
- S Sridhar
- Department of Computer Science, University of Sheffield, Sheffield, UK.
| | - Richard H Clayton
- Department of Computer Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Wang Y, Li Q, Tao B, Angelini M, Ramadoss S, Sun B, Wang P, Krokhaleva Y, Ma F, Gu Y, Espinoza A, Yamauchi K, Pellegrini M, Novitch B, Olcese R, Qu Z, Song Z, Deb A. Fibroblasts in heart scar tissue directly regulate cardiac excitability and arrhythmogenesis. Science 2023; 381:1480-1487. [PMID: 37769108 PMCID: PMC10768850 DOI: 10.1126/science.adh9925] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
After heart injury, dead heart muscle is replaced by scar tissue. Fibroblasts can electrically couple with myocytes, and changes in fibroblast membrane potential can lead to myocyte excitability, which suggests that fibroblast-myocyte coupling in scar tissue may be responsible for arrhythmogenesis. However, the physiologic relevance of electrical coupling of myocytes and fibroblasts and its impact on cardiac excitability in vivo have never been demonstrated. We genetically engineered a mouse that expresses the optogenetic cationic channel ChR2 (H134R) exclusively in cardiac fibroblasts. After myocardial infarction, optical stimulation of scar tissue elicited organ-wide cardiac excitation and induced arrhythmias in these animals. Complementing computational modeling with experimental approaches, we showed that gap junctional and ephaptic coupling, in a synergistic yet functionally redundant manner, excited myocytes coupled to fibroblasts.
Collapse
Affiliation(s)
- Yijie Wang
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Qihao Li
- Peng Cheng Laboratory, Shenzhen, Guangdong 518000, China
| | - Bo Tao
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sivakumar Ramadoss
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Baiming Sun
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ping Wang
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yuliya Krokhaleva
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yiqian Gu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences–The Collaboratory, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Espinoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences–The Collaboratory, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ken Yamauchi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences–The Collaboratory, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bennett Novitch
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Zhilin Qu
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Zhen Song
- Peng Cheng Laboratory, Shenzhen, Guangdong 518000, China
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Johnson RD, Lei M, McVey JH, Camelliti P. Human myofibroblasts increase the arrhythmogenic potential of human induced pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2023; 80:276. [PMID: 37668685 PMCID: PMC10480244 DOI: 10.1007/s00018-023-04924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to remuscularize infarcted hearts but their arrhythmogenicity remains an obstacle to safe transplantation. Myofibroblasts are the predominant cell-type in the infarcted myocardium but their impact on transplanted hiPSC-CMs remains poorly defined. Here, we investigate the effect of myofibroblasts on hiPSC-CMs electrophysiology and Ca2+ handling using optical mapping of advanced human cell coculture systems mimicking cell-cell interaction modalities. Human myofibroblasts altered the electrophysiology and Ca2+ handling of hiPSC-CMs and downregulated mRNAs encoding voltage channels (KV4.3, KV11.1 and Kir6.2) and SERCA2a calcium pump. Interleukin-6 was elevated in the presence of myofibroblasts and direct stimulation of hiPSC-CMs with exogenous interleukin-6 recapitulated the paracrine effects of myofibroblasts. Blocking interleukin-6 reduced the effects of myofibroblasts only in the absence of physical contact between cell-types. Myofibroblast-specific connexin43 knockdown reduced functional changes in contact cocultures only when combined with interleukin-6 blockade. This provides the first in-depth investigation into how human myofibroblasts modulate hiPSC-CMs function, identifying interleukin-6 and connexin43 as paracrine- and contact-mediators respectively, and highlighting their potential as targets for reducing arrhythmic risk in cardiac cell therapy.
Collapse
Affiliation(s)
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - John H McVey
- School of Biosciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
7
|
Simon-Chica A, Wülfers EM, Kohl P. Nonmyocytes as electrophysiological contributors to cardiac excitation and conduction. Am J Physiol Heart Circ Physiol 2023; 325:H475-H491. [PMID: 37417876 PMCID: PMC10538996 DOI: 10.1152/ajpheart.00184.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Although cardiac action potential (AP) generation and propagation have traditionally been attributed exclusively to cardiomyocytes (CM), other cell types in the heart are also capable of forming electrically conducting junctions. Interactions between CM and nonmyocytes (NM) enable and modulate each other's activity. This review provides an overview of the current understanding of heterocellular electrical communication in the heart. Although cardiac fibroblasts were initially thought to be electrical insulators, recent studies have demonstrated that they form functional electrical connections with CM in situ. Other NM, such as macrophages, have also been recognized as contributing to cardiac electrophysiology and arrhythmogenesis. Novel experimental tools have enabled the investigation of cell-specific activity patterns in native cardiac tissue, which is expected to yield exciting new insights into the development of novel or improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ana Simon-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Eike M Wülfers
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Brocklehurst P, Zhang H, Ye J. Effects of fibroblast on electromechanical dynamics of human atrial tissue—insights from a 2D discrete element model. Front Physiol 2022; 13:938497. [PMID: 35957981 PMCID: PMC9360525 DOI: 10.3389/fphys.2022.938497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Roughly 75% of normal myocardial tissue volume is comprised of myocytes, however, fibroblasts by number are the most predominant cells in cardiac tissue. Previous studies have shown distinctive differences in cellular electrophysiology and excitability between myocytes and fibroblasts. However, it is still unclear how the electrical coupling between the two and the increased population of fibroblasts affects the electromechanical dynamics of cardiac tissue. This paper focuses on investigating effects of fibroblast-myocyte electrical coupling (FMEC) and fibroblast population on atrial electrical conduction and mechanical contractility by using a two-dimensional Discrete Element Method (DEM) model of cardiac tissue that is different to finite element method (FEM). In the model, the electro-mechanics of atrial cells are modelled by a biophysically detailed model for atrial electrical action potentials and myofilament kinetics, and the atrial fibroblasts are modelled by an active model that considers four active membrane ionic channel currents. Our simulation results show that the FMEC impairs myocytes’ electrical action potential and mechanical contractibility, manifested by reduced upstroke velocity, amplitude and duration of action potentials, as well as cell length shortening. At the tissue level, the FMEC slows down the conduction of excitation waves, and reduces strain of the tissue produced during a contraction course. These findings provide new insights into understandings of how FMEC impairs cardiac electrical and mechanical dynamics of the heart.
Collapse
Affiliation(s)
- Paul Brocklehurst
- Engineering Department, Lancaster University, Lancaster, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- *Correspondence: Henggui Zhang, ; Jianqiao Ye,
| | - Jianqiao Ye
- Engineering Department, Lancaster University, Lancaster, United Kingdom
- *Correspondence: Henggui Zhang, ; Jianqiao Ye,
| |
Collapse
|
9
|
Verheule S, Schotten U. Electrophysiological Consequences of Cardiac Fibrosis. Cells 2021; 10:cells10113220. [PMID: 34831442 PMCID: PMC8625398 DOI: 10.3390/cells10113220] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
For both the atria and ventricles, fibrosis is generally recognized as one of the key determinants of conduction disturbances. By definition, fibrosis refers to an increased amount of fibrous tissue. However, fibrosis is not a singular entity. Various forms can be distinguished, that differ in distribution: replacement fibrosis, endomysial and perimysial fibrosis, and perivascular, endocardial, and epicardial fibrosis. These different forms typically result from diverging pathophysiological mechanisms and can have different consequences for conduction. The impact of fibrosis on propagation depends on exactly how the patterns of electrical connections between myocytes are altered. We will therefore first consider the normal patterns of electrical connections and their regional diversity as determinants of propagation. Subsequently, we will summarize current knowledge on how different forms of fibrosis lead to a loss of electrical connectivity in order to explain their effects on propagation and mechanisms of arrhythmogenesis, including ectopy, reentry, and alternans. Finally, we will discuss a histological quantification of fibrosis. Because of the different forms of fibrosis and their diverging effects on electrical propagation, the total amount of fibrosis is a poor indicator for the effect on conduction. Ideally, an assessment of cardiac fibrosis should exclude fibrous tissue that does not affect conduction and differentiate between the various types that do; in this article, we highlight practical solutions for histological analysis that meet these requirements.
Collapse
|
10
|
Zhan H, Wang Z, Lin J, Yu Y, Xia L. Optogenetic actuation in ChR2-transduced fibroblasts alter excitation-contraction coupling and mechano-electric feedback in coupled cardiomyocytes: a computational modeling study. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8354-8373. [PMID: 34814303 DOI: 10.3934/mbe.2021414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the help of the conventional electrical method and the growing optogenetic technology, cardiac fibroblasts (Fbs) have been verified to couple electrically with working myocytes and bring electrophysiological remodeling changes in them. The intrinsic properties of cardiac functional autoregulation represented by excitation-contraction coupling (ECC) and mechano-electric feedback (MEF) have also been extensively studied. However, the roles of optogenetic stimulation on the characteristics of ECC and MEF in cardiomyocytes (CMs) coupled with Fbs have been barely investigated. In this study, we proposed a combined model composed of three modules to explore these influences. Simulation results showed that (1) during ECC, an increased light duration (LD) strengthened the inflow of ChR2 current and prolonged action potential duration (APD), and extended durations of twitch and internal sarcomere deformation through the decreased dissociation of calcium with troponin C (CaTnC) complexes and the prolonged duration of Xb attachment-detachment; (2) during MEF, an increased LD was followed by a longer muscle twitch and deformation, and led to APD prolongation through the inward ChR2 current and its inward rectification kinetics, which far outweighed the effects of the delaying dissociation of CaTnC complexes and the prolonged reverse mode of Na+-Ca2+ exchange on AP shortening; (3) due to the ChR2 current's rectification feature, enhancing the light irradiance (LI) brought slight variations in peak or valley values of electrophysiological and mechanical parameters while did not change durations of AP and twitch and muscle deformation in both ECC and MEF. In conclusion, the inward ChR2 current and its inward rectification feature were found to affect significantly the durations of AP and twitch in both ECC and MEF. The roles of optogenetic actuation on both ECC and MEF should be considered in future cardiac computational optogenetics at the tissue and organ scale.
