1
|
Gabbin B, Meraviglia V, Mummery CL, Rabelink TJ, van Meer BJ, van den Berg CW, Bellin M. Toward Human Models of Cardiorenal Syndrome in vitro. Front Cardiovasc Med 2022; 9:889553. [PMID: 35694669 PMCID: PMC9177996 DOI: 10.3389/fcvm.2022.889553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Heart and kidney diseases cause high morbidity and mortality. Heart and kidneys have vital functions in the human body and, interestingly, reciprocally influence each other’s behavior: pathological changes in one organ can damage the other. Cardiorenal syndrome (CRS) is a group of disorders in which there is combined dysfunction of both heart and kidney, but its underlying biological mechanisms are not fully understood. This is because complex, multifactorial, and dynamic mechanisms are likely involved. Effective treatments are currently unavailable, but this may be resolved if more was known about how the disease develops and progresses. To date, CRS has actually only been modeled in mice and rats in vivo. Even though these models can capture cardiorenal interaction, they are difficult to manipulate and control. Moreover, interspecies differences may limit extrapolation to patients. The questions we address here are what would it take to model CRS in vitro and how far are we? There are already multiple independent in vitro (human) models of heart and kidney, but none have so far captured their dynamic organ-organ crosstalk. Advanced in vitro human models can provide an insight in disease mechanisms and offer a platform for therapy development. CRS represents an exemplary disease illustrating the need to develop more complex models to study organ-organ interaction in-a-dish. Human induced pluripotent stem cells in combination with microfluidic chips are one powerful tool with potential to recapitulate the characteristics of CRS in vitro. In this review, we provide an overview of the existing in vivo and in vitro models to study CRS, their limitations and new perspectives on how heart-kidney physiological and pathological interaction could be investigated in vitro for future applications.
Collapse
Affiliation(s)
- Beatrice Gabbin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, Netherlands
| | - Ton J. Rabelink
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Berend J. van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Cathelijne W. van den Berg
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- *Correspondence: Milena Bellin, ,
| |
Collapse
|
2
|
Dissociation between hypertrophy and fibrosis in the left ventricle early after experimental kidney transplantation. J Hypertens 2019; 38:489-503. [PMID: 31652182 DOI: 10.1097/hjh.0000000000002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Left ventricular (LV) hypertrophy is the most common cardiac alteration in patients with chronic kidney disease (CKD). Normalization of hypertension in CKD patients receiving a healthy kidney allograft often reverses LV hypertrophy, but effects on LV fibrosis remain unclear. To study causal interactions between graft and environment on LV hypertrophy, fibrosis and inflammation, we applied cross-kidney transplantation METHODS:: Orthotopic transplantation was performed after inducing CKD in rats by two-third bilateral ablation of kidney mass: Healthy kidney (K) donor to healthy heart (H) recipient (healthy-K→healthy-H); CKD-K→healthy-H; healthy-K→CKD-H; CKD-K→CKD-H; N= 6 per group. RESULTS At week 6 after transplantation, mean arterial pressure (MAP) and LV mass index (LVMI) increased in CKD-K versus healthy-K irrespective of recipient. Contrarily, LV fibrosis was more severe in CKD-H versus healthy-H recipients irrespective of graft. Indeed, MAP and plasma creatinine correlated with LVMI but not with LV fibrosis. Increased LVMI in CKD-K→CKD-H not accompanied by cardiomyocyte cross-sectional area gain is consistent with eccentric remodelling. Cardiac RNA sequencing found a strong transcriptional response associated with LV fibrosis but only sparse changes associated with LV hypertrophy. This response was, among others, characterized by changes in extracellular matrix (ECM) and inflammatory gene expression. CONCLUSION LVMI reversed and MAP and renal function were normalized early after transplantation of a healthy kidney. However, LV fibrosis persisted, dissociating LV hypertrophy from LV fibrosis within 6 weeks. Elucidating cardiac ECM dynamics in CKD patients, although challenging, appears promising.
Collapse
|
3
|
Pang P, Abbott M, Abdi M, Fucci QA, Chauhan N, Mistri M, Proctor B, Chin M, Wang B, Yin W, Lu TS, Halim A, Lim K, Handy DE, Loscalzo J, Siedlecki AM. Pre-clinical model of severe glutathione peroxidase-3 deficiency and chronic kidney disease results in coronary artery thrombosis and depressed left ventricular function. Nephrol Dial Transplant 2019; 33:923-934. [PMID: 29244159 DOI: 10.1093/ndt/gfx304] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/15/2017] [Indexed: 12/21/2022] Open
Abstract
Background Chronic kidney disease (CKD) patients have deficient levels of glutathione peroxidase-3 (GPx3). We hypothesized that GPx3 deficiency may lead to cardiovascular disease in the presence of chronic kidney disease due to an accumulation of reactive oxygen species and decreased microvascular perfusion of the myocardium. Methods. To isolate the exclusive effect of GPx3 deficiency in kidney disease-induced cardiac disease, we studied the GPx3 knockout mouse strain (GPx3-/-) in the setting of surgery-induced CKD. Results. Ribonucleic acid (RNA) microarray screening of non-stimulated GPx3-/- heart tissue show increased expression of genes associated with cardiomyopathy including myh7, plac9, serpine1 and cd74 compared with wild-type (WT) controls. GPx3-/- mice underwent surgically induced renal mass reduction to generate a model of CKD. GPx3-/- + CKD mice underwent echocardiography 4 weeks after injury. Fractional shortening (FS) was decreased to 32.9 ± 5.8% in GPx3-/- + CKD compared to 62.0% ± 10.3 in WT + CKD (P < 0.001). Platelet aggregates were increased in the myocardium of GPx3-/- + CKD. Asymmetric dimethylarginine (ADMA) levels were increased in both GPx3-/- + CKD and WT+ CKD. ADMA stimulated spontaneous platelet aggregation more quickly in washed platelets from GPx3-/-. In vitro platelet aggregation was enhanced in samples from GPx3-/- + CKD. Platelet aggregation in GPx3-/- + CKD samples was mitigated after in vivo administration of ebselen, a glutathione peroxidase mimetic. FS improved in GPx3-/- + CKD mice after ebselen treatment. Conclusion These results suggest GPx3 deficiency is a substantive contributing factor to the development of kidney disease-induced cardiac disease.
