1
|
Ghorbannia A, Maadooliat M, Woods RK, Audi SH, Tefft BJ, Chiastra C, Ibrahim ESH, LaDisa JF. Aortic Remodeling Kinetics in Response to Coarctation-Induced Mechanical Perturbations. Biomedicines 2023; 11:1817. [PMID: 37509457 PMCID: PMC10377168 DOI: 10.3390/biomedicines11071817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Background: Coarctation of the aorta (CoA; constriction of the proximal descending thoracic aorta) is among the most common congenital cardiovascular defects. Coarctation-induced mechanical perturbations trigger a cycle of mechano-transduction events leading to irreversible precursors of hypertension including arterial thickening, stiffening, and vasoactive dysfunction in proximal conduit arteries. This study sought to identify kinetics of the stress-mediated compensatory response leading to these alterations using a preclinical rabbit model of CoA. Methods: A prior growth and remodeling (G&R) framework was reformulated and fit to empirical measurements from CoA rabbits classified into one control and nine CoA groups of various severities and durations (n = 63, 5-11/group). Empirical measurements included Doppler ultrasound imaging, uniaxial extension testing, catheter-based blood pressure, and wire myography, yielding the time evolution of arterial thickening, stiffening, and vasoactive dysfunction required to fit G&R constitutive parameters. Results: Excellent agreement was observed between model predictions and observed patterns of arterial thickening, stiffening, and dysfunction among all CoA groups. For example, predicted vascular impairment was not significantly different from empirical observations via wire myography (p-value > 0.13). Specifically, 48% and 45% impairment was observed in smooth muscle contraction and endothelial-dependent relaxation, respectively, which were accurately predicted using the G&R model. Conclusions: The resulting G&R model, for the first time, allows for prediction of hypertension precursors at neonatal ages that is currently challenging to examine in preclinical models. These findings provide a validated computational tool for prediction of persistent arterial dysfunction and identification of revised severity-duration thresholds that may ultimately avoid hypertension from CoA.
Collapse
Affiliation(s)
- Arash Ghorbannia
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI 53226, USA; (S.H.A.); (B.J.T.); (E.S.H.I.); (J.F.L.)
- Section of Pediatric Cardiology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA
| | - Mehdi Maadooliat
- Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, WI 53233, USA;
| | - Ronald K. Woods
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA;
| | - Said H. Audi
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI 53226, USA; (S.H.A.); (B.J.T.); (E.S.H.I.); (J.F.L.)
| | - Brandon J. Tefft
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI 53226, USA; (S.H.A.); (B.J.T.); (E.S.H.I.); (J.F.L.)
| | - Claudio Chiastra
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy;
| | - El Sayed H. Ibrahim
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI 53226, USA; (S.H.A.); (B.J.T.); (E.S.H.I.); (J.F.L.)
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John F. LaDisa
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI 53226, USA; (S.H.A.); (B.J.T.); (E.S.H.I.); (J.F.L.)
- Section of Pediatric Cardiology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
de Nadai TR, de Nadai MN, Cassiano Silveira AP, Celotto AC, Albuquerque AAS, de Carvalho MTR, Scarpelini S, Rodrigues AJ, Evora PRB. In vitro effects of extracellular hypercapnic acidification on the reactivity of rat aorta. Nitric Oxide 2015; 50:79-87. [DOI: 10.1016/j.niox.2015.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/18/2015] [Accepted: 09/02/2015] [Indexed: 11/28/2022]
|
3
|
Rodríguez-Sinovas A, Abad E, Sánchez JA, Fernández-Sanz C, Inserte J, Ruiz-Meana M, Alburquerque-Béjar JJ, García-Dorado D. Microtubule stabilization with paclitaxel does not protect against infarction in isolated rat hearts. Exp Physiol 2014; 100:23-34. [DOI: 10.1113/expphysiol.2014.082925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/30/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Antonio Rodríguez-Sinovas
- Laboratorio de Cardiología Experimental; Vall d'Hebron University Hospital and Research Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Elena Abad
- Laboratorio de Cardiología Experimental; Vall d'Hebron University Hospital and Research Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Jose A. Sánchez
- Laboratorio de Cardiología Experimental; Vall d'Hebron University Hospital and Research Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Celia Fernández-Sanz
- Laboratorio de Cardiología Experimental; Vall d'Hebron University Hospital and Research Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Javier Inserte
- Laboratorio de Cardiología Experimental; Vall d'Hebron University Hospital and Research Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Marisol Ruiz-Meana
