1
|
Delgado Spicuzza JM, Gosalia J, Studinski M, Armando C, Alipour E, Kim-Shapiro DB, Flanagan M, Somani YB, Proctor DN. The acute effects of dietary nitrate supplementation on postmenopausal endothelial resistance to ischemia reperfusion injury: a randomized, placebo-controlled, double blind, crossover clinical trial. Can J Physiol Pharmacol 2024; 102:634-647. [PMID: 38901043 DOI: 10.1139/cjpp-2024-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Postmenopausal cardiovascular health is a critical determinant of longevity. Consumption of beetroot juice (BR) and other nitrate-rich foods is a safe, effective non-pharmaceutical intervention to increase systemic bioavailability of the vasoprotective molecule, nitric oxide, through the exogenous nitrate (NO3 -)-nitrite (NO2 -)-nitric oxide (NO) pathway. We hypothesized that a single dose of nitrate-rich beetroot juice (BRnitrate 600 mg NO3 -/140 mL, BRplacebo ∼ 0 mg/140 mL) would improve resting endothelial function and resistance to ischemia-reperfusion (IR) injury to a greater extent in early-postmenopausal (1-6 years following their final menstrual period (FMP), n = 12) compared to late-postmenopausal (6+ years after FMP, n = 12) women. Analyses with general linear models revealed a significant (p < 0.05) time*treatment interaction effect for brachial artery adjusted flow-mediated dilation (FMD). Pairwise comparisons revealed that adjusted FMD was significantly lower following IR-injury in comparison to all other time points with BRplacebo (early FMD 2.51 ± 1.18%, late FMD 1.30 ± 1.10, p < 0.001) and was lower than post-IR with BRnitrate (early FMD 3.84 ± 1.21%, late FMD 3.21 ± 1.13%, p = 0.014). A single dose of BRnitrate significantly increased resting macrovascular function in the late postmenopausal group only (p = 0.005). Considering the postmenopausal stage-dependent variations in endothelial responsiveness to dietary nitrate, we predict differing mechanisms underpin macrovascular protection against IR injury.
Collapse
Affiliation(s)
| | - Jigar Gosalia
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Matthew Studinski
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, USA
| | - Chenée Armando
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | | | - Michael Flanagan
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Yasina B Somani
- Department of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David N Proctor
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, USA
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
2
|
Alvares TS, Maturana FM, Soares RN. Sex differences in the predictors of skeletal muscle microvascular reactivity in older individuals. Maturitas 2024; 189:108115. [PMID: 39276434 DOI: 10.1016/j.maturitas.2024.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Aging is associated with an increased risk of cardiovascular disease and vascular dysfunction. Reduced nitric oxide bioavailability is considered one of the key mechanisms underlying vascular dysfunction in large arteries of older adults. However, the relationship between cardiovascular disease risk factors, nitric oxide bioavailability, and skeletal muscle microvascular reactivity, an early hallmark in cardiovascular disease progression, is unclear in older individuals. Also uncertain is whether this relationship is influenced by sex. Therefore, this study assessed the association between cardiovascular disease risk factors, circulating markers of nitric oxide availability (plasma nitrate and nitrite), and skeletal muscle microvascular reactivity in older individuals. First, we confirmed in a cohort of young and older individuals that aging is associated with skeletal muscle microvascular dysfunction. Next, we observed that skeletal muscle microvascular reactivity (P = 0.653; η2 = 0.016) and circulating nitric oxide metabolites (Nitrate: P = 0.641, η2 = 0.011; Nitrite: P = 0.560, η2 = 0.017; NOx: P = 0.639, η2 = 0.011) did not differ between older males and females. Finally, using multivariate regression models, we found that: (i) the number of cardiovascular risk factors was negatively associated with skeletal muscle microvascular reactivity in older males and females (B = -0.132, P = 0.044); (ii) the relationship between plasma nitrite and skeletal muscle microvascular reactivity was influenced by sex (F = 6.837, P = 0.016); and (iii) skeletal muscle microvascular reactivity in older females displayed a strong positive association with plasma nitrite (R2 = 0.720, P < 0.001). While the impact of cardiovascular disease risk factors on skeletal muscle microvascular reactivity was not influenced by sex, sex-related discrepancies were found in the relationship between nitric oxide bioavailability and skeletal muscle microvascular reactivity in older individuals.