Collapse
Affiliation(s)
- Heqing Zhan
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zefeng Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jialun Lin
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Yuanbo Yu
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Ling Xia
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Nothstein M, Luik A, Jadidi A, Sánchez J, Unger LA, Wülfers EM, Dössel O, Seemann G, Schmitt C, Loewe A. CVAR-Seg: An Automated Signal Segmentation Pipeline for Conduction Velocity and Amplitude Restitution. Front Physiol 2021; 12:673047. [PMID: 34108887 PMCID: PMC8181407 DOI: 10.3389/fphys.2021.673047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rate-varying S1S2 stimulation protocols can be used for restitution studies to characterize atrial substrate, ionic remodeling, and atrial fibrillation risk. Clinical restitution studies with numerous patients create large amounts of these data. Thus, an automated pipeline to evaluate clinically acquired S1S2 stimulation protocol data necessitates consistent, robust, reproducible, and precise evaluation of local activation times, electrogram amplitude, and conduction velocity. Here, we present the CVAR-Seg pipeline, developed focusing on three challenges: (i) No previous knowledge of the stimulation parameters is available, thus, arbitrary protocols are supported. (ii) The pipeline remains robust under different noise conditions. (iii) The pipeline supports segmentation of atrial activities in close temporal proximity to the stimulation artifact, which is challenging due to larger amplitude and slope of the stimulus compared to the atrial activity. METHODS AND RESULTS The S1 basic cycle length was estimated by time interval detection. Stimulation time windows were segmented by detecting synchronous peaks in different channels surpassing an amplitude threshold and identifying time intervals between detected stimuli. Elimination of the stimulation artifact by a matched filter allowed detection of local activation times in temporal proximity. A non-linear signal energy operator was used to segment periods of atrial activity. Geodesic and Euclidean inter electrode distances allowed approximation of conduction velocity. The automatic segmentation performance of the CVAR-Seg pipeline was evaluated on 37 synthetic datasets with decreasing signal-to-noise ratios. Noise was modeled by reconstructing the frequency spectrum of clinical noise. The pipeline retained a median local activation time error below a single sample (1 ms) for signal-to-noise ratios as low as 0 dB representing a high clinical noise level. As a proof of concept, the pipeline was tested on a CARTO case of a paroxysmal atrial fibrillation patient and yielded plausible restitution curves for conduction speed and amplitude. CONCLUSION The proposed openly available CVAR-Seg pipeline promises fast, fully automated, robust, and accurate evaluations of atrial signals even with low signal-to-noise ratios. This is achieved by solving the proximity problem of stimulation and atrial activity to enable standardized evaluation without introducing human bias for large data sets.
Collapse
Affiliation(s)
- Mark Nothstein
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Armin Luik
- Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Amir Jadidi
- Klinik für Kardiologie und Angiologie II, University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jorge Sánchez
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Laura A. Unger
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Eike M. Wülfers
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gunnar Seemann
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| | - Claus Schmitt
- Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
12
|
Bazhutina A, Balakina-Vikulova NA, Kursanov A, Solovyova O, Panfilov A, Katsnelson LB. Mathematical modelling of the mechano-electric coupling in the human cardiomyocyte electrically connected with fibroblasts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:46-57. [PMID: 32846154 DOI: 10.1016/j.pbiomolbio.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/12/2023]
Abstract
Cardiac fibroblasts are interspersed within mammalian cardiac tissue. Fibroblasts are mechanically passive; however, they may communicate electrically with cardiomyocytes via gap junctions and thus affect the electrical and mechanical activity of myocytes. Several in-silico studies at both cellular (0D) and ventricular (3D) levels analysed the effects of fibroblasts on the myocardial electrical function. However, none of them addressed possible effects of fibroblast-myocyte electrical coupling to cardiomyocyte mechanical activity. In this paper, we propose a mathematical model for studying both electrical and mechanical responses of the human cardiomyocyte to its electrotonic interaction with cardiac fibroblasts. Our simulations have revealed that electrotonic interaction with fibroblasts affects not only the mechanical activity of the cardiomyocyte, comprising either moderate or significant reduction of contractility, but also the mechano-calcium and mechano-electric feedback loops, and all these effects are enhanced as the number of coupled fibroblasts is increased. Obtained results suggest that moderate values of the myocyte-fibroblast gap junction conductance (less than 1 nS) can be attributed to physiological conditions, contrasting to the higher values (2 nS and higher) proper rather for pathological situations (e.g. for infarct and/or border zones), since all mechanical indexes falls down dramatically in the case of such high conductance.
Collapse
Affiliation(s)
| | - Nathalie A Balakina-Vikulova
- Ural Federal University, Ekaterinburg, Russia; Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Alexander Kursanov
- Ural Federal University, Ekaterinburg, Russia; Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Olga Solovyova
- Ural Federal University, Ekaterinburg, Russia; Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Alexander Panfilov
- Ural Federal University, Ekaterinburg, Russia; Ghent University, Ghent, Belgium
| | - Leonid B Katsnelson
- Ural Federal University, Ekaterinburg, Russia; Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.
| |
Collapse
|
13
|
Human Cardiac Fibroblast Number and Activation State Modulate Electromechanical Function of hiPSC-Cardiomyocytes in Engineered Myocardium. Stem Cells Int 2020; 2020:9363809. [PMID: 32724316 PMCID: PMC7381987 DOI: 10.1155/2020/9363809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 11/27/2022] Open
Abstract
Cardiac tissue engineering using hiPSC-derived cardiomyocytes is a promising avenue for cardiovascular regeneration, pharmaceutical drug development, cardiotoxicity evaluation, and disease modeling. Limitations to these applications still exist due in part to the need for more robust structural support, organization, and electromechanical function of engineered cardiac tissues. It is well accepted that heterotypic cellular interactions impact the phenotype of cardiomyocytes. The current study evaluates the functional effects of coculturing adult human cardiac fibroblasts (hCFs) in 3D engineered tissues on excitation and contraction with the goal of recapitulating healthy, nonarrhythmogenic myocardium in vitro. A small population (5% of total cell number) of hCFs in tissues improves tissue formation, material properties, and contractile function. However, two perturbations to the hCF population create disease-like phenotypes in engineered cardiac tissues. First, increasing the percentage of hCFs to 15% resulted in tissues with increased ectopic activity and spontaneous excitation rate. Second, hCFs undergo myofibroblast activation in traditional two-dimensional culture, and this altered phenotype ablated the functional benefits of hCFs when incorporated into engineered cardiac tissues. Taken together, the results of this study demonstrate that human cardiac fibroblast number and activation state modulate electromechanical function of hiPSC-cardiomyocytes and that a low percentage of quiescent hCFs are a valuable cell source to advance a healthy electromechanical response of engineered cardiac tissue for regenerative medicine applications.
Collapse
|
14
|
Huang C, Song Z, Landaw J, Qu Z. Spatially Discordant Repolarization Alternans in the Absence of Conduction Velocity Restitution. Biophys J 2020; 118:2574-2587. [PMID: 32101718 DOI: 10.1016/j.bpj.2020.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023] Open
Abstract
Spatially discordant alternans (SDA) of action potential duration (APD) has been widely observed in cardiac tissue and is linked to cardiac arrhythmogenesis. Theoretical studies have shown that conduction velocity restitution (CVR) is required for the formation of SDA. However, this theory is not completely supported by experiments, indicating that other mechanisms may exist. In this study, we carried out computer simulations using mathematical models of action potentials to investigate the mechanisms of SDA in cardiac tissue. We show that when CVR is present and engaged, such as fast pacing from one side of the tissue, the spatial pattern of APD in the tissue undergoes either spatially concordant alternans or SDA, independent of initial conditions or tissue heterogeneities. When CVR is not engaged, such as simultaneous pacing of the whole tissue or under normal/slow heart rates, the spatial pattern of APD in the tissue can have multiple solutions, including spatially concordant alternans and different SDA patterns, depending on heterogeneous initial conditions or pre-existing repolarization heterogeneities. In homogeneous tissue, curved nodal lines are not stable, which either evolve into straight lines or disappear. However, in heterogeneous itssue, curved nodal lines can be stable, depending on their initial locations and shapes relative to the structure of the heterogeneity. Therefore, CVR-induced SDA and non-CVR-induced SDA exhibit different dynamical properties, which may be responsible for the different SDA properties observed in experimental studies and arrhythmogenesis in different clinical settings.