Collapse
Affiliation(s)
- Paul Pang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Molly Abbott
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Malyun Abdi
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Quynh-Anh Fucci
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nikita Chauhan
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Murti Mistri
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brandon Proctor
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Chin
- Department of Radiology, Geisinger Health System, Danville, PA, USA
| | - Bin Wang
- Department of Surgery, 5th Hospital of Wuhan, Wuhan University, Wuhan, Hubei, China
| | - Wenqing Yin
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tzong-Shi Lu
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Arvin Halim
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kenneth Lim
- Massachusetts General Hospital, Boston, MA, USA
| | - Diane E Handy
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew M Siedlecki
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Yogasundaram H, Chappell MC, Braam B, Oudit GY. Cardiorenal Syndrome and Heart Failure-Challenges and Opportunities. Can J Cardiol 2019; 35:1208-1219. [PMID: 31300181 PMCID: PMC9257995 DOI: 10.1016/j.cjca.2019.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/23/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiorenal syndromes (CRS) describe concomitant bidirectional dysfunction of the heart and kidneys in which 1 organ initiates, perpetuates, and/or accelerates decline of the other. CRS are common in heart failure and universally portend worsened prognosis. Despite this heavy disease burden, the appropriate diagnosis and classification of CRS remains problematic. In addition to the hemodynamic drivers of decreased renal perfusion and increased renal vein pressure, induction of the renin-angiotensin-aldosterone system, stimulation of the sympathetic nervous system, disruption of balance between nitric oxide and reactive oxygen species, and inflammation are implicated in the pathogenesis of CRS. Medical therapy of heart failure including renin-angiotensin-aldosterone system inhibition and β-adrenergic blockade can blunt these deleterious processes. Renovascular disease can accelerate the progression of CRS. Volume overload and diuretic resistance are common and complicate the management of CRS. In heart failure and CRS being treated with diuretics, worsening creatinine is not associated with worsened outcome if clinical decongestion is achieved. Adjunctive therapy is often required in the management of volume overload in CRS, but evidence for these therapies is limited. Anemia and iron deficiency are importantly associated with CRS and might amplify decline of cardiac and renal function. End-stage cardiac and/or renal disease represents an especially poor prognosis with limited therapeutic options. Overall, worsening renal function is associated with significantly increased mortality. Despite progress in the area of CRS, there are still multiple pathophysiological and clinical aspects of CRS that need further research to eventually develop effective therapeutic options.
Collapse
Affiliation(s)
- Haran Yogasundaram
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mark C Chappell
- Department of Surgery/Hypertension and Vascular Research, Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Branko Braam
- Division of Nephrology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Roth L, Van der Donckt C, Emini Veseli B, Van Dam D, De Deyn PP, Martinet W, Herman AG, De Meyer GRY. Nitric oxide donor molsidomine favors features of atherosclerotic plaque stability and reduces myocardial infarction in mice. Vascul Pharmacol 2019; 118-119:106561. [PMID: 31085310 DOI: 10.1016/j.vph.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
Nitric oxide (NO) donors are commonly used for the prevention and treatment of ischemic heart disease. Besides their effects on the heart, NO donors may also prevent hypoxic brain damage and exert beneficial effects on atherosclerosis by favoring features of plaque stability. We recently described that apolipoprotein E (ApoE) deficient mice with a mutation in the fibrillin-1 (Fbn1) gene (ApoE-/-Fbn1C1039G+/-) develop accelerated atherosclerosis, plaque rupture, myocardial infarction, cerebral hypoxia and sudden death. In the present study, we evaluated the effects of chronic treatment with the NO donor molsidomine on atherosclerotic plaque stability, cardiac function, neurological symptoms and survival in the ApoE-/-Fbn1C1039G+/- mouse model. Female ApoE-/-Fbn1C1039G+/- mice were fed a Western diet (WD). After 8 weeks of WD, the mice were divided into two groups receiving either molsidomine via the drinking water (1 mg/kg/day; n = 34) or tap water (control; n = 36) until 25 weeks of WD. Survival tended to increase after molsidomine treatment (68% vs. 58% in controls). Importantly, atherosclerotic plaques of molsidomine-treated mice had a thicker fibrous cap (11.1 ± 1.2 vs. 8.1 ± 0.7 μm) and showed an increased occurrence of plaque macrocalcifications (30% vs. 0%), indicative of a more stable phenotype. Molsidomine also improved cardiac function, as fractional shortening was increased (40 ± 2% vs. 27 ± 2%) combined with a decreased end diastolic (3.1 ± 0.2 vs. 3.9 ± 0.2 mm) and end systolic diameter (1.9 ± 0.1 vs. 2.9 ± 0.2 mm). Furthermore, perivascular fibrosis (23 ± 2 vs. 30 ± 2%) and the occurrence of myocardial infarctions (12% vs. 36%) was significantly reduced. Track width, a measure of the animal's hind limb base of support and representative of hypoxic brain damage, was also normalized as a result of molsidomine treatment (2.54 ± 0.04 vs. 2.91 ± 0.09 cm in controls). These findings demonstrate that the NO donor molsidomine improves cardiac function, reduces neurological symptoms and enhances atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | | | - Besa Emini Veseli