Collapse
Affiliation(s)
- Thiago Silveira Alvares
- Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
3
|
Almendra-Pegueros R, Barros-Membrilla AJ, Pérez-Marlasca E, Julve J, Martinez-González J, Rodriguez C, Galán M. Identification of new therapeutic targets related to endoplasmic reticulum stress and mitochondrial dysfunction to reduce the risk of rupture in degenerative ascending aortic aneurysm. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024:S0214-9168(24)00089-5. [PMID: 39424523 DOI: 10.1016/j.arteri.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Ascending Thoracic Aortic Aneurysm (ATAA) is a progressive dilation of the aorta that can be complicated by its dissection leading to death in 80-90% of the patients. When associated with aging and atherosclerosis, the outcome is worse and reconstructive surgery is the only effective therapy. Our objective was to characterize differential expressed genes (DEG) involved in endoplasmic reticulum (ER) and mitochondria dysfunction in patients with degenerative ATAA. METHODS A transcriptomic analysis was performed by RNA sequencing using RNA isolated from ATAA of patients classified as degenerative (n=13) and multi-organ healthy donors (n=6). DEGs related to ER stress and mitochondrial dysfunction were identified with the DESeq2 package. Enriched pathway (Reactome) and protein interaction (PPI) analysis was performed with the clusterProfiles package. PPI of the selected DEGs was analyzed based on the string database and visualized by Cytoscape software. RESULTS Histology revealed a complete disorganization of the extracellular matrix (ECM) and cell loss in the aortic wall of ATAA patients where the upregulation of 15 DEGs and the downregulation of 13 DEGs that encode proteins related to ER stress (ATF4, EIF2AK3, HSPA5, ERN1, SEL1L), mitochondrial dysfunction (DNML1, IMMT, MT-CO3, MT-CYB, MT ND2, TIMM17B, MT-ERF1, TOMM5) and ECM was detected. The results of GO term and enriched pathway analysis indicated that these DEGs are mainly enriched in pathways related to aortic diseases. CONCLUSIONS Our data show that proteins related to mitochondrial dysfunction and ER stress might be therapeutic targets for the treatment of ATAA.
Collapse
Affiliation(s)
| | | | - Elvira Pérez-Marlasca
- Facultad de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, España
| | - Josep Julve
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, España; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Instituto Carlos III (ISCIII), Madrid, España
| | - José Martinez-González
- CIBER de Enfermedades Cardiovasculares, CIBERCV, Instituto Carlos III (ISCIII), Madrid, España; Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España
| | - Cristina Rodriguez
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, España; CIBER de Enfermedades Cardiovasculares, CIBERCV, Instituto Carlos III (ISCIII), Madrid, España
| | - María Galán
- Facultad de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, España; CIBER de Enfermedades Cardiovasculares, CIBERCV, Instituto Carlos III (ISCIII), Madrid, España.
| |
Collapse
|
4
|
Yang D, Tao S, Shao M, Huang L, Xiao X, Zhang J, Yao R, Sun Z. Effectiveness of exercise training on arterial stiffness and blood pressure among postmenopausal women: a systematic review and meta-analysis. Syst Rev 2024; 13:169. [PMID: 38956626 PMCID: PMC11221034 DOI: 10.1186/s13643-024-02589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The acute and long-term benefits of exercise training on cardiovascular health have been well established. The systematic review and meta-analysis aimed to systematically assess the effectiveness of exercise training on arterial stiffness and blood pressure among postmenopausal women with elevated blood pressure. METHODS A comprehensive search was conducted on PubMed, Embase, Web of Science, ProQuest, Cochrane Library, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov website from inception to September 30, 2023, to identify the randomized controlled trials (RCTs), which evaluated the effectiveness of exercise training on arterial stiffness and blood pressure in postmenopausal women. Standardized mean differences (SMD), weighted mean differences (WMD), and 95% confidence intervals (95% CIs) were calculated using random/fixed effects models. Quality assessment was performed using the modified Jadad scale and the Cochrane Risk of Bias Tool. Sensitivity analysis and subgroup analysis were conducted based on drug dosage, treatment duration, and age of administration to further explore potential heterogeneity. Funnel plots were performed to assess publication bias and Begg's regression test was carried out for funnel plot asymmetry. RESULTS Twenty-two RCTs involving 1978 participants were included in the quantitative analysis. The mean quality of eligible studies was 4.2 out of 7 based on the modified Jadad scale. The results indicated that exercise training had a significant effect on reducing brachial-ankle pulse wave velocity [MD = - 0.69, 95%CI (- 1.11, - 0.27), P = 0.001], decreasing augmentation index (AIx) [MD = - 6.00, 95%CI (- 6.39, - 5.61), P < 0.00001] and AIx normalized to a heart rate of 75 beats per minute (AIx@75%) [MD = - 7.01, 95%CI - 7.91 to - 6.12, P < 0.00001], lowering systolic blood pressure [MD = - 6.19, 95%CI - 9.24 to - 3.15, P < 0.0001], diastolic blood pressure [MD = - 3.57, 95%CI (- 6.10, - 1.03), P = 0.006) and pulse pressure [MD = - 8.52, 95%CI (- 16.27, - 0.76), P = 0.03]. Subgroup analysis revealed that baseline blood pressure levels had a large impact on the effect of exercise training. CONCLUSIONS The systematic review and meta-analysis suggested that exercise training may ameliorate arterial stiffness and reduce blood pressure in postmenopausal women with elevated blood pressure. However, the optimal mode of exercise training that improves arterial stiffness and blood pressure in this population requires further investigation. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021211268.