Collapse
Affiliation(s)
- Chunli Huang
- Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Systems Science, Beijing Normal University, Beijing, China
| | - Zhen Song
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Julian Landaw
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
15
|
Kulkarni K, Merchant FM, Kassab MB, Sana F, Moazzami K, Sayadi O, Singh JP, Heist EK, Armoundas AA. Cardiac Alternans: Mechanisms and Clinical Utility in Arrhythmia Prevention. J Am Heart Assoc 2019; 8:e013750. [PMID: 31617437 PMCID: PMC6898836 DOI: 10.1161/jaha.119.013750] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kanchan Kulkarni
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | | | - Mohamad B. Kassab
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Furrukh Sana
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Kasra Moazzami
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Omid Sayadi
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Jagmeet P. Singh
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - E. Kevin Heist
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - Antonis A. Armoundas
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA
| |
Collapse
|
16
|
Mora MT, Gomez JF, Morley G, Ferrero JM, Trenor B. Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts. PLoS One 2019; 14:e0217993. [PMID: 31211790 PMCID: PMC6581251 DOI: 10.1371/journal.pone.0217993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Background Heart failure (HF) is characterized, among other factors, by a progressive loss of contractile function and by the formation of an arrhythmogenic substrate, both aspects partially related to intracellular Ca2+ cycling disorders. In failing hearts both electrophysiological and structural remodeling, including fibroblast proliferation, contribute to changes in Ca2+ handling which promote the appearance of Ca2+ alternans (Ca-alt). Ca-alt in turn give rise to repolarization alternans, which promote dispersion of repolarization and contribute to reentrant activity. The computational analysis of the incidence of Ca2+ and/or repolarization alternans under HF conditions in the presence of fibroblasts could provide a better understanding of the mechanisms leading to HF arrhythmias and contractile function disorders. Methods and findings The goal of the present study was to investigate in silico the mechanisms leading to the formation of Ca-alt in failing human ventricular myocytes and tissues with disperse fibroblast distributions. The contribution of ionic currents variability to alternans formation at the cellular level was analyzed and the results show that in normal ventricular tissue, altered Ca2+ dynamics lead to Ca-alt, which precede APD alternans and can be aggravated by the presence of fibroblasts. Electrophysiological remodeling of failing tissue alone is sufficient to develop alternans. The incidence of alternans is reduced when fibroblasts are present in failing tissue due to significantly depressed Ca2+ transients. The analysis of the underlying ionic mechanisms suggests that Ca-alt are driven by Ca2+-handling protein and Ca2+ cycling dysfunctions in the junctional sarcoplasmic reticulum and that their contribution to alternans occurrence depends on the cardiac remodeling conditions and on myocyte-fibroblast interactions. Conclusion It can thus be concluded that fibroblasts modulate the formation of Ca-alt in human ventricular tissue subjected to heart failure-related electrophysiological remodeling. Pharmacological therapies should thus consider the extent of both the electrophysiological and structural remodeling present in the failing heart.
Collapse
Affiliation(s)
- Maria T. Mora
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Juan F. Gomez
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Gregory Morley
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, United States of America
| | - Jose M. Ferrero
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
17
|
Dilaveris P, Antoniou CK, Manolakou P, Tsiamis E, Gatzoulis K, Tousoulis D. Biomarkers Associated with Atrial Fibrosis and Remodeling. Curr Med Chem 2019; 26:780-802. [PMID: 28925871 DOI: 10.2174/0929867324666170918122502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation is the most common rhythm disturbance encountered in clinical practice. Although often considered as solely arrhythmic in nature, current evidence has established that atrial myopathy constitutes both the substrate and the outcome of atrial fibrillation, thus initiating a vicious, self-perpetuating cycle. This myopathy is triggered by stress-induced (including pressure/volume overload, inflammation, oxidative stress) responses of atrial tissue, which in the long term become maladaptive, and combine elements of both structural, especially fibrosis, and electrical remodeling, with contemporary approaches yielding potentially useful biomarkers of these processes. Biomarker value becomes greater given the fact that they can both predict atrial fibrillation occurrence and treatment outcome. This mini-review will focus on the biomarkers of atrial remodeling (both electrical and structural) and fibrosis that have been validated in human studies, including biochemical, histological and imaging approaches.
Collapse
Affiliation(s)
- Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Tsiamis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Callaghan NI, Hadipour-Lakmehsari S, Lee SH, Gramolini AO, Simmons CA. Modeling cardiac complexity: Advancements in myocardial models and analytical techniques for physiological investigation and therapeutic development in vitro. APL Bioeng 2019; 3:011501. [PMID: 31069331 PMCID: PMC6481739 DOI: 10.1063/1.5055873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies, heart failure, and arrhythmias or conduction blockages impact millions of patients worldwide and are associated with marked increases in sudden cardiac death, decline in the quality of life, and the induction of secondary pathologies. These pathologies stem from dysfunction in the contractile or conductive properties of the cardiomyocyte, which as a result is a focus of fundamental investigation, drug discovery and therapeutic development, and tissue engineering. All of these foci require in vitro myocardial models and experimental techniques to probe the physiological functions of the cardiomyocyte. In this review, we provide a detailed exploration of different cell models, disease modeling strategies, and tissue constructs used from basic to translational research. Furthermore, we highlight recent advancements in imaging, electrophysiology, metabolic measurements, and mechanical and contractile characterization modalities that are advancing our understanding of cardiomyocyte physiology. With this review, we aim to both provide a biological framework for engineers contributing to the field and demonstrate the technical basis and limitations underlying physiological measurement modalities for biologists attempting to take advantage of these state-of-the-art techniques.
Collapse
Affiliation(s)
| | | | | | | | - Craig A. Simmons
- Author to whom correspondence should be addressed: . Present address: Ted Rogers Centre for Heart
Research, 661 University Avenue, 14th Floor Toronto, Ontario M5G 1M1, Canada. Tel.:
416-946-0548. Fax: 416-978-7753
| |
Collapse
|
19
|
Vagos M, van Herck IGM, Sundnes J, Arevalo HJ, Edwards AG, Koivumäki JT. Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges. Front Physiol 2018; 9:1221. [PMID: 30233399 PMCID: PMC6131668 DOI: 10.3389/fphys.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The pathophysiology of atrial fibrillation (AF) is broad, with components related to the unique and diverse cellular electrophysiology of atrial myocytes, structural complexity, and heterogeneity of atrial tissue, and pronounced disease-associated remodeling of both cells and tissue. A major challenge for rational design of AF therapy, particularly pharmacotherapy, is integrating these multiscale characteristics to identify approaches that are both efficacious and independent of ventricular contraindications. Computational modeling has long been touted as a basis for achieving such integration in a rapid, economical, and scalable manner. However, computational pipelines for AF-specific drug screening are in their infancy, and while the field is progressing quite rapidly, major challenges remain before computational approaches can fill the role of workhorse in rational design of AF pharmacotherapies. In this review, we briefly detail the unique aspects of AF pathophysiology that determine requirements for compounds targeting AF rhythm control, with emphasis on delimiting mechanisms that promote AF triggers from those providing substrate or supporting reentry. We then describe modeling approaches that have been used to assess the outcomes of drugs acting on established AF targets, as well as on novel promising targets including the ultra-rapidly activating delayed rectifier potassium current, the acetylcholine-activated potassium current and the small conductance calcium-activated potassium channel. Finally, we describe how heterogeneity and variability are being incorporated into AF-specific models, and how these approaches are yielding novel insights into the basic physiology of disease, as well as aiding identification of the important molecular players in the complex AF etiology.
Collapse
Affiliation(s)
- Márcia Vagos
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ilsbeth G. M. van Herck
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Joakim Sundnes
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Hermenegild J. Arevalo
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Andrew G. Edwards
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Jussi T. Koivumäki
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Mora MT, Ferrero JM, Gomez JF, Sobie EA, Trenor B. Ca 2+ Cycling Impairment in Heart Failure Is Exacerbated by Fibrosis: Insights Gained From Mechanistic Simulations. Front Physiol 2018; 9:1194. [PMID: 30190684 PMCID: PMC6116328 DOI: 10.3389/fphys.2018.01194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/08/2018] [Indexed: 12/28/2022] Open
Abstract
Heart failure (HF) is characterized by altered Ca2+ cycling, resulting in cardiac contractile dysfunction. Failing myocytes undergo electrophysiological remodeling, which is known to be the main cause of abnormal Ca2+ homeostasis. However, structural remodeling, specifically proliferating fibroblasts coupled to myocytes in the failing heart, could also contribute to Ca2+ cycling impairment. The goal of the present study was to systematically analyze the mechanisms by which myocyte–fibroblast coupling could affect Ca2+ dynamics in normal conditions and in HF. Simulations of healthy and failing human myocytes were performed using established mathematical models, and cells were either isolated or coupled to fibroblasts. Univariate and multivariate sensitivity analyses were performed to quantify effects of ion transport pathways on biomarkers computed from intracellular [Ca2+] waveforms. Variability in ion channels and pumps was imposed and populations of models were analyzed to determine effects on Ca2+ dynamics. Our results suggest that both univariate and multivariate sensitivity analyses are valuable methodologies to shed light into the ionic mechanisms underlying Ca2+ impairment in HF, although differences between the two methodologies are observed at high parameter variability. These can result from either the fact that multivariate analyses take into account ion channels or non-linear effects of ion transport pathways on Ca2+ dynamics. Coupling either healthy or failing myocytes to fibroblasts decreased Ca2+ transients due to an indirect sink effect on action potential (AP) and thus on Ca2+ related currents. Simulations that investigated restoration of normal physiology in failing myocytes showed that Ca2+ cycling can be normalized by increasing SERCA and L-type Ca2+ current activity while decreasing Na+–Ca2+ exchange and SR Ca2+ leak. Changes required to normalize APs in failing myocytes depended on whether myocytes were coupled to fibroblasts. In conclusion, univariate and multivariate sensitivity analyses are helpful tools to understand how Ca2+ cycling is impaired in HF and how this can be exacerbated by coupling of myocytes to fibroblasts. The design of pharmacological actions to restore normal activity should take into account the degree of fibrosis in the failing heart.