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands; Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Lindendreef 1, 2020 Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Arnold G Herman
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
6
|
Liu S. Heart-kidney interactions: mechanistic insights from animal models. Am J Physiol Renal Physiol 2019; 316:F974-F985. [PMID: 30838876 DOI: 10.1152/ajprenal.00624.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathological changes in the heart or kidney can instigate the release of a cascade of cardiorenal mediators that promote injury in the other organ. Combined dysfunction of heart and kidney is referred to as cardiorenal syndrome (CRS) and has gained considerable attention. CRS has been classified into five distinct entities, each with different major pathophysiological changes. Despite the magnitude of the public health problem of CRS, the underlying mechanisms are incompletely understood, and effective intervention is unavailable. Animal models have allowed us to discover pathogenic molecular changes to clarify the pathophysiological mechanisms responsible for heart-kidney interactions and to enable more accurate risk stratification and effective intervention. Here, this article focuses on the use of currently available animal models to elucidate mechanistic insights in the clinical cardiorenal phenotype arising from primary cardiac injury, primary renal disease with special emphasis of chronic kidney disease-specific risk factors, and simultaneous cardiorenal/renocardiac dysfunction. The development of novel animal models that recapitulate more closely the cardiorenal phenotype in a clinical scenario and discover the molecular basis of this condition will be of great benefit.
Collapse
Affiliation(s)
- Shan Liu
- School of Medicine, South China University of Technology , Guangzhou , China
| |
Collapse
|
7
|
Sárközy M, Kovács ZZA, Kovács MG, Gáspár R, Szűcs G, Dux L. Mechanisms and Modulation of Oxidative/Nitrative Stress in Type 4 Cardio-Renal Syndrome and Renal Sarcopenia. Front Physiol 2018; 9:1648. [PMID: 30534079 PMCID: PMC6275322 DOI: 10.3389/fphys.2018.01648] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a public health problem and a recognized risk factor for cardiovascular diseases (CVD). CKD could amplify the progression of chronic heart failure leading to the development of type 4 cardio-renal syndrome (T4CRS). The severity and persistence of heart failure are strongly associated with mortality risk in T4CRS. CKD is also a catabolic state leading to renal sarcopenia which is characterized by the loss of skeletal muscle strength and physical function. Renal sarcopenia also promotes the development of CVD and increases the mortality in CKD patients. In turn, heart failure developed in T4CRS could result in chronic muscle hypoperfusion and metabolic disturbances leading to or aggravating the renal sarcopenia. The interplay of multiple factors (e.g., comorbidities, over-activated renin-angiotensin-aldosterone system [RAAS], sympathetic nervous system [SNS], oxidative/nitrative stress, inflammation, etc.) may result in the progression of T4CRS and renal sarcopenia. Among these factors, oxidative/nitrative stress plays a crucial role in the complex pathomechanism and interrelationship between T4CRS and renal sarcopenia. In the heart and skeletal muscle, mitochondria, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, uncoupled nitric oxide synthase (NOS) and xanthine oxidase are major ROS sources producing superoxide anion (O2·−) and/or hydrogen peroxide (H2O2). O2·− reacts with nitric oxide (NO) forming peroxynitrite (ONOO−) which is a highly reactive nitrogen species (RNS). High levels of ROS/RNS cause lipid peroxidation, DNA damage, interacts with both DNA repair enzymes and transcription factors, leads to the oxidation/nitration of key proteins involved in contractility, calcium handling, metabolism, antioxidant defense mechanisms, etc. It also activates the inflammatory response, stress signals inducing cardiac hypertrophy, fibrosis, or cell death via different mechanisms (e.g., apoptosis, necrosis) and dysregulates autophagy. Therefore, the thorough understanding of the mechanisms which lead to perturbations in oxidative/nitrative metabolism and its relationship with pro-inflammatory, hypertrophic, fibrotic, cell death and other pathways would help to develop strategies to counteract systemic and tissue oxidative/nitrative stress in T4CRS and renal sarcopenia. In this review, we also focus on the effects of some well-known and novel pharmaceuticals, nutraceuticals, and physical exercise on cardiac and skeletal muscle oxidative/nitrative stress in T4CRS and renal sarcopenia.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Mónika G Kovács
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gergő Szűcs
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease: A Preclinical Perspective. Int J Mol Sci 2018; 19:ijms19061712. [PMID: 29890734 PMCID: PMC6032334 DOI: 10.3390/ijms19061712] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a highly prevalent disease with a substantial medical need for new and more efficacious treatments. The Nitric Oxide (NO), soluble guanylyl cyclase (sGC), cyclic guanosine monophosphate (cGMP) signaling cascade regulates various kidney functions. cGMP directly influences renal blood flow, renin secretion, glomerular function, and tubular exchange processes. Downregulation of NO/sGC/cGMP signaling results in severe kidney pathologies such as CKD. Therefore, treatment strategies aiming to maintain or increase cGMP might have beneficial effects for the treatment of progressive kidney diseases. Within this article, we review the NO/sGC/cGMP signaling cascade and its major pharmacological intervention sites. We specifically focus on the currently known effects of cGMP on kidney function parameters. Finally, we summarize the preclinical evidence for kidney protective effects of NO-donors, PDE inhibitors, sGC stimulators, and sGC activators.