Collapse
Affiliation(s)
- Deshuang Yang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Shiyi Tao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Shao
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China.
| | - Li Huang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiang Xiao
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Jin Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiqi Yao
- Department of Internal Medicine, Shenzhen Nanshan Chinese Medicine Hospital, Guangdong, China
| | - Ziyi Sun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Coelingh Bennink HJT, Prowse A, Egberts JFM, Debruyne FMJ, Huhtaniemi IT, Tombal B. The Loss of Estradiol by Androgen Deprivation in Prostate Cancer Patients Shows the Importance of Estrogens in Males. J Endocr Soc 2024; 8:bvae107. [PMID: 38883397 PMCID: PMC11177789 DOI: 10.1210/jendso/bvae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 06/18/2024] Open
Abstract
The role of estradiol (E2; an estrogen) in men needs to be more appreciated. In this review, we address the clinical situations that allow the study of the clinical consequences of E2 deficiency in men and discuss the effects of restoration of levels of this reproductive steroid hormone. In men with advanced prostate cancer (PCa) undergoing androgen deprivation therapy (ADT), E2 is suppressed along with testosterone, leading to side effects affecting the quality of life. These include hot flashes, arthralgia, fatigue, mood changes, cognition problems, weight gain, bone loss, and increased risk of cardiovascular disease. Transdermal E2 alone for ADT has shown equivalent testosterone suppression compared to gonadotropin-releasing hormone (GnRH) agonists while also preventing estrogen-deficiency side effects, including hot flashes and bone loss. Co-treatment of ADT with fetal estrogen estetrol (E4) has shown significant improvements of estrogen-deficiency symptoms. These observations emphasize the need to raise awareness of the importance of estrogens in men among clinicians and the lay public.
Collapse
Affiliation(s)
| | - Amanda Prowse
- Terminal 4 Communications, 1217 SK Hilversum, The Netherlands
| | - Jan F M Egberts
- Terminal 4 Communications, 1217 SK Hilversum, The Netherlands
| | | | - Ilpo T Huhtaniemi
- Institute of Reproductive and Developmental Biology, Imperial College London, London SW7 2AZ, UK
| | - Bertrand Tombal
- Division of Urology, University Clinic Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
6
|
Dobner S, Tóth F, de Rooij LPMH. A high-resolution view of the heterogeneous aging endothelium. Angiogenesis 2024; 27:129-145. [PMID: 38324119 PMCID: PMC11021252 DOI: 10.1007/s10456-023-09904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Vascular endothelial cell (EC) aging has a strong impact on tissue perfusion and overall cardiovascular health. While studies confined to the investigation of aging-associated vascular readouts in one or a few tissues have already drastically expanded our understanding of EC aging, single-cell omics and other high-resolution profiling technologies have started to illuminate the intricate molecular changes underlying endothelial aging across diverse tissues and vascular beds at scale. In this review, we provide an overview of recent insights into the heterogeneous adaptations of the aging vascular endothelium. We address critical questions regarding tissue-specific and universal responses of the endothelium to the aging process, EC turnover dynamics throughout lifespan, and the differential susceptibility of ECs to acquiring aging-associated traits. In doing so, we underscore the transformative potential of single-cell approaches in advancing our comprehension of endothelial aging, essential to foster the development of future innovative therapeutic strategies for aging-associated vascular conditions.