Collapse
Affiliation(s)
- Maria T Mora
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Jose M Ferrero
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Juan F Gomez
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
21
|
Morotti S, Grandi E. Quantitative systems models illuminate arrhythmia mechanisms in heart failure: Role of the Na + -Ca 2+ -Ca 2+ /calmodulin-dependent protein kinase II-reactive oxygen species feedback. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1434. [PMID: 30015404 DOI: 10.1002/wsbm.1434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022]
Abstract
Quantitative systems modeling aims to integrate knowledge in different research areas with models describing biological mechanisms and dynamics to gain a better understanding of complex clinical syndromes. Heart failure (HF) is a chronic complex cardiac disease that results from structural or functional disorders impairing the ability of the ventricle to fill with or eject blood. Highly interactive and dynamic changes in mechanical, structural, neurohumoral, metabolic, and electrophysiological properties collectively predispose the failing heart to cardiac arrhythmias, which are responsible for about a half of HF deaths. Multiscale cardiac modeling and simulation integrate structural and functional data from HF experimental models and patients to improve our mechanistic understanding of this complex arrhythmia syndrome. In particular, they allow investigating how disease-induced remodeling alters the coupling of electrophysiology, Ca2+ and Na+ handling, contraction, and energetics that lead to rhythm derangements. The Ca2+ /calmodulin-dependent protein kinase II, which expression and activity are enhanced in HF, emerges as a critical hub that modulates the feedbacks between these various subsystems and promotes arrhythmogenesis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Mechanistic Models Models of Systems Properties and Processes > Cellular Models Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California
| |
Collapse
|
22
|
Kim TY, Kofron CM, King ME, Markes AR, Okundaye AO, Qu Z, Mende U, Choi BR. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts. PLoS One 2018; 13:e0196714. [PMID: 29715271 PMCID: PMC5929561 DOI: 10.1371/journal.pone.0196714] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs) and/or cardiac fibroblasts (CFs) and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair.
Collapse
Affiliation(s)
- Tae Yun Kim
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Celinda M. Kofron
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States of America
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States of America
| | - Michelle E. King
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Alexander R. Markes
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States of America
- Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| | - Amenawon O. Okundaye
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, United States of America
| | - Zhilin Qu
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, United States of America
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States of America
| |
Collapse
|
23
|
Loewe A, Wülfers EM, Seemann G. Cardiac ischemia-insights from computational models. Herzschrittmacherther Elektrophysiol 2018; 29:48-56. [PMID: 29305703 DOI: 10.1007/s00399-017-0539-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Complementary to clinical and experimental studies, computational cardiac modeling serves to obtain a comprehensive understanding of the cardiovascular system in order to analyze dysfunction, evaluate existing, and develop novel treatment strategies. OBJECTIVES We describe the basics of multiscale computational modeling of cardiac electrophysiology from the molecular ion channel to the whole body scale. By modeling cardiac ischemia, we illustrate how in silico experiments can contribute to our understanding of how the pathophysiological mechanisms translate into changes observed in diagnostic tools such as the electrocardiogram (ECG). MATERIALS AND METHODS Quantitative in silico modeling spans a wide range of scales from ion channel biophysics to ECG signals. For each of the scales, a set of mathematical equations describes electrophysiology in relation to the other scales. Integration of ischemia-induced changes is performed on the ion channel, single-cell, and tissue level. This approach allows us to study how effects simulated at molecular scales translate to changes in the ECG. RESULTS Ischemia induces action potential shortening and conduction slowing. Hence, ischemic myocardium has distinct and significant effects on propagation and repolarization of excitation, depending on the intramural extent of the ischemic region. For transmural and subendocardial ischemic regions, ST segment elevation and depression, respectively, were observed, whereas intermediate ischemic regions were found to be electrically silent (NSTEMI). CONCLUSIONS In silico modeling contributes quantitative and mechanistic insight into fundamental ischemia-related arrhythmogenic mechanisms. In addition, computational modeling can help to translate experimental findings at the (sub-)cellular level to the organ and body context (e. g., ECG), thereby providing a thorough understanding of this routinely used diagnostic tool that may translate into optimized applications.
Collapse
Affiliation(s)
- Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Eike Moritz Wülfers
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center, Computational Modeling Group, Albert-Ludwigs University of Freiburg, Elsässerstr. 2q, 79110, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gunnar Seemann
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center, Computational Modeling Group, Albert-Ludwigs University of Freiburg, Elsässerstr. 2q, 79110, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
24
|
Zaniboni M. Short-term action potential memory and electrical restitution: A cellular computational study on the stability of cardiac repolarization under dynamic pacing. PLoS One 2018; 13:e0193416. [PMID: 29494628 PMCID: PMC5832261 DOI: 10.1371/journal.pone.0193416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/09/2018] [Indexed: 01/24/2023] Open
Abstract
Electrical restitution (ER) is a major determinant of repolarization stability and, under fast pacing rate, it reveals memory properties of the cardiac action potential (AP), whose dynamics have never been fully elucidated, nor their ionic mechanisms. Previous studies have looked at ER mainly in terms of changes in AP duration (APD) when the preceding diastolic interval (DI) changes and described dynamic conditions where this relationship shows hysteresis which, in turn, has been proposed as a marker of short-term AP memory and repolarization stability. By means of numerical simulations of a non-propagated human ventricular AP, we show here that measuring ER as APD versus the preceding cycle length (CL) provides additional information on repolarization dynamics which is not contained in the companion formulation. We focus particularly on fast pacing rate conditions with a beat-to-beat variable CL, where memory properties emerge from APD vs CL and not from APD vs DI and should thus be stored in APD and not in DI. We provide an ion-currents characterization of such conditions under periodic and random CL variability, and show that the memory stored in APD plays a stabilizing role on AP repolarization under pacing rate perturbations. The gating kinetics of L-type calcium current seems to be the main determinant of this safety mechanism. We also show that, at fast pacing rate and under otherwise identical pacing conditions, a periodically beat-to-beat changing CL is more effective than a random one in stabilizing repolarization. In summary, we propose a novel view of short-term AP memory, differentially stored between systole and diastole, which opens a number of methodological and theoretical implications for the understanding of arrhythmia development.
Collapse
Affiliation(s)
- Massimiliano Zaniboni
- Department of Chemistry, Life Sciences and Environmental Sustainability - University of Parma Parco Area delle Scienze, Parma, Italy
- Center of Excellence for Toxicological Research (CERT) - University of Parma, Parma, Italy
- * E-mail:
| |
Collapse
|
25
|
Reentry via high-frequency pacing in a mathematical model for human-ventricular cardiac tissue with a localized fibrotic region. Sci Rep 2017; 7:15350. [PMID: 29127361 PMCID: PMC5681702 DOI: 10.1038/s41598-017-15735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/02/2017] [Indexed: 11/08/2022] Open
Abstract
Localized heterogeneities, caused by the regional proliferation of fibroblasts, occur in mammalian hearts because of diseases like myocardial infarction. Such fibroblast clumps can become sources of pathological reentrant activities, e.g., spiral or scroll waves of electrical activation in cardiac tissue. The occurrence of reentry in cardiac tissue with heterogeneities, such as fibroblast clumps, can depend on the frequency at which the medium is paced. Therefore, it is important to study the reentry-initiating potential of such fibroblast clumps at different frequencies of pacing. We investigate the arrhythmogenic effects of fibroblast clumps at high- and low-frequency pacing. We find that reentrant waves are induced in the medium more prominently at high-frequency pacing than with low-frequency pacing. We also study the other factors that affect the potential of fibroblast clumps to induce reentry in cardiac tissue. In particular, we show that the ability of a fibroblast clump to induce reentry depends on the size of the clump, the distribution and percentage of fibroblasts in the clump, and the excitability of the medium. We study the process of reentry in two-dimensional and a three-dimensional mathematical models for cardiac tissue.