Collapse
|
9
|
Molsidomine Attenuates Ventricular Electrical Remodeling and Arrhythmogenesis in Rats With Chronic β-Adrenergic Receptor Activation Through the NO/cGMP/PKG Pathway. J Cardiovasc Pharmacol 2017; 68:342-355. [PMID: 27482866 DOI: 10.1097/fjc.0000000000000422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigated the effects and associated underlying mechanisms of molsidomine, a nitric oxide (NO) donor, on cardiac electrical remodeling and ventricular tachycardias (VTs) induced by chronic isoprenaline (ISO) stimulation in rats. The rats were randomly divided into groups that were treated with saline (control group), ISO (ISO group), ISO + molsidomine (ISO + M group), and ISO + molsidomine + the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, ISO + M + O group) for 14 days. An electrophysiological study was performed to assess cardiac repolarization, action potential duration restitution, and the induction of action potential duration alternans and VTs in vitro. The properties of the Ca transients, Ca handling-related proteins, and NO/guanosine 3'5'-cyclic monophosphate (cGMP)/protein kinase G (PKG) pathway were examined. Compared with the control group, chronic ISO stimulation prolonged the cardiac repolarization, decreased the Ca transient alternans and action potential duration alternans thresholds, and increased the maximum slope (Smax) of the action potential duration restitution curve and incidence of VTs in vitro. All these effects were attenuated by molsidomine treatment (P < 0.05). Moreover, molsidomine activated cGMP/PKG signaling and stabilized the expression of calcium handling-related proteins compared with the ISO group. However, the protective effects of molsidomine were partially inhibited by ODQ. Our results suggest that molsidomine stabilizes calcium handling and attenuates cardiac electrical remodeling and arrhythmogenesis in rats with chronic β-adrenergic receptor activation. These effects are at least partially mediated by the activation of NO/cGMP/PKG pathway.
Collapse
|
10
|
Oosterhuis NR, Bongartz LG, Verhaar MC, Cheng C, Xu YJ, van Koppen A, Cramer MJ, Goldschmeding R, Gaillard CA, Doevendans PA, Braam B, Joles JA. Targeting multiple pathways reduces renal and cardiac fibrosis in rats with subtotal nephrectomy followed by coronary ligation. Acta Physiol (Oxf) 2017; 220:382-393. [PMID: 28168814 DOI: 10.1111/apha.12829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/27/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
AIM Multiple interacting pathways contribute to progression of renal and cardiac damage in chronic kidney disease followed by chronic heart failure (renocardiac syndrome). We hypothesized that simultaneous pharmacological modulation of critical pathways implicated in renocardiac syndrome would effectively reduce fibrosis in and preserve function of heart and kidney. METHODS Rats were subjected to subtotal nephrectomy followed 9 weeks later by coronary artery ligation. From week 11 until week 16, rats received vehicle or losartan, or a combination of the NF-kB inhibitor PDTC, the NO donor molsidomine and superoxide dismutase mimetic tempol, or a combination of all four of these plus metoprolol together. At week 16, renal and cardiac structure, function and gene expression were assessed. RESULTS Individual and combined treatments were similarly effective in limiting cardiac fibrosis and further decline in systolic function. Combined treatment with all five drugs reduced renal fibrosis and CTGF gene expression more effectively than other strategies. Combining all five drugs reduced heart rate, inotropy and mean arterial pressure (MAP). CONCLUSION Thus, in our model of chronic renocardiac syndrome, combined treatments similarly decreased cardiac fibrosis and stabilized systolic function as losartan alone, perhaps suggesting a dominant role for a single factor such as angiotensin II type 1 (AT1) receptor activation or inflammation in the network of aberrant systems in the heart. However, tubulointerstitial fibrosis was most effectively reduced by a five-drug regimen, pointing to additive effects of multiple pathophysiological pathways in the kidney.