- Laboratorio de Cardiología Experimental; Vall d'Hebron University Hospital and Research Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Juan José Alburquerque-Béjar
- Laboratorio de Cardiología Experimental; Vall d'Hebron University Hospital and Research Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - David García-Dorado
- Laboratorio de Cardiología Experimental; Vall d'Hebron University Hospital and Research Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| |
Collapse
|
4
|
Kautzky-Willer A, Brazzale AR, Moro E, Vrbíková J, Bendlova B, Sbrignadello S, Tura A, Pacini G. Influence of increasing BMI on insulin sensitivity and secretion in normotolerant men and women of a wide age span. Obesity (Silver Spring) 2012; 20:1966-73. [PMID: 22282046 DOI: 10.1038/oby.2011.384] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The impact of sex and age on glucose metabolism in the development of overweight/obesity is a matter of debate. We hypothesized that insulin sensitivity (IS) and β-cell function (BF) in a normal white population will differ between males and females and aimed to evaluate the possible effects of BMI and age on metabolic parameters of both sexes. This study is a cross-sectional analysis of the general community. IS was measured with quantitative insulin sensitivity check index (QUICKI) and oral glucose insulin sensitivity (OGIS) and BF with the insulinogenic index during 75-g 2-h oral glucose-tolerance tests (OGTTs). We studied 611 females and 361 males with normal glycemia according to both fasting and 2-h glucose (85 ± 0.3 mg/dl (means ± SE) in females and 89 ± 0.4 in males (P < 0.0001), and 93 ± 1 in females and 89 ± 1 in males (P = 0.005), respectively). Females were younger (37 ± 1 years) than males (40 ± 1, P < 0.0001), but no difference was found in mean BMI (BMI = 25.8 ± 0.2 kg/m(2) in both). Student's two-sample t-test was used for simple comparison between and within genders, multiple linear regressions to account for covariates. During the OGTT, females had lower glucose (area under the curve (AUC) 133 ± 1 mg/ml·2 h vs. 148 ± 2; P < 0.00001), while insulinemia was comparable (AUC 5.3 ± 0.1 mU/ml·2 h vs. 5.7 ± 0.2, P = 0.15). IS remained higher in females (473 ± 3 ml/min/m(2) vs. 454 ± 3, P < 0.0001) also after having accounted for age and BMI (P = 0.015). No difference was observed in fasting insulin or BF. However, BF increased by 46% with BMI and when accounting for age and BMI, BF of females was significantly higher (P < 0.0001). Because IS and BF are higher in females than in males, sex should be considered in metabolic studies and overweight/obese populations.
Collapse
Affiliation(s)
- Alexandra Kautzky-Willer
- Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Menon A, Eddinger TJ, Wang H, Wendell DC, Toth JM, LaDisa JF. Altered hemodynamics, endothelial function, and protein expression occur with aortic coarctation and persist after repair. Am J Physiol Heart Circ Physiol 2012; 303:H1304-18. [PMID: 23023871 DOI: 10.1152/ajpheart.00420.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coarctation of the aorta (CoA) is associated with substantial morbidity despite treatment. Mechanically induced structural and functional vascular changes are implicated; however, their relationship with smooth muscle (SM) phenotypic expression is not fully understood. Using a clinically representative rabbit model of CoA and correction, we quantified mechanical alterations from a 20-mmHg blood pressure (BP) gradient in the thoracic aorta and related the expression of key SM contractile and focal adhesion proteins with remodeling, relaxation, and stiffness. Systolic and mean BP were elevated for CoA rabbits compared with controls leading to remodeling, stiffening, an altered force response, and endothelial dysfunction both proximally and distally. The proximal changes persisted for corrected rabbits despite >12 wk of normal BP (~4 human years). Computational fluid dynamic simulations revealed reduced wall shear stress (WSS) proximally in CoA compared with control and corrected rabbits. Distally, WSS was markedly increased in CoA rabbits due to a stenotic velocity jet, which has persistent effects as WSS was significantly reduced in corrected rabbits. Immunohistochemistry revealed significantly increased nonmuscle myosin and reduced SM myosin heavy chain expression in the proximal arteries of CoA and corrected rabbits but no differences in SM α-actin, talin, or fibronectin. These findings indicate that CoA can cause alterations in the SM phenotype contributing to structural and functional changes in the proximal arteries that accompany the mechanical stimuli of elevated BP and altered WSS. Importantly, these changes are not reversed upon BP correction and may serve as markers of disease severity, which explains the persistent morbidity observed in CoA patients.