Collapse
|
26
|
Arrhythmic risk stratification in non-ischemic dilated cardiomyopathy: Where do we stand after DANISH? Trends Cardiovasc Med 2017; 27:542-555. [DOI: 10.1016/j.tcm.2017.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/21/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
|
27
|
Kofron CM, Kim TY, King ME, Xie A, Feng F, Park E, Qu Z, Choi BR, Mende U. G q-activated fibroblasts induce cardiomyocyte action potential prolongation and automaticity in a three-dimensional microtissue environment. Am J Physiol Heart Circ Physiol 2017; 313:H810-H827. [PMID: 28710068 DOI: 10.1152/ajpheart.00181.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
Cardiac fibroblasts (CFs) are known to regulate cardiomyocyte (CM) function in vivo and in two-dimensional in vitro cultures. This study examined the effect of CF activation on the regulation of CM electrical activity in a three-dimensional (3-D) microtissue environment. Using a scaffold-free 3-D platform with interspersed neonatal rat ventricular CMs and CFs, Gq-mediated signaling was selectively enhanced in CFs by Gαq adenoviral infection before coseeding with CMs in nonadhesive hydrogels. After 3 days, the microtissues were analyzed by signaling assay, histological staining, quantitative PCR, Western blots, optical mapping with voltage- or Ca2+-sensitive dyes, and microelectrode recordings of CF resting membrane potential (RMPCF). Enhanced Gq signaling in CFs increased microtissue size and profibrotic and prohypertrophic markers. Expression of constitutively active Gαq in CFs prolonged CM action potential duration (by 33%) and rise time (by 31%), prolonged Ca2+ transient duration (by 98%) and rise time (by 65%), and caused abnormal electrical activity based on depolarization-induced automaticity. Constitutive Gq activation in CFs also depolarized RMPCF from -33 to -20 mV and increased connexin 43 and connexin 45 expression. Computational modeling confers that elevated RMPCF and increased cell-cell coupling between CMs and CFs in a 3-D environment could lead to automaticity. In conclusion, our data demonstrate that CF activation alone is capable of altering action potential and Ca2+ transient characteristics of CMs, leading to proarrhythmic electrical activity. Our results also emphasize the importance of a 3-D environment where cell-cell interactions are prevalent, underscoring that CF activation in 3-D tissue plays a significant role in modulating CM electrophysiology and arrhythmias.NEW & NOTEWORTHY In a three-dimensional microtissue model, which lowers baseline activation of cardiac fibroblasts but enables cell-cell, paracrine, and cell-extracellular matrix interactions, we demonstrate that selective cardiac fibroblast activation by enhanced Gq signaling, a pathophysiological trigger in the diseased heart, modulates cardiomyocyte electrical activity, leading to proarrhythmogenic automaticity.
Collapse
Affiliation(s)
- C M Kofron
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - T Y Kim
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - M E King
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - A Xie
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - F Feng
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - E Park
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Z Qu
- Department of Medicine, University of California, Los Angeles, California
| | - B-R Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - U Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| |
Collapse
|
28
|
Plotnikov EY, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Zorov SD, Jankauskas SS, Babenko VA, Sukhikh GT, Zorov DB. Intercellular Signalling Cross-Talk: To Kill, To Heal and To Rejuvenate. Heart Lung Circ 2017; 26:648-659. [DOI: 10.1016/j.hlc.2016.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
|
29
|
Illuminating Myocyte-Fibroblast Homotypic and Heterotypic Gap Junction Dynamics Using Dynamic Clamp. Biophys J 2017; 111:785-797. [PMID: 27558722 DOI: 10.1016/j.bpj.2016.06.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/18/2016] [Accepted: 06/23/2016] [Indexed: 01/21/2023] Open
Abstract
Fibroblasts play a significant role in the development of electrical and mechanical dysfunction of the heart; however, the underlying mechanisms are only partially understood. One widely studied mechanism suggests that fibroblasts produce excess extracellular matrix, resulting in collagenous septa that slow propagation, cause zig-zag conduction paths, and decouple cardiomyocytes, resulting in a substrate for cardiac arrhythmia. An emerging mechanism suggests that fibroblasts promote arrhythmogenesis through direct electrical interactions with cardiomyocytes via gap junction (GJ) channels. In the heart, three major connexin (Cx) isoforms, Cx40, Cx43, and Cx45, form GJ channels in cell-type-specific combinations. Because each Cx is characterized by a unique time- and transjunctional voltage-dependent profile, we investigated whether the electrophysiological contributions of fibroblasts would vary with the specific composition of the myocyte-fibroblast (M-F) GJ channel. Due to the challenges of systematically modifying Cxs in vitro, we coupled native cardiomyocytes with in silico fibroblast and GJ channel electrophysiology models using the dynamic-clamp technique. We found that there is a reduction in the early peak of the junctional current during the upstroke of the action potential (AP) due to GJ channel gating. However, effects on the cardiomyocyte AP morphology were similar regardless of the specific type of GJ channel (homotypic Cx43 and Cx45, and heterotypic Cx43/Cx45 and Cx45/Cx43). To illuminate effects at the tissue level, we performed multiscale simulations of M-F coupling. First, we developed a cell-specific model of our dynamic-clamp experiments and investigated changes in the underlying membrane currents during M-F coupling. Second, we performed two-dimensional tissue sheet simulations of cardiac fibrosis and incorporated GJ channels in a cell type-specific manner. We determined that although GJ channel gating reduces junctional current, it does not significantly alter conduction velocity during cardiac fibrosis relative to static GJ coupling. These findings shed more light on the complex electrophysiological interplay between cardiac fibroblasts and myocytes.
Collapse
|
30
|
Galice S, Bers DM, Sato D. Stretch-Activated Current Can Promote or Suppress Cardiac Alternans Depending on Voltage-Calcium Interaction. Biophys J 2017; 110:2671-2677. [PMID: 27332125 DOI: 10.1016/j.bpj.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 01/07/2023] Open
Abstract
Cardiac alternans has been linked to the onset of ventricular fibrillation and ventricular tachycardia, leading to life-threatening arrhythmias. Here, we investigated the effects of stretch-activated currents (ISAC) on alternans using a physiologically detailed model of the ventricular myocyte. We found that increasing ISAC suppresses alternans if the voltage-Ca coupling is positive or the alternans is voltage driven. However, for electromechanically discordant alternans, which occurs when the alternans is Ca driven with negative voltage-Ca coupling, increasing ISAC promotes Ca alternans. In addition, if action potential duration-Ca transients show quasiperiodicity, we observe a biphasic effect of ISAC, i.e., suppressing quasiperiodic oscillation at small stretch but promoting electromechanically discordant alternans at larger stretch. Our results demonstrate how ISAC interacts with coupled voltage-Ca dynamical systems with respect to alternans.
Collapse
Affiliation(s)
- Samuel Galice
- Department of Pharmacology, University of California, Davis, Davis, California
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, California
| | - Daisuke Sato
- Department of Pharmacology, University of California, Davis, Davis, California.
| |
Collapse
|
31
|
Gao X, Engel T, Carlson BE, Wakatsuki T. Computational modeling for cardiac safety pharmacology analysis: Contribution of fibroblasts. J Pharmacol Toxicol Methods 2017; 87:68-73. [PMID: 28456609 DOI: 10.1016/j.vascn.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/15/2017] [Accepted: 04/25/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Drug-induced proarrhythmic potential is an important regulatory criterion in safety pharmacology. The application of in silico approaches to predict proarrhythmic potential of new compounds is under consideration as part of future guidelines. Current approaches simulate the electrophysiology of a single human adult ventricular cardiomyocyte. However, drug-induced proarrhythmic potential can be different when cardiomyocytes are surrounded by non-muscle cells. Incorporating fibroblasts in models of myocardium is important particularly for predicting a drugs cardiac liability in the aging population - a growing population who take more medications and exhibit increased cardiac fibrosis. In this study, we used computational models to investigate the effects of fibroblast coupling on the electrophysiology and response to drugs of cardiomyocytes. METHODS A computational model of cardiomyocyte electrophysiology and ion handling (O'Hara, Virag, Varro, & Rudy, 2011) is coupled to a passive model of fibroblast electrophysiology to test the effects of three compounds that block cardiomyocyte ion channels. Results are compared to model results without fibroblast coupling to see how fibroblasts affect cardiomyocyte action potential duration at 90% repolarization (APD90) and propensity for early after depolarization (EAD). RESULTS Simulation results show changes in cardiomyocyte APD90 with increasing concentration of three drugs that affect cardiac function (dofetilide, vardenafil and nebivolol) when no fibroblasts are coupled to the cardiomyocyte. Coupling fibroblasts to cardiomyocytes markedly shortens APD90. Moreover, increasing the number of fibroblasts can augment the shortening effect. DISCUSSION Coupling cardiomyocytes and fibroblasts are predicted to decrease proarrhythmic susceptibility under dofetilide, vardenafil and nebivolol block. However, this result is sensitive to parameters which define the electrophysiological function of the fibroblast. Fibroblast membrane capacitance and conductance (CFB and GFB) have less of an effect on APD90 than the fibroblast resting membrane potential (EFB). This study suggests that in both theoretical models and experimental tissue constructs that represent cardiac tissue, both cardiomyocytes and non-muscle cells should be considered when testing cardiac pharmacological agents.
Collapse
Affiliation(s)
- Xin Gao
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Tyler Engel
- InvivoSciences, Inc., Madison, WI, United States
| | - Brian E Carlson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
32
|
Ma Y, Iyer RP, Jung M, Czubryt MP, Lindsey ML. Cardiac Fibroblast Activation Post-Myocardial Infarction: Current Knowledge Gaps. Trends Pharmacol Sci 2017; 38:448-458. [PMID: 28365093 DOI: 10.1016/j.tips.2017.03.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022]
Abstract
In response to myocardial infarction (MI), the wound healing response of the left ventricle (LV) comprises overlapping inflammatory, proliferative, and maturation phases, and the cardiac fibroblast is a key cell type involved in each phase. It has recently been appreciated that, early post-MI, fibroblasts transform to a proinflammatory phenotype and secrete cytokines and chemokines as well as matrix metalloproteinases (MMPs). Later post-MI, fibroblasts are activated to anti-inflammatory and proreparative phenotypes and generate anti-inflammatory and proangiogenic factors and extracellular matrix (ECM) components that form the infarct scar. Additional studies are needed to systematically examine how fibroblast activation shifts over the timeframe of the MI response and how modulation at different activation stages could alter wound healing and LV remodeling in distinct ways. This review summarizes current fibroblast knowledge as the foundation for a discussion of existing knowledge gaps.