Collapse
Affiliation(s)
- N. R. Oosterhuis
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
| | - L. G. Bongartz
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
- Department of Cardiology; University Medical Center Utrecht; Utrecht the Netherlands
| | - M. C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
| | - C. Cheng
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
- Department of Experimental Cardiology; Thorax Center Erasmus University Medical Center; Rotterdam the Netherlands
| | - Y. J. Xu
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
| | - A. van Koppen
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
| | - M. J. Cramer
- Department of Cardiology; University Medical Center Utrecht; Utrecht the Netherlands
| | - R. Goldschmeding
- Department of Pathology; University Medical Center Utrecht; Utrecht the Netherlands
| | - C. A. Gaillard
- Department of Nephrology; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - P. A. Doevendans
- Department of Cardiology; University Medical Center Utrecht; Utrecht the Netherlands
| | - B. Braam
- Division of Nephrology; Departments of Medicine and Physiology; University of Alberta; Edmonton AB Canada
| | - J. A. Joles
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
| |
Collapse
|
11
|
García-Cenador MB, Lorenzo-Gómez MF, García-Moro M, García-García MI, Sánchez-Conde MP, García-Criado FJ, García-Sánchez E, Lozano-Sánchez F, García-Sánchez JE. Comparative study of bacterial translocation control with nitric oxide donors and COX2 inhibitor. Enferm Infecc Microbiol Clin 2016; 34:490-8. [PMID: 26832645 DOI: 10.1016/j.eimc.2015.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE AND DESIGN To evaluate the beneficial effects of exogenous NO and an inhibitor of the COX2, and their action levels in a model of SIRS/bacterial translocation (BT) induced by Zymosan A(®). MATERIAL AND METHODS Ninety Wistar rats were submitted to different treatments, and after 12h and 24h they were anaesthetized in order to collect blood, mesenteric lymph nodes, and kidney for subsequent biochemical analyses and microbiological examinations. TREATMENTS A nitric oxide donor, Molsidomine(®), was compared with a COX2 inhibitor, Celecoxib(®). METHODS Zymosan A(®) was administered to Wistar rats. The animals were divided into 6 groups: one group for survival study, Group (1) No manipulation (BASAL); Group (2) vehicle of Zymosan A(®) given intraperitoneally (SHAM); Group I (control), with Zymosan A(®) (0.6g/kg) intraperitoneally; Group II (Molsidomine), with Molsidomine(®) (4mg/kg) through the penis dorsal vein, 30min prior to administration of the Zy(®) (0.6g/kg); Group III (Celecoxib), with Celecoxib(®) (400mg/kg) orally through a stomach tube, 6h prior to administration of the Zy (0.6g/kg). DETERMINATIONS The parameters survival, bacterial translocation, renal function, neutrophil accumulation, oxygen free radicals (OFR), detoxifying enzymes, and cytokines were measured at different times after Zymosan administration. RESULTS The model established induced a mortality rate of 100% and generated BT and systemic inflammatory response syndrome (SIRS) in all samples. It also significantly increased all variables, with p<.001 for MPO and all pro-inflammatory cytokines, and p<.01 for all OFR. Treatment with Molsidomine reduced mortality to 0%, decreased BT, MPO, pro-inflammatory cytokines and OFR (p<.001) significantly and increased IL-10 and IL-6 production. Moreover, the Celecoxib(®) showed a lower capacity for SIRS regulation. CONCLUSIONS The exogenous administration of NO prevented BT and controlled SIRS. Therefore these results suggest that Molsidomine could be used as a therapeutic strategy to protect against BT.
Collapse
Affiliation(s)
- María Begoña García-Cenador
- Departamento Cirugía, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - María Fernanda Lorenzo-Gómez
- Departamento Cirugía, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | | - María Inmaculada García-García
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, Spain
| | - María Pilar Sánchez-Conde
- Departamento Cirugía, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Francisco Javier García-Criado
- Departamento Cirugía, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Enrique García-Sánchez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Lozano-Sánchez
- Departamento Cirugía, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - José Elías García-Sánchez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
12
|
Nikiforova TA, Shchekochikhin DY, Kopylov FY, Syrkin AL. [Prognostic value of biomarkers in chronic heart failure with preserved left ventricular ejection fraction]. TERAPEVT ARKH 2016. [PMID: 28635812 DOI: 10.17116/terarkh2016889102-105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The paper reviews major biomarkers for determining the prognosis in patients with chronic heart failure and preserved ejection fraction. It also considers cystatin C, one of the novel and probably the most practically important biomarkers.
Collapse
Affiliation(s)
- T A Nikiforova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - D Yu Shchekochikhin
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - F Yu Kopylov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - A L Syrkin
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
13
|
van Koppen A, Papazova DA, Oosterhuis NR, Gremmels H, Giles RH, Fledderus JO, Joles JA, Verhaar MC. Ex vivo exposure of bone marrow from chronic kidney disease donor rats to pravastatin limits renal damage in recipient rats with chronic kidney disease. Stem Cell Res Ther 2015; 6:63. [PMID: 25889756 PMCID: PMC4430868 DOI: 10.1186/s13287-015-0064-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/18/2015] [Accepted: 03/24/2015] [Indexed: 12/28/2022] Open
Abstract
Introduction Healthy bone marrow cell (BMC) infusion improves renal function and limits renal injury in a model of chronic kidney disease (CKD) in rats. However, BMCs derived from rats with CKD fail to retain beneficial effects, demonstrating limited therapeutic efficacy. Statins have been reported to improve cellular repair mechanisms. Methods We studied whether exposing CKD rat BMCs ex vivo to pravastatin improved their in vivo therapeutic efficacy in CKD and compared this to systemic in vivo treatment. Six weeks after CKD induction, healthy BMCs, healthy pravastatin-pretreated BMCs, CKD BMCs or CKD pravastatin-pretreated BMCs were injected into the renal artery of CKD rats. Results At 6 weeks after BMC injection renal injury was reduced in pravastatin-pretreated CKD BMC recipients vs. CKD BMC recipients. Effective renal plasma flow was lower and filtration fraction was higher in CKD BMC recipients compared to all groups whereas there was no difference between pravastatin-pretreated CKD BMC and healthy BMC recipients. Mean arterial pressure was higher in CKD BMC recipients compared to all other groups. In contrast, 6 weeks of systemic in vivo pravastatin treatment had no effect. In vitro results showed improved migration, decreased apoptosis and lower excretion of pro-inflammatory Chemokine (C-X-C Motif) Ligand 5 in pravastatin-pretreated CKD BMCs. Conclusions Short ex vivo exposure of CKD BMC to pravastatin improves CKD BMC function and their subsequent therapeutic efficacy in a CKD setting, whereas systemic statin treatment did not provide renal protection.