Collapse
Affiliation(s)
- Arjun Menon
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|
7
|
Crimi E, Taccone FS, Infante T, Scolletta S, Crudele V, Napoli C. Effects of intracellular acidosis on endothelial function: an overview. J Crit Care 2011; 27:108-18. [PMID: 21798701 DOI: 10.1016/j.jcrc.2011.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/17/2011] [Accepted: 06/03/2011] [Indexed: 01/13/2023]
Abstract
The endothelium represents the largest functional organ in the human body playing an active role in vasoregulation, coagulation, inflammation, and microvascular permeability. Endothelium contributes to maintain vascular integrity, intravascular volume, and tissue oxygenation promoting inflammatory network response for local defense and repair. Acid-basis homeostasis is an important physiologic parameter that controls cell function, and changes in pH can influence vascular tone by regulating endothelium and vascular smooth muscle cells. This review presents a current perspective of the effects of intracellular acidosis on the function and the basic regulatory mechanisms of endothelial cells.
Collapse
Affiliation(s)
- Ettore Crimi
- Department of Anesthesia and Critical Care Medicine, Shands Hospital, University of Florida, Gainesville, FL 32608, USA
| | | | | | | | | | | |
Collapse
|
8
|
Celotto AC, Restini CBA, Capellini VK, Bendhack LM, Evora PRB. Acidosis induces relaxation mediated by nitric oxide and potassium channels in rat thoracic aorta. Eur J Pharmacol 2011; 656:88-93. [PMID: 21300058 DOI: 10.1016/j.ejphar.2011.01.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 01/05/2011] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
We investigated the mechanism by which extracellular acidification promotes relaxation in rat thoracic aorta. The relaxation response to HCl-induced extracellular acidification (7.4 to 6.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M) or KCl (45mM). The vascular reactivity experiments were performed in endothelium-intact and denuded rings, in the presence or absence of indomethacin (10(-5) M), L-NAME (10(-4) M), apamin (10(-6) M), and glibenclamide (10(-5) M). The effect of extracellular acidosis (pH 7.0 and 6.5) on nitric oxide (NO) production was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5μM). The extracellular acidosis failed to induce any changes in the vascular tone of aortic rings pre-contracted with KCl, however, it caused endothelium-dependent and independent relaxation in rings pre-contracted with Phe. This acidosis induced-relaxation was inhibited by L-NAME, apamin, and glibenclamide, but not by indomethacin. The acidosis (pH 7.0 and 6.5) also promoted a time-dependent increase in the NO production by the isolated endothelial cells. These results suggest that extracellular acidosis promotes vasodilation mediated by NO, K(ATP) and SK(Ca), and maybe other K(+) channels in isolated rat thoracic aorta.
Collapse
Affiliation(s)
- Andréa C Celotto
- Laboratory of Endothelial Function, Department of Surgery and Anatomy, School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|
9
|
Guan YF, Pritts TA, Montrose MH. Ischemic post-conditioning to counteract intestinal ischemia/reperfusion injury. World J Gastrointest Pathophysiol 2010; 1:137-43. [PMID: 21607154 PMCID: PMC3097957 DOI: 10.4291/wjgp.v1.i4.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/29/2010] [Accepted: 10/06/2010] [Indexed: 02/06/2023] Open
Abstract
Intestinal ischemia is a severe disorder with a variety of causes. Reperfusion is a common occurrence during treatment of acute intestinal ischemia but the injury resulting from ischemia/reperfusion (IR) may lead to even more serious complications from intestinal atrophy to multiple organ failure and death. The susceptibility of the intestine to IR-induced injury (IRI) appears from various experimental studies and clinical settings such as cardiac and major vascular surgery and organ transplantation. Whereas oxygen free radicals, activation of leukocytes, failure of microvascular perfusion, cellular acidosis and disturbance of intracellular homeostasis have been implicated as important factors in the pathogenesis of intestinal IRI, the mechanisms underlying this disorder are not well known. To date, increasing attention is being paid in animal studies to potential pre- and post-ischemia treatments that protect against intestinal IRI such as drug interference with IR-induced apoptosis and inflammation processes and ischemic pre-conditioning. However, better insight is needed into the molecular and cellular events associated with reperfusion-induced damage to develop effective clinical protection protocols to combat this disorder. In this respect, the use of ischemic post-conditioning in combination with experimentally prolonged acidosis blocking deleterious reperfusion actions may turn out to have particular clinical relevance.
Collapse
|