Collapse
Affiliation(s)
- Yonggang Ma
- Mississippi Center for Heart Research, Department of Biophysics and Physiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rugmani Padmanabhan Iyer
- Mississippi Center for Heart Research, Department of Biophysics and Physiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mira Jung
- Mississippi Center for Heart Research, Department of Biophysics and Physiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael P Czubryt
- St Boniface Hospital Albrechtsen Research Centre Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Biophysics and Physiology, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
33
|
Cardona K, Trenor B, Giles WR. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes. PLoS One 2016; 11:e0167060. [PMID: 27875582 PMCID: PMC5119830 DOI: 10.1371/journal.pone.0167060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022] Open
Abstract
The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O'Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase.
Collapse
Affiliation(s)
- Karen Cardona
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| | - Wayne R. Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Jousset F, Maguy A, Rohr S, Kucera JP. Myofibroblasts Electrotonically Coupled to Cardiomyocytes Alter Conduction: Insights at the Cellular Level from a Detailed In silico Tissue Structure Model. Front Physiol 2016; 7:496. [PMID: 27833567 PMCID: PMC5081362 DOI: 10.3389/fphys.2016.00496] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023] Open
Abstract
Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs). In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs). To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimensional tissue models that replicated experimental conditions. Cell dimensions were determined using confocal microscopy of single and co-cultured neonatal rat ventricular CMCs and MFBs. Conduction was investigated as a function of MFB density in three distinct cellular tissue architectures: CMC strands with endogenous MFBs, CMC strands with coating MFBs of two different sizes, and CMC strands with MFB inserts. Simulations were performed to identify individual contributions of heterocellular gap junctional coupling and of the specific electrical phenotype of MFBs. With increasing MFB density, both endogenous and coating MFBs slowed conduction. At MFB densities of 5-30%, conduction slowing was most pronounced in strands with endogenous MFBs due to the MFB-dependent increase in axial resistance. At MFB densities >40%, very slow conduction and spontaneous activity was primarily due to MFB-induced CMC depolarization. Coating MFBs caused non-uniformities of resting membrane potential, which were more prominent with large than with small MFBs. In simulations of MFB inserts connecting two CMC strands, conduction delays increased with increasing insert lengths and block appeared for inserts >1.2 mm. Thus, electrophysiological properties of engineered CMC-MFB co-cultures depend on MFB density, MFB size and their specific positioning in respect to CMCs. These factors may influence conduction characteristics in the heterocellular myocardium.
Collapse
Affiliation(s)
- Florian Jousset
- Department of Physiology, University of Bern Bern, Switzerland
| | - Ange Maguy
- Department of Physiology, University of Bern Bern, Switzerland
| | - Stephan Rohr
- Department of Physiology, University of Bern Bern, Switzerland
| | - Jan P Kucera
- Department of Physiology, University of Bern Bern, Switzerland
| |
Collapse
|
35
|
Spencer TM, Blumenstein RF, Pryse KM, Lee SL, Glaubke DA, Carlson BE, Elson EL, Genin GM. Fibroblasts Slow Conduction Velocity in a Reconstituted Tissue Model of Fibrotic Cardiomyopathy. ACS Biomater Sci Eng 2016; 3:3022-3028. [PMID: 31119190 DOI: 10.1021/acsbiomaterials.6b00576] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myocardial function deteriorates over the course of fibrotic cardiomyopathy, due to electrophysiological and mechanical effects of myofibroblasts that are not completely understood. Although a range of experimental model systems and associated theoretical treatments exist at the levels of isolated cardiomyocytes and planar co-cultures of myofibroblasts and cardiomyocytes, interactions between these cell types at the tissue level are less clear. We studied these interactions through an engineered heart tissue (EHT) model of fibrotic myocardium and a mathematical model of the effects of cellular composition on EHT impulse conduction velocity. The EHT model allowed for modulation of cardiomyocyte and myofibroblast volume fractions, and observation of cell behavior in a three-dimensional environment that is more similar to native heart tissue than is planar cell culture. The cardiomyocyte and myofibroblast volume fractions determined the retardation of impulse conduction (spread of the action potential) in EHTs as measured by changes of the fluorescence of the Ca2+ probe, Fluo-2. Interpretation through our model showed retardation far in excess of predictions by homogenization theory, with conduction ceasing far below the fibroblast volume fraction associated with steric percolation. Results point to an important multiscale structural role of myofibroblasts in attenuating impulse conduction in fibrotic cardiomyopathy.
Collapse
Affiliation(s)
- Teresa M Spencer
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Ryan F Blumenstein
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Kenneth M Pryse
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA.,Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Drive, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheng-Lin Lee
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - David A Glaubke
- Department of Biomedical Engineering, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Brian E Carlson
- Department of Molecular and Integrative Physiology, NCRC B10 A126, 2800 Plymouth Rd., University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | - Elliot L Elson
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA.,Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Drive, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA.,NSF Center for Engineering MechanoBiology, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| |
Collapse
|
36
|
Greisas A, Zlochiver S. Modulation of cardiac pacemaker inter beat intervals by sinoatrial fibroblasts -a numerical study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:165-168. [PMID: 28268305 DOI: 10.1109/embc.2016.7590666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The potential effect of sinoatrial fibroblasts on beat rate and variability of the cardiac pacemakers is not yet fully understood. Heterocellular coupling formation and fibroblast proliferation during diseased conditions may further signify the impact of those cells on sinoatrial node function. In this study we numerically modeled the impact of varying numbers of fibroblasts that are electrically coupled to a single pacemaker cell on several electrophysiological parameters. We employed cellular kinetics of the rabbit sinoatrial myocyte, and employed a range of potential gap junctional coupling between fibroblasts and myocytes. We show that increasing numbers of attached and coupled fibroblasts result in depolarization of the resting membrane potential of the pacemaker cell, as well as in attenuation in its action potential magnitude. We also demonstrate that the mean pacemaker inter-beat interval (IBI) was modulated in a non-linear, bi-phasic way by increasing numbers of attached fibroblasts, whereby an initial phase of decreasing IBIs was followed by a significant phase of exponentially increasing IBIs. These observations were more substantial for increased gap junctional coupling between the two cell types. We finally show that IBI variability exponentially increased with increasing numbers of attached and electrically coupled fibroblasts. Again, this effect was stronger with higher values of gap junctional coupling. We postulate that the last observation is related to the role of fibroblasts in amplifying membrane voltage fluctuations of attached myocytes.
Collapse
|
37
|
Greisas A, Zlochiver S. The Multi-Domain Fibroblast/Myocyte Coupling in the Cardiac Tissue: A Theoretical Study. Cardiovasc Eng Technol 2016; 7:290-304. [PMID: 27150222 DOI: 10.1007/s13239-016-0266-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/29/2016] [Indexed: 02/02/2023]
Abstract
Cardiac fibroblast proliferation and concomitant collagenous matrix accumulation (fibrosis) develop during multiple cardiac pathologies. Recent studies have demonstrated direct electrical coupling between myocytes and fibroblasts in vitro, and assessed the electrophysiological implications of such coupling. However, in the living tissues, such coupling has not been demonstrated, and only indirect coupling via the extracellular space is likely to exist. In this study we employed a multi-domain model to assess the modulation of the cardiac electrophysiological properties by neighboring fibroblasts assuming only indirect coupling. Numerical simulations in 1D and 2D human atrial models showed that extracellular coupling sustains a significant impact on conduction velocity (CV) and a less significant effect on the action potential duration. Both CV and the slope of the CV restitution increased with increasing fibroblast density. This effect was more substantial for lower extracellular conductance. In 2D, spiral waves exhibited reduced frequency with increasing fibroblast density, and the propensity of wavebreaks and complex dynamics at high pacing rates significantly increased.
Collapse
Affiliation(s)
- Ariel Greisas
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv, 69978, Tel-Aviv, Israel
| | - Sharon Zlochiver
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
38
|
Zeigler AC, Richardson WJ, Holmes JW, Saucerman JJ. Computational modeling of cardiac fibroblasts and fibrosis. J Mol Cell Cardiol 2016; 93:73-83. [PMID: 26608708 PMCID: PMC4846515 DOI: 10.1016/j.yjmcc.2015.11.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
Abstract
Altered fibroblast behavior can lead to pathologic changes in the heart such as arrhythmia, diastolic dysfunction, and systolic dysfunction. Computational models are increasingly used as a tool to identify potential mechanisms driving a phenotype or potential therapeutic targets against an unwanted phenotype. Here we review how computational models incorporating cardiac fibroblasts have clarified the role for these cells in electrical conduction and tissue remodeling in the heart. Models of fibroblast signaling networks have primarily focused on fibroblast cell lines or fibroblasts from other tissues rather than cardiac fibroblasts, specifically, but they are useful for understanding how fundamental signaling pathways control fibroblast phenotype. In the future, modeling cardiac fibroblast signaling, incorporating -omics and drug-interaction data into signaling network models, and utilizing multi-scale models will improve the ability of in silico studies to predict potential therapeutic targets against adverse cardiac fibroblast activity.