Collapse
Affiliation(s)
- Arianne van Koppen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, F03.223, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands. .,Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands.
| | - Diana A Papazova
- Department of Nephrology & Hypertension, University Medical Center Utrecht, F03.223, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Nynke R Oosterhuis
- Department of Nephrology & Hypertension, University Medical Center Utrecht, F03.223, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Hendrik Gremmels
- Department of Nephrology & Hypertension, University Medical Center Utrecht, F03.223, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Rachel H Giles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, F03.223, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Joost O Fledderus
- Department of Nephrology & Hypertension, University Medical Center Utrecht, F03.223, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, F03.223, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Marianne C Verhaar
- Department of Nephrology & Hypertension, University Medical Center Utrecht, F03.223, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| |
Collapse
|
14
|
Bongartz LG, Soni S, Cramer MJ, Steendijk P, Gaillard CAJM, Verhaar MC, Doevendans PA, van Veen TA, Joles JA, Braam B. Neuronal nitric oxide synthase-dependent amelioration of diastolic dysfunction in rats with chronic renocardiac syndrome. Cardiorenal Med 2015; 5:69-78. [PMID: 25759702 PMCID: PMC4327336 DOI: 10.1159/000370052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022] Open
Abstract
We have recently described the chronic renocardiac syndrome (CRCS) in rats with renal failure, cardiac dysfunction and low nitric oxide (NO) availability by combining subtotal nephrectomy and transient low-dose NO synthase (NOS) inhibition. Cardiac gene expression of the neuronal isoform of NOS (nNOS) was induced. Hence, we studied the role of nNOS, in vivo cardiac function and β-adrenergic response in our CRCS model by micromanometer/conductance catheter. Left ventricular (LV) hemodynamics were studied during administration of dobutamine (dobu), the highly specific irreversible inhibitor of nNOS L-VNIO [L-N5-(1-Imino-3-butenyl)-ornithine], or both at steady state and during preload reduction. Rats with CRCS showed LV systolic dysfunction at baseline, together with prolonged diastolic relaxation and rightward shift of the end-systolic pressure-volume relationships. After L-VNIO infusion, diastolic relaxation of CRCS rats further prolonged. The time constant of active relaxation (tau) increased by 25 ± 6% from baseline (p < 0.05), and the maximal rate of pressure decrease was 36 ± 7% slower (p < 0.001). These variables did not change in controls. In our CRCS model, nNOS did not seem to affect systolic dysfunction. In summary, in this model of CRCS, blockade of nNOS further worsens diastolic dysfunction and L-VNIO does not influence inherent contractility and the response to dobu stress.
Collapse
Affiliation(s)
- Lennart G Bongartz
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands ; Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Siddarth Soni
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten-Jan Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul Steendijk
- Department of Cardiology and Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Carlo A J M Gaillard
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Toon A van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Branko Braam
- Division of Nephrology and Immunology, Department of Medicine, University of Alberta, Edmonton, Alta., Canada ; Department Physiology, University of Alberta, Edmonton, Alta., Canada
| |
Collapse
|
15
|
Brown KE, Dhaun N, Goddard J, Webb DJ. Potential Therapeutic Role of Phosphodiesterase Type 5 Inhibition in Hypertension and Chronic Kidney Disease. Hypertension 2014; 63:5-11. [DOI: 10.1161/hypertensionaha.113.01774] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kayleigh E. Brown
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| | - Neeraj Dhaun
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| | - Jane Goddard
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| | - David J. Webb
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| |
Collapse
|
16
|
Abstract
Combined cardiac and renal dysfunction has gained considerable attention. Hypotheses about its pathogenesis have been formulated, albeit based on a relatively small body of experimental studies, and a clinical classification system has been proposed. Cardiorenal syndrome, as presently defined, comprises a heterogeneous group of acute and chronic clinical conditions, in which the failure of one organ (heart or kidney) initiates or aggravates failure of the other. This conceptual framework, however, has two major drawbacks: the first is that, despite worldwide interest, universally accepted definitions of cardiorenal syndrome are lacking and characterization of heart and kidney failure is not uniform. This lack of consistency hampers experimental studies on mechanisms of the disease. The second is that, although progress has been made in developing hypotheses for the pathogenesis of cardiorenal syndrome, these initiatives are at an impasse. No hierarchy has been identified in the myriad of haemodynamic and non-haemodynamic factors mediating cardiorenal syndrome. This Review discusses current understanding of cardiorenal syndrome and provides a roadmap for further studies in this field. Ultimately, discussion of the definition and characterization issues and of the lack of organization among pathogenetic factors is hoped to contribute to further advancement of this complex field.