Collapse
Affiliation(s)
- Sarah Dobner
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fanni Tóth
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura P M H de Rooij
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
7
|
Damani JJ, Rogers CJ, Lee H, Strock NC, Koltun KJ, Williams NI, Weaver C, Ferruzzi MG, Nakatsu CH, De Souza MJ. Effects of Prune (Dried Plum) Supplementation on Cardiometabolic Health in Postmenopausal Women: An Ancillary Analysis of a 12-Month Randomized Controlled Trial, The Prune Study. J Nutr 2024; 154:1604-1618. [PMID: 38490532 PMCID: PMC11347804 DOI: 10.1016/j.tjnut.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Estrogen withdrawal during menopause is associated with an unfavorable cardiometabolic profile. Prunes (dried plums) represent an emerging functional food and have been previously demonstrated to improve bone health. However, our understanding of the effects of daily prune intake on cardiometabolic risk factors in postmenopausal women is limited. OBJECTIVES We conducted an ancillary investigation of a randomized controlled trial (RCT), The Prune Study, to evaluate the effect of 12-mo prune supplementation on cardiometabolic health markers in postmenopausal women. METHODS The Prune Study was a single-center, parallel-design, 12-mo RCT in which postmenopausal women were allocated to no-prune control, 50 g/d prune, or 100 g/d prune groups. Blood was collected at baseline, 6 mo, and 12 mo/post to measure markers of glycemic control and blood lipids. Body composition was assessed at baseline, 6 mo, and 12 mo/post using dual-energy X-ray absorptiometry. Linear mixed-effects models were used to evaluate the effect of time, treatment, and their interaction on cardiometabolic health markers, all quantified as exploratory outcomes. RESULTS A total of 183 postmenopausal women (mean age, 62.1 ± 4.9 y) completed the entire 12-mo RCT: control (n = 70), 50 g/d prune (n = 67), and 100 g/d prune (n = 46). Prune supplementation at 50 g/d or 100 g/d did not alter markers of glycemic control and blood lipids after 12 mo compared with the control group (all P > 0.05). Furthermore, gynoid percent fat and visceral adipose tissue (VAT) indices did not significantly differ in women consuming 50 g/d or 100 g/d prunes compared with the control group after 12 mo of intervention. However, android total mass increased by 3.19% ± 5.5% from baseline in the control group, whereas the 100 g/d prune group experienced 0.02% ± 5.6% decrease in android total mass from baseline (P < 0.01). CONCLUSIONS Prune supplementation at 50 g/d or 100 g/d for 12 mo does not improve glycemic control and may prevent adverse changes in central adiposity in postmenopausal women. This trial was registered at clinicaltrials.gov as NCT02822378.
Collapse
Affiliation(s)
- Janhavi J Damani
- The Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States; Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, University of Georgia, Athens, GA, United States
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicole Ca Strock
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Kristen J Koltun
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States; Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nancy I Williams
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Connie Weaver
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mario G Ferruzzi
- Arkansas Children's Nutrition Center, Department of Pediatrics, University of Arkansas for Medical Science, Little Rock, AR, United States
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
8
|
Bae S, Park SM, Kim SR, Kim MN, Cho DH, Kim HD, Yoon HJ, Kim MA, Kim HL, Hong KS, Shin MS, Jeong JO, Shim WJ. Early menopause is associated with abnormal diastolic function and poor clinical outcomes in women with suspected angina. Sci Rep 2024; 14:6306. [PMID: 38491090 PMCID: PMC10943187 DOI: 10.1038/s41598-024-57058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Early identification of women at high risk for cardiovascular diseases (CVD), with subsequent monitoring, will allow for improved clinical outcomes and generally better quality of life. This study aimed to identify the associations between early menopause, abnormal diastolic function, and clinical outcomes. This retrospective study included 795 menopausal women from is a nationwide, multicenter, registry of patients with suspected angina visiting outpatient clinic. The patients into two groups: early and normal menopause (menopausal age ≤ 45 and > 45 years, respectively). If participants met > 50% of the diastolic function criteria, they were classified as having normal diastolic function. Multivariable-adjusted Cox models were used to test associations between menopausal age and clinical outcomes including the incidence of major adverse cardiovascular events (MACE), over a median follow-up period of 771 days. Early menopause was associated with increased waist circumference (p = 0.001), diabetes prevalence (p = 0.003), obstructive coronary artery disease (p = 0.005), abnormal diastolic function (p = 0.003) and greater incidences of MACE, acute coronary syndrome, and hospitalization for heart failure. In patients with abnormal diastolic function, early menopause increased MACE risk significantly, with no significant difference in normal diastolic function. These findings highlight early menopause and abnormal diastolic function as being potential risk markers in women for midlife CVD events.