Collapse
Affiliation(s)
- Angela C Zeigler
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| | - William J Richardson
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| | - Jeffrey W Holmes
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| | - Jeffrey J Saucerman
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| |
Collapse
|
39
|
Oiwa K, Shimba K, Numata T, Takeuchi A, Kotani K, Jimbo Y. A device for co-culturing autonomic neurons and cardiomyocytes using micro-fabrication techniques. Integr Biol (Camb) 2016; 8:341-8. [DOI: 10.1039/c5ib00273g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a device for co-culturing sympathetic neurons, parasympathetic neurons, and cardiomyocytes using micro-fabrication techniques.
Collapse
Affiliation(s)
- Kosuke Oiwa
- Graduate School of Frontier Sciences
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Kenta Shimba
- Graduate School of Frontier Sciences
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Takashi Numata
- Graduate School of Frontier Sciences
- The University of Tokyo
- Bunkyo-ku
- Japan
- Hitachi, Ltd
| | - Akimasa Takeuchi
- Graduate School of Frontier Sciences
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology
- The University of Tokyo
- Meguro-ku
- Japan
- PRESTO
| | - Yasuhiko Jimbo
- Department of Precision Engineering
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
40
|
A Computational Study of the Factors Influencing the PVC-Triggering Ability of a Cluster of Early Afterdepolarization-Capable Myocytes. PLoS One 2015; 10:e0144979. [PMID: 26675670 PMCID: PMC4682961 DOI: 10.1371/journal.pone.0144979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/25/2015] [Indexed: 12/02/2022] Open
Abstract
Premature ventricular complexes (PVCs), which are abnormal impulse propagations in cardiac tissue, can develop because of various reasons including early afterdepolarizations (EADs). We show how a cluster of EAD-generating cells (EAD clump) can lead to PVCs in a model of cardiac tissue, and also investigate the factors that assist such clumps in triggering PVCs. In particular, we study, through computer simulations, the effects of the following factors on the PVC-triggering ability of an EAD clump: (1) the repolarization reserve (RR) of the EAD cells; (2) the size of the EAD clump; (3) the coupling strength between the EAD cells in the clump; and (4) the presence of fibroblasts in the EAD clump. We find that, although a low value of RR is necessary to generate EADs and hence PVCs, a very low value of RR leads to low-amplitude EAD oscillations that decay with time and do not lead to PVCs. We demonstrate that a certain threshold size of the EAD clump, or a reduction in the coupling strength between the EAD cells, in the clump, is required to trigger PVCs. We illustrate how randomly distributed inexcitable obstacles, which we use to model collagen deposits, affect PVC-triggering by an EAD clump. We show that the gap-junctional coupling of fibroblasts with myocytes can either assist or impede the PVC-triggering ability of an EAD clump, depending on the resting membrane potential of the fibroblasts and the coupling strength between the myocyte and fibroblasts. We also find that the triggering of PVCs by an EAD clump depends sensitively on factors like the pacing cycle length and the distribution pattern of the fibroblasts.
Collapse
|
41
|
Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:465714. [PMID: 26601107 PMCID: PMC4637154 DOI: 10.1155/2015/465714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022]
Abstract
The adult heart is composed of a dense network of cardiomyocytes surrounded by nonmyocytes, the most
abundant of which are cardiac fibroblasts. Several cardiac diseases, such as myocardial infarction or dilated
cardiomyopathy, are associated with an increased density of fibroblasts, that is, fibrosis. Fibroblasts play a
significant role in the development of electrical and mechanical dysfunction of the heart; however the underlying
mechanisms are only partially understood. One widely studied mechanism suggests that fibroblasts produce
excess extracellular matrix, resulting in collagenous septa. These collagenous septa slow propagation, cause
zig-zag conduction paths, and decouple cardiomyocytes resulting in a substrate for arrhythmia. Another
emerging mechanism suggests that fibroblasts promote arrhythmogenesis through direct electrical interactions
with cardiomyocytes via gap junctions. Due to the challenges of investigating fibroblast-myocyte coupling in
native cardiac tissue, computational modeling and in vitro experiments have facilitated the investigation into the
mechanisms underlying fibroblast-mediated changes in cardiomyocyte action potential morphology, conduction
velocity, spontaneous excitability, and vulnerability to reentry. In this paper, we summarize the major findings of
the existing computational studies investigating the implications of fibroblast-myocyte interactions in the normal
and diseased heart. We then present investigations from our group into the potential role of voltage-dependent
gap junctions in fibroblast-myocyte interactions.
Collapse
|
42
|
Fountoulaki K, Dagres N, Iliodromitis EK. Cellular Communications in the Heart. Card Fail Rev 2015; 1:64-68. [PMID: 28785434 PMCID: PMC5490974 DOI: 10.15420/cfr.2015.1.2.64] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/12/2015] [Indexed: 11/04/2022] Open
Abstract
Heart failure is one of the leading causes of morbidity and mortality worldwide. Cardiac remodelling is first an adaptive, becoming a maladaptive, compensatory mechanism that finally causes ventricular dysfunction independently of the etiology of the initial insult. In the present article the authors describe the elements of the human heart, examining their basic functions and their inter-communication under both normal and pathological circumstances. Cardiac myocytes carry out mechanical and electrical functions of the heart and cardiac fibroblasts maintain its structural integrity. Several factors can affect fibroblast activation and under pathological stress they transdifferentiate into myofibroblasts. Endothelial cells have complex biological functions, including the control of vascular permeability, vasomotion, regulation of haemostasis, immune responses and angiogenesis. The extracellular matrix is a complex architectural network consisting of a variety of proteins. Various routes using a plethora of products and mediators contribute to the cross-talk of the myocytes with endothelial cells, extracellular matrix and cardiac fibroblasts. A better understanding of the entire mechanism of cellular communication by the established or the more recently discovered agents will certainly emerge promising new perspectives when looking at the prevention of heart failure and leading to more substantial therapeutic interventions.
Collapse
Affiliation(s)
- Katerina Fountoulaki
- Cardiothoracic Intensive Care Unit, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Nikolaos Dagres
- Second University Department of Cardiology, Attikon General Hospial, University of Athens, Athens, Greece
| | - Efstathios K Iliodromitis
- Second University Department of Cardiology, Attikon General Hospial, University of Athens, Athens, Greece
| |
Collapse
|
43
|
Floré V, Claus P, Vos MA, Vandenberk B, Van Soest S, Sipido KR, Adriaenssens T, Bogaert J, Desmet W, Willems R. T-Wave Alternans Is Linked to Microvascular Obstruction and to Recurrent Coronary Ischemia After Myocardial Infarction. J Cardiovasc Transl Res 2015; 8:484-92. [PMID: 26350221 DOI: 10.1007/s12265-015-9649-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/21/2015] [Indexed: 12/01/2022]
Abstract
The purpose of this study is to investigate the relationship between T-wave alternans (TWA), infarct size and microvascular obstruction (MVO) and recurrent cardiac morbidity after ST elevation myocardial infarction (STEMI). One hundred six patients underwent TWA testing 1-12 months and 57 patients underwent cardiac magnetic resonance imaging (MRI) in the first 2-4 days after STEMI. During follow-up (3.5 ± 0.5 years), death (n = 2), ventricular tachycardia (n = 3), supraventricular tachycardia (n = 4), heart failure (n = 3) and recurrent coronary ischemia (n = 25) were observed. After multivariate analysis, positive TWA (HR2.59, CI1.10-6.11, p0.024) and larger MVO (HR1.08, CI1.01-1.16, p0.034) were associated with recurrent angina or ACS. Presence of MVO was correlated with TWA (Spearman rho 0.404, p0.002) and the impairment of LVEF (-0.524, p < 0.001). Patients after STEMI remain at a high risk of symptoms of coronary ischemia. The presence of MVO and TWA 1-12 months after STEMI is related to each other and to recurrent angina or ACS.
Collapse
Affiliation(s)
- V Floré
- Division of Experimental Cardiology, Department of Cardiovascular Diseases, University of Leuven, Leuven, Belgium. .,Division of Clinical Cardiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - P Claus
- Division of Imaging and Cardiovascular Dynamics, Department of Cardiovascular Diseases, University of Leuven, Leuven, Belgium
| | - M A Vos
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - B Vandenberk
- Division of Experimental Cardiology, Department of Cardiovascular Diseases, University of Leuven, Leuven, Belgium
| | - S Van Soest
- Division of Experimental Cardiology, Department of Cardiovascular Diseases, University of Leuven, Leuven, Belgium
| | - K R Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Diseases, University of Leuven, Leuven, Belgium
| | - T Adriaenssens
- Division of Clinical Cardiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - J Bogaert
- Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - W Desmet
- Division of Clinical Cardiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - R Willems
- Division of Experimental Cardiology, Department of Cardiovascular Diseases, University of Leuven, Leuven, Belgium.,Division of Clinical Cardiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
44
|
Nayak AR, Pandit R. Turbulent states and their transitions in mathematical models for ventricular tissue: the effects of random interstitial fibroblasts. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032720. [PMID: 26465511 DOI: 10.1103/physreve.92.032720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 06/05/2023]
Abstract
We study the dynamical behaviors of two types of spiral- and scroll-wave turbulence states, respectively, in two-dimensional (2D) and three-dimensional (3D) mathematical models, of human, ventricular, myocyte cells that are attached to randomly distributed interstitial fibroblasts; these turbulence states are promoted by (a) the steep slope of the action-potential-duration-restitution (APDR) plot or (b) early afterdepolarizations (EADs). Our single-cell study shows that (1) the myocyte-fibroblast (MF) coupling G_{j} and (2) the number N_{f} of fibroblasts in an MF unit lower the steepness of the APDR slope and eliminate the EAD behaviors of myocytes; we explore the pacing dependence of such EAD suppression. In our 2D simulations, we observe that a spiral-turbulence (ST) state evolves into a state with a single, rotating spiral (RS) if either (a) G_{j} is large or (b) the maximum possible number of fibroblasts per myocyte N_{f}^{max} is large. We also observe that the minimum value of G_{j}, for the transition from the ST to the RS state, decreases as N_{f}^{max} increases. We find that, for the steep-APDR-induced ST state, once the MF coupling suppresses ST, the rotation period of a spiral in the RS state increases as (1) G_{j} increases, with fixed N_{f}^{max}, and (2) N_{f}^{max} increases, with fixed G_{j}. We obtain the boundary between ST and RS stability regions in the N_{f}^{max}-G_{j} plane. In particular, for low values of N_{f}^{max}, the value of G_{j}, at the ST-RS boundary, depends on the realization of the randomly distributed fibroblasts; this dependence decreases as N_{f}^{max} increases. Our 3D studies show a similar transition from scroll-wave turbulence to a single, rotating, scroll-wave state because of the MF coupling. We examine the experimental implications of our study and propose that the suppression (a) of the steep slope of the APDR or (b) EADs can eliminate spiral- and scroll-wave turbulence in heterogeneous cardiac tissue, which has randomly distributed fibroblasts.