Collapse
|
17
|
Affiliation(s)
- Jaap A. Joles
- Department of Nephrology and Hypertension; University Medical Centre Utrecht; Utrecht The Netherlands
| |
Collapse
|
18
|
Angiostatin production increases in response to decreased nitric oxide in aging rat kidney. J Transl Med 2013; 93:334-43. [PMID: 23295649 DOI: 10.1038/labinvest.2012.171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The development of interstitial fibrosis occurs with aging. Impaired angiogenesis, associated with progressive loss of the renal microvasculature, is thought to be a cause of age-related nephropathy. However, the mechanism of capillary loss in aging kidney has not been fully elucidated. Angiostatin is a kringle-containing fragment of plasminogen and is a potent inhibitor of angiogenesis in vivo. Whether angiostatin generation is increased in the aging kidney has not been investigated. We examined 4, 10, 16, and 24-month-old Sprague-Dawley rats for angiostatin production and found that angiostatin generation was increased in aged rats. The protein expression and the activity of cathepsin D-the enzyme for angiostatin production--were increased in aged rats. In the aging kidney, nitric oxide (NO) availability is decreased. To investigate the role of NO in angiostatin production, human umbilical vein endothelial cells were treated with L-NG-nitroarginine methyl ester (L-NAME). L-NAME-treated cells showed increased cathepsin D activity and angiostatin production. For in vivo experiments, 16- to 18-month-old rats were treated with L-NAME or molsidomine for 3 months. Angiostatin production was increased in L-NAME-treated kidney, accompanied by increased cathepsin D activity. In contrast, angiostatin production was decreased in molsidomine-treated kidney, accompanied by decreased cathepsin D activity. In conclusion, angiostatin generation by cathepsin D was increased in the aging rat kidney. Decreased NO production activated cathepsin D activity. Increased angiostatin production may be related to capillary loss and interstitial damage in the aging rat kidney.
Collapse
|
19
|
Bongartz LG, Braam B, Gaillard CA, Cramer MJ, Goldschmeding R, Verhaar MC, Doevendans PA, Joles JA. Target organ cross talk in cardiorenal syndrome: animal models. Am J Physiol Renal Physiol 2012; 303:F1253-63. [PMID: 22914779 DOI: 10.1152/ajprenal.00392.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The combination of chronic kidney disease (CKD) and heart failure (HF) is associated with an adverse prognosis. Although clinical studies hint at a specific bidirectional interaction between HF and CKD, insight into the pathogenesis of cardiorenal syndrome (CRS) remains limited. We review available evidence on cardiorenal interactions from animal models of CKD and HF and discuss several studies that employed a "double-hit" model to research organ cross talk between the heart and kidneys. Regarding cardiac changes in CKD models, parameters of cardiac remodeling are equivocal and cardiac systolic function generally remains preserved. Structural changes include hypertrophy, fibrosis, and microvasculopathy. In models of HF, data on renal pathology are mostly limited to functional hemodynamic changes. Most double-hit models were unable to show that combined renal and cardiac injury induces additive damage to both organs, perhaps because of the short study duration or absence of organ failure. Because of this lack of "dual-failure" models, we have developed two rat models of combined CKD and HF in which renal dysfunction induced by a subtotal nephrectomy preceded cardiac dysfunction. Cardiac dysfunction was induced either functionally by nitric oxide depletion or structurally by myocardial infarction. In both models, we found that cardiac remodeling and failure were worse in CKD rats compared with controls undergoing the same cardiac insult. Variables of renal damage, like glomerulosclerosis and proteinuria, were also further worsened by combined cardiorenal injury. These studies show that target organ cross talk does occur in CRS. These models may be useful for interventional studies in rats.
Collapse
Affiliation(s)
- Lennart G Bongartz
- Dept. of Nephrology and Hypertension, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
van Koppen A, Joles JA, van Balkom BWM, Lim SK, de Kleijn D, Giles RH, Verhaar MC. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS One 2012; 7:e38746. [PMID: 22723882 PMCID: PMC3378606 DOI: 10.1371/journal.pone.0038746] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/10/2012] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a major health care problem, affecting more than 35% of the elderly population worldwide. New interventions to slow or prevent disease progression are urgently needed. Beneficial effects of mesenchymal stem cells (MSC) have been described, however it is unclear whether the MSCs themselves or their secretome is required. We hypothesized that MSC-derived conditioned medium (CM) reduces progression of CKD and studied functional and structural effects in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX) combined with L-NNA and 6% NaCl diet in Lewis rats. Six weeks after SNX, CKD rats received either 50 µg CM or 50 µg non-CM (NCM) twice daily intravenously for four consecutive days. Six weeks after treatment CM administration was functionally effective: glomerular filtration rate (inulin clearance) and effective renal plasma flow (PAH clearance) were significantly higher in CM vs. NCM-treatment. Systolic blood pressure was lower in CM compared to NCM. Proteinuria tended to be lower after CM. Tubular and glomerular damage were reduced and more glomerular endothelial cells were found after CM. DNA damage repair was increased after CM. MSC-CM derived exosomes, tested in the same experimental setting, showed no protective effect on the kidney. In a rat model of established CKD, we demonstrated that administration of MSC-CM has a long-lasting therapeutic rescue function shown by decreased progression of CKD and reduced hypertension and glomerular injury.