Collapse
Affiliation(s)
- SungA Bae
- Department of Cardiology, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul, Gyeonggi-Do, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Seong-Mi Park
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| | - So Ree Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Mi-Na Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Dong-Hyuk Cho
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Hee-Dong Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Hyun Ju Yoon
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Myung-A Kim
- Department of Cardiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Hack-Lyoung Kim
- Department of Cardiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Kyung-Soon Hong
- Department of Cardiology, Hallym University Medical Center, Seoul, Chuncheon, Republic of Korea
| | - Mi-Seung Shin
- Department of Cardiology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Jin-Ok Jeong
- Department of Cardiology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Wan-Joo Shim
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Kehmeier MN, Khurana A, Bedell BR, Cullen AE, Cannon AT, Henson GD, Walker AE. Effects of dietary soy content on cerebral artery function and behavior in ovariectomized female mice. Am J Physiol Heart Circ Physiol 2024; 326:H636-H647. [PMID: 38156886 PMCID: PMC11221805 DOI: 10.1152/ajpheart.00618.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
As females age, they transition through menopause, experiencing a decrease in estrogen and an increase in cardiovascular and neurodegenerative disease risk. Most standard rodent chows contain phytoestrogen-rich soybean meal, which can mimic the effects of estrogen. Understanding the impact of this soybean meal on vascular outcomes is crucial to proper experimental design. Thus, this study aimed to compare the effects of standard and soy-free chows on cerebral artery endothelial function and cognitive function in ovariectomized mice. Young female C57Bl/6J mice (n = 43; ∼6 mo) were randomly assigned to three groups: sham, ovariectomy (OVX), or ovariectomy on a diet containing soy (OVX + Soy). In posterior cerebral arteries, the OVX mice had a 27% lower maximal response to insulin compared with the sham mice. The OVX + Soy mice had a 27% greater maximal vasodilation to insulin compared with the OVX mice and there were no differences in vasodilation between the OVX + Soy and sham groups. The group differences in vasodilation were mediated by differences in nitric oxide bioavailability. The OVX + Soy mice also had greater insulin receptor gene expression in cerebral arteries compared with the OVX mice. However, no differences in aortic or cerebral artery stiffness were observed between groups. Interestingly, the OVX + Soy group scored better on nesting behavior compared with both sham and OVX groups. In summary, we found that ovariectomy impairs insulin-mediated vasodilation in cerebral arteries, but a diet containing soy mitigates these effects. These findings highlight the importance of considering dietary soy when performing vascular and behavioral tests in mice, particularly in females.NEW & NOTEWORTHY To properly design experiments, we must consider how variables like diet impact our outcomes, particularly the effects of soy on females. We found that cerebral artery vasodilation in response to insulin was impaired in ovariectomized female mice compared with intact shams. However, ovariectomized mice fed a soy diet had a preserved cerebral artery insulin-mediated vasodilation. These results highlight that the effects of diet on vascular function may explain inconsistencies found between studies.