Collapse
Affiliation(s)
- Alok Ranjan Nayak
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore 560012, India
| | - Rahul Pandit
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
45
|
Fibroblast electrical remodeling in heart failure and potential effects on atrial fibrillation. Biophys J 2015; 107:2444-55. [PMID: 25418313 DOI: 10.1016/j.bpj.2014.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/23/2014] [Accepted: 10/08/2014] [Indexed: 11/20/2022] Open
Abstract
Fibroblasts are activated in heart failure (HF) and produce fibrosis, which plays a role in maintaining atrial fibrillation (AF). The effect of HF on fibroblast ion currents and its potential role in AF are unknown. Here, we used a patch-clamp technique to investigate the effects of HF on atrial fibroblast ion currents, and mathematical computation to assess the potential impact of this remodeling on atrial electrophysiology and arrhythmogenesis. Atrial fibroblasts were isolated from control and tachypacing-induced HF dogs. Tetraethylammonium-sensitive voltage-gated fibroblast current (IKv,fb) was significantly downregulated (by ?44%), whereas the Ba(2+)-sensitive inward rectifier current (IKir,fb) was upregulated by 79%, in HF animals versus controls. The fibroblast resting membrane potential was hyperpolarized (?53 ± 2 mV vs. ?42 ± 2 mV in controls) and the capacitance was increased (29.7 ± 2.2 pF vs. 17.8 ± 1.4 pF in controls) in HF. These experimental findings were implemented in a mathematical model that included cardiomyocyte-fibroblast electrical coupling. IKir,fb upregulation had a profibrillatory effect through shortening of the action potential duration and hyperpolarization of the cardiomyocyte resting membrane potential. IKv,fb downregulation had the opposite electrophysiological effects and was antifibrillatory. Simulated pharmacological blockade of IKv,fb successfully terminated reentry under otherwise profibrillatory conditions. We conclude that HF induces fibroblast ion-current remodeling with IKv,fb downregulation and IKir,fb upregulation, and that, assuming cardiomyocyte-fibroblast electrical coupling, this remodeling has a potentially important effect on atrial electrophysiology and arrhythmogenesis, with the overall response depending on the balance of pro- and antifibrillatory contributions. These findings suggest that fibroblast K(+)-current remodeling is a novel component of AF-related remodeling that might contribute to arrhythmia dynamics.
Collapse
|
46
|
Hammer KP, Ljubojevic S, Ripplinger CM, Pieske BM, Bers DM. Cardiac myocyte alternans in intact heart: Influence of cell-cell coupling and β-adrenergic stimulation. J Mol Cell Cardiol 2015; 84:1-9. [PMID: 25828762 DOI: 10.1016/j.yjmcc.2015.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/12/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cardiac alternans are proarrhythmic and mechanistically link cardiac mechanical dysfunction and sudden cardiac death. Beat-to-beat alternans occur when beats with large Ca(2+) transients and long action potential duration (APD) alternate with the converse. APD alternans are typically driven by Ca(2+) alternans and sarcoplasmic reticulum (SR) Ca(2+) release alternans. But the effect of intercellular communication via gap junctions (GJ) on alternans in the intact heart remains unknown. OBJECTIVE We assessed the effects of cell-to-cell coupling on local alternans in intact Langendorff-perfused mouse hearts, measuring single myocyte [Ca(2+)] alternans synchronization among neighboring cells, and effects of β-adrenergic receptor (β-AR) activation and reduced GJ coupling. METHODS AND RESULTS Mouse hearts (C57BL/6) were retrogradely perfused and loaded with Fluo8-AM to record cardiac myocyte [Ca(2+)] in situ with confocal microscopy. Single cell resolution allowed analysis of alternans within the intact organ during alternans induction. Carbenoxolone (25 μM), a GJ inhibitor, significantly increased the occurrence and amplitude of alternans in single cells within the intact heart. Alternans were concordant between neighboring cells throughout the field of view, except transiently during onset. β-AR stimulation only reduced Ca(2+) alternans in tissue that had reduced GJ coupling, matching effects seen in isolated myocytes. CONCLUSIONS Ca(2+) alternans among neighboring myocytes is predominantly concordant, likely because of electrical coupling between cells. Consistent with this, partial GJ uncoupling increased propensity and amplitude of Ca(2+) alternans, and made them more sensitive to reversal by β-AR activation, as in isolated myocytes. Electrical coupling between myocytes may thus limit the alternans initiation, but also allow alternans to be more stable once established.
Collapse
Affiliation(s)
- Karin P Hammer
- Department of Pharmacology, University of California, Davis, GBSF, Davis, CA 95616-8636, USA.
| | - Senka Ljubojevic
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8010 Graz, Austria.
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis, GBSF, Davis, CA 95616-8636, USA.
| | - Burkert M Pieske
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8010 Graz, Austria; Department of Cardiology, Charité - Medical University Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany.
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, GBSF, Davis, CA 95616-8636, USA.
| |
Collapse
|
47
|
Zhan HQ, Xia L, Shou GF, Zang YL, Liu F, Crozier S. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study. J Zhejiang Univ Sci B 2014; 15:225-42. [PMID: 24599687 DOI: 10.1631/jzus.b1300156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies.
Collapse
Affiliation(s)
- He-qing Zhan
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Qu Z, Weiss JN. Mechanisms of ventricular arrhythmias: from molecular fluctuations to electrical turbulence. Annu Rev Physiol 2014; 77:29-55. [PMID: 25340965 DOI: 10.1146/annurev-physiol-021014-071622] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ventricular arrhythmias have complex causes and mechanisms. Despite extensive investigation involving many clinical, experimental, and computational studies, effective biological therapeutics are still very limited. In this article, we review our current understanding of the mechanisms of ventricular arrhythmias by summarizing the state of knowledge spanning from the molecular scale to electrical wave behavior at the tissue and organ scales and how the complex nonlinear interactions integrate into the dynamics of arrhythmias in the heart. We discuss the challenges that we face in synthesizing these dynamics to develop safe and effective novel therapeutic approaches.
Collapse
Affiliation(s)
- Zhilin Qu
- Departments of 1Medicine (Cardiology) and
| | | |
Collapse
|
49
|
Abstract
In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Correspondence to: Zhilin Qu, PhD, Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, A2-237 CHS, 650 Charles E. Young Drive South, Los Angeles, CA 90095, Tel: 310-794-6050, Fax: 310-206-9133,
| | - Gang Hu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Alan Garfinkel
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
| | - James N. Weiss
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
50
|
Greisas A, Zafrir Z, Zlochiver S. Detection of abnormal cardiac activity using principal component analysis--a theoretical study. IEEE Trans Biomed Eng 2014; 62:154-64. [PMID: 25073163 DOI: 10.1109/tbme.2014.2342792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrogram-guided ablation has been recently developed for allowing better detection and localization of abnormal atrial activity that may be the source of arrhythmogeneity. Nevertheless, no clear indication for the benefit of using electrograms guided ablation over empirical ablation was established thus far, and there is a clear need of improving the localization of cardiac arrhythmogenic targets for ablation. In this paper, we propose a new approach for detection and localization of irregular cardiac activity during ablation procedures that is based on dimension reduction algorithms and principal component analysis (PCA). Using an 8×8 electrode array, our method produces manifolds that allow easy visualization and detection of possible arrhythmogenic ablation targets characterized by irregular conduction. We employ mathematical modeling and computer simulations to demonstrate the feasibility of the new approach for two well established arrhythmogenic sources for irregular conduction--spiral waves and patchy fibrosis. Our results show that the PCA method can differentiate between focal ectopic activity and spiral wave activity, as these two types of activity produce substantially different manifold shapes. Moreover, the technique allows the detection of spiral wave cores and their general meandering and drifting pattern. Fibrotic patches larger than 2 mm(2) could also be visualized using the PCA method, both for quiescent atrial tissue and for tissue exhibiting spiral wave activity. We envision that this method, contingent to further numerical and experimental validation studies in more complex, realistic geometrical configurations and with clinical data, can improve existing atrial ablation mapping capabilities, thus increasing success rates and optimizing arrhythmia management.
Collapse
|