Conti P, D'Ovidio C, Conti C, Gallenga CE, Lauritano D, Caraffa A, Kritas SK, Ronconi G. Progression in migraine: Role of mast cells and pro-inflammatory and anti-inflammatory cytokines.
Eur J Pharmacol 2018;
844:87-94. [PMID:
30529470 DOI:
10.1016/j.ejphar.2018.12.004]
[Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023]
Abstract
Migraine is a common painful neurovascular disorder usually associated with several symptoms, such as photophobia, phonophobia, nausea, vomiting and inflammation, and involves immune cells. Mast cells (MCs) are immune cells derived from hematopoietic pluripotent stem cells which migrate and mature close to epithelial, blood vessels, and nerves. In almost all vascularized tissues there are MCs that produce, contain and release biologically active products including cytokines, arachidonic acid compounds, and proteases. In addition, MCs participate in innate and adaptive immune responses. Innate responses in the central nervous system (CNS) occur during neuroinflammatory phenomena, including migraine. Antigens found in the environment have a crucial role in inflammatory response, causing a broad range of diseases including migraine. They can be recognized by several innate immune cells, such as macrophages, microglia, dendritic cells and MCs, which can be activated trough Toll-like receptor (TLR) signaling. MCs reside close to primary nociceptive neurons, associate with nerves, and are capable of triggering local inflammation. MCs are involved in the pathophysiology of various tissues and organs, especially where there is an increase of angiogenesis. Activated MCs release preformed mediators include histamine, heparin, proteases (tryptase, chimase), hydrolases, cathepsin, carboxypeptidases, and peroxidase, and they also generate pro-inflammatory cytokines/chemokines. In addition, activated macrophages, microglia and MCs in the CNS release pro-inflammatory cytokines which provoke an increase of arachidonic acid product levels and lead to migraine and other neurological manifestations including fatigue, nausea, headaches and brain fog. Innate immunity and pro-inflammatory interleukin (IL)-1 cytokine family members can be inhibited by IL-37, a relatively new member of the IL-1 family. In this article, we report that some pro-inflammatory cytokines inducing migraine may be inhibited by IL-37, a natural suppressor of inflammation, and innate and acquired immunity.
Collapse