Collapse
Affiliation(s)
- Arianne van Koppen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap A. Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bas W. M. van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sai Kiang Lim
- Institute of Medical Biology, A*STAR, Singapore, Republic of Singapore
| | - Dominique de Kleijn
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rachel H. Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
21
|
Bongartz LG, Joles JA, Verhaar MC, Cramer MJ, Goldschmeding R, Tilburgs C, Gaillard CA, Doevendans PA, Braam B. Subtotal nephrectomy plus coronary ligation leads to more pronounced damage in both organs than either nephrectomy or coronary ligation. Am J Physiol Heart Circ Physiol 2011; 302:H845-54. [PMID: 22140040 DOI: 10.1152/ajpheart.00261.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coexistence of chronic kidney disease (CKD) and heart failure (HF) in humans is associated with poor outcome. We hypothesized that preexistent CKD worsens cardiac outcome after myocardial infarction, and conversely that ensuing HF worsens progression of CKD. Subtotally nephrectomized (SNX) or sham-operated (CON) rats were subjected to coronary ligation (CL) or sham surgery in week 9 to realize four groups: CON, SNX, CON + CL, and SNX + CL. Blood pressure and renal function were measured in weeks 8, 11, 13, and 15. In week 16, cardiac hemodynamics and end-organ damage were assessed. Blood pressure was significantly lower in SNX + CL vs. SNX. Despite this, glomerulosclerosis was more severe in SNX + CL vs. SNX. Two weeks after CL, SNX + CL had more cardiac dilatation compared with CON + CL (end-diastolic volume index: 0.28 ± 0.04 vs. 0.19 ± 0.03 ml/100 g body wt; mean ± SD, P < 0.001), although infarct size was similar. During follow-up in SNX + CL, ejection fraction declined. Mortality was only observed in SNX + CL (2 out of 9). In SNX + CL, end-diastolic pressure (18 ± 4 mmHg) and tau (29 ± 9 ms), the time constant of active relaxation, were significantly higher compared with SNX (13 ± 3 mmHg, 20 ± 4 ms; P < 0.01) and CON + CL (11 ± 5 mmHg, 17 ± 2 ms; P < 0.01). The diameter of small arterioles in the myocardium was significantly decreased in SNX + CL vs. CON + CL (P < 0.01). Urinary excretion of NO metabolites was significantly lower in SNX + CL compared with both CL and SNX. This study demonstrates the existence of more heart and more kidney damage in a new model of combined CKD and HF than in the individual models. Such enhanced damage appears to be separate from systemic hemodynamic changes. Reduced nitric oxide availability may have played a role in both worsened glomerulosclerosis and cardiac diastolic function and appears to be a connector in the cardiorenal syndrome.
Collapse
|
22
|
Wesseling S, Essers PB, Koeners MP, Pereboom TC, Braam B, van Faassen EE, Macinnes AW, Joles JA. Perinatal exogenous nitric oxide in fawn-hooded hypertensive rats reduces renal ribosomal biogenesis in early life. Front Genet 2011; 2:52. [PMID: 22303348 PMCID: PMC3268605 DOI: 10.3389/fgene.2011.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 08/02/2011] [Indexed: 01/21/2023] Open
Abstract
Nitric oxide (NO) is known to depress ribosome biogenesis in vitro. In this study we analyzed the influence of exogenous NO on ribosome biogenesis in vivo using a proven antihypertensive model of perinatal NO administration in genetically hypertensive rats. Fawn-hooded hypertensive rat (FHH) dams were supplied with the NO-donor molsidomine in drinking water from 2 weeks before to 4 weeks after birth, and the kidneys were subsequently collected from 2 day, 2 week, and 9 to 10-month-old adult offspring. Although the NO-donor increased maternal NO metabolite excretion, the NO status of juvenile renal (and liver) tissue was unchanged as assayed by EPR spectroscopy of NO trapped with iron-dithiocarbamate complexes. Nevertheless, microarray analysis revealed marked differential up-regulation of renal ribosomal protein genes at 2 days and down-regulation at 2 weeks and in adult males. Such differential regulation of renal ribosomal protein genes was not observed in females. These changes were confirmed in males at 2 weeks by expression analysis of renal ribosomal protein L36a and by polysome profiling, which also revealed a down-regulation of ribosomes in females at that age. However, renal polysome profiles returned to normal in adults after early exposure to molsidomine. No direct effects of molsidomine were observed on cellular proliferation in kidneys at any age, and the changes induced by molsidomine in renal polysome profiles at 2 weeks were absent in the livers of the same rats. Our results suggest that the previously found prolonged antihypertensive effects of perinatal NO administration may be due to epigenetically programmed alterations in renal ribosome biogenesis during a critical fetal period of renal development, and provide a salient example of a drug-induced reduction of ribosome biogenesis that is accompanied by a beneficial long-term health effect in both males and females.
Collapse
Affiliation(s)
- Sebastiaan Wesseling
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|