Collapse
Affiliation(s)
- Mackenzie N Kehmeier
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Aleena Khurana
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Bradley R Bedell
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Abigail E Cullen
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Audrey T Cannon
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Grant D Henson
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
10
|
Kaneko T, Yoshioka M, Kawahara F, Nishitani N, Mori S, Park J, Tarumi T, Kosaki K, Maeda S. Effects of plant- and animal-based-protein meals for a day on serum nitric oxide and peroxynitrite levels in healthy young men. Endocr J 2024; 71:119-127. [PMID: 38220201 DOI: 10.1507/endocrj.ej23-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Plant-based diets that replace animal-based proteins with plant-based proteins have received increased attention for cardiovascular protection. Nitric oxide (NO) plays an essential role in the maintenance of endothelial function. However, under higher oxidative stress, NO generation produces peroxynitrite, a powerful oxidant and vasoconstrictor. Diet-replaced protein sources has been reported to decrease oxidative stress. However, the effects of plant-based protein on NO and peroxynitrite have not yet been clarified. Therefore, this study aimed to compare the effects of plant- and animal-based-protein meals for a day on NO, peroxynitrite, and NO/peroxynitrite balance. A crossover trial of two meal conditions involving nine healthy men was performed. Participants ate standard meals during day 1. On day 2, baseline measurements were performed and the participants were provided with plant-based-protein meals or animal-based-protein meals. The standard and test meals consisted of breakfast, lunch, and dinner and were designed to be isocaloric. Plant-based-protein meals contained no animal protein. Blood samples were collected in the morning after overnight fasting before and after the test meals consumption. In the plant-based-protein meal condition, serum NOx levels (the sum of serum nitrite and nitrate) significantly increased, while serum peroxynitrite levels did not change significantly. Animal-based-protein meals significantly increased serum peroxynitrite levels but showed a trend of reduction in the serum NOx levels. Furthermore, serum NO/peroxynitrite balance significantly increased after plant-based-protein meals consumption, but significantly decreased after animal-based-protein meals consumption. These results suggest that, compared with animal-based-protein meals, plant-based-protein meals increase NO levels and NO/peroxynitrite balance, which reflects increased endothelial function.
Collapse
Affiliation(s)
- Tomoko Kaneko
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Masaki Yoshioka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Futo Kawahara
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Natsumi Nishitani
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Shoya Mori
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Jiyeon Park
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Takashi Tarumi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Keisei Kosaki
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Seiji Maeda
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
| |
Collapse
|
11
|
Crosier R, Lopez Laporte MA, Unni RR, Coutinho T. Female-Specific Considerations in Aortic Health and Disease. CJC Open 2024; 6:391-406. [PMID: 38487044 PMCID: PMC10935703 DOI: 10.1016/j.cjco.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 03/17/2024] Open
Abstract
The aorta plays a central role in the modulation of blood flow to supply end organs and to optimize the workload of the left ventricle. The constant interaction of the arterial wall with protective and deleterious circulating factors, and the cumulative exposure to ventriculoarterial pulsatile load, with its associated intimal-medial changes, are important players in the complex process of vascular aging. Vascular aging is also modulated by biomolecular processes such as oxidative stress, genomic instability, and cellular senescence. Concomitantly with well-established cardiometabolic and sex-specific risk factors and environmental stressors, arterial stiffness is associated with cardiovascular disease, which remains the leading cause of morbidity and mortality in women worldwide. Sexual dimorphisms in aortic health and disease are increasingly recognized and explain-at least in part-some of the observable sex differences in cardiovascular disease, which will be explored in this review. Specifically, we will discuss how biological sex affects arterial health and vascular aging and the implications this has for development of certain cardiovascular diseases uniquely or predominantly affecting women. We will then expand on sex differences in thoracic and abdominal aortic aneurysms, with special considerations for aortopathies in pregnancy.
Collapse
Affiliation(s)
- Rebecca Crosier
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | - Rudy R. Unni
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Thais Coutinho
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Olic JJ, Baessler A, Fischer M. [Chest pain and cardiovascular diseases in women : Diagnostics and treatment]. Herz 2023; 48:487-498. [PMID: 37930367 DOI: 10.1007/s00059-023-05215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of global mortality not only in men but also in women. The incidence of CVD significantly increases in women, especially after the menopause. Sex and gender differences in the incidence, prevalence and mortality of CVD are due to hormonal, anatomical, and sociocultural differences. As part of the primary and secondary prevention of coronary heart disease (CHD), risk factors specific for women, such as autoimmune diseases and pregnancy-associated diseases (e.g., gestational diabetes and pre-eclampsia) should also be taken into account in addition to the classical cardiovascular risk factors. Furthermore, in women with angina pectoris it should be considered that women in particular frequently suffer from ischemia with nonobstructive coronary arteries (INOCA) that can be caused, for example, by coronary microvascular dysfunction (CMD) or coronary spasms. Based on this, the diagnostics should not be terminated in symptomatic women after coronary angiography with normal epicardial vessels. A targeted diagnostics for CMD and coronary spasms should be carried out at an early stage.
Collapse
Affiliation(s)
- Janet-Jacqueline Olic
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland
| | - Andrea Baessler
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland.
| | - Marcus Fischer
- Caritas-Krankenhaus St. Lukas, Traubenweg 3, 93309, Kelheim, Deutschland
| |
Collapse
|
13
|
Süli A, Magyar P, Vezér M, Bányai B, Szekeres M, Sipos M, Mátrai M, Hetthéssy JR, Dörnyei G, Ács N, Horváth EM, Nádasy GL, Várbíró S, Török M. Effects of Gender and Vitamin D on Vascular Reactivity of the Carotid Artery on a Testosterone-Induced PCOS Model. Int J Mol Sci 2023; 24:16577. [PMID: 38068901 PMCID: PMC10706740 DOI: 10.3390/ijms242316577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The negative cardiovascular effects of polycystic ovary syndrome (PCOS) and vitamin D deficiency (VDD) have been discussed previously; however, the sex differences between PCOS females and males are not yet known. Our aim was to investigate the effect of PCOS and VDD in the carotid artery of male and female Wistar rats. Females were treated with transdermal testosterone (Androgel) for 8 weeks, which caused PCOS. VDD and vitamin D supplementation were accomplished via diet. The carotid arteries' contraction and relaxation were examined using myography. Receptor density was investigated using immunohistochemistry. In PCOS females, angiotensin receptor density, angiotensin II-induced contraction, androgen receptor optical density, and testosterone-induced relaxation increased. The increased contractile response may increase cardiovascular vulnerability in women with PCOS. As an effect of VDD, estrogen receptor density increased in all our groups, which probably compensated for the reduced relaxation caused by VDD. Testosterone-induced relaxation was decreased as a result of VDD in males and non-PCOS females, whereas this reduction was absent in PCOS females. Male sex is associated with increased contraction ability compared with non-PCOS and PCOS females. VDD and Androgel treatment show significant gender differences in their effects on carotid artery reactivity. Both VDD and PCOS result in a dysfunctional vascular response, which can contribute to cardiovascular diseases.
Collapse
Affiliation(s)
- Anita Süli
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Péter Magyar
- Medical Imaging Centre, Faculty of Medicine, Semmelweis University, 1082 Budapest, Hungary;
| | - Márton Vezér
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Bálint Bányai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary;
| | - Miklós Sipos
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Máté Mátrai
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Judit Réka Hetthéssy
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary;
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary;
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Eszter Mária Horváth
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
| | - György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary;
- Department of Obstetrics and Gynecology, University of Szeged, 6725 Szeged, Hungary
| | - Marianna Török
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
14
|
Hogwood AC, Ortiz de Zevallos J, Weeldreyer N, Clark JR, Mazzella V, Cain L, Myaing D, Love KM, Weltman A, Allen JD. The acute effects of exercise intensity and inorganic nitrate supplementation on vascular health in females after menopause. J Appl Physiol (1985) 2023; 135:1070-1081. [PMID: 37795531 PMCID: PMC10979835 DOI: 10.1152/japplphysiol.00559.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
Menopause is associated with reduced nitric oxide bioavailability and vascular function. Although exercise is known to improve vascular function, this is blunted in estrogen-deficient females post-menopause (PM). Here, we examined the effects of acute exercise at differing intensities with and without inorganic nitrate (NO3-) supplementation on vascular function in females PM. Participants were tested in a double-blinded, block-randomized design, consuming ∼13 mmol NO3- in the form of beetroot juice (BRJ; n = 12) or placebo (PL; n = 12) for 2 days before experimental visits and 2 h before testing. Visits consisted of vascular health measures before (time point 0) and every 30 min after (time points 60, 90, 120, 150, and 180) calorically matched high-intensity exercise (HIE), moderate-intensity exercise (MIE), and a nonexercise control (CON). Blood was sampled at rest and 5-min postexercise for NO3-, NO2-, and ET-1. BRJ increased N-oxides and decreased ET-1 compared with PL, findings which were unchanged after experimental conditions (P < 0.05). BRJ improved peak Δflow-mediated dilation (FMD) compared with PL (P < 0.05), defined as the largest ΔFMD for each individual participant across all time points. FMD across time revealed an improvement (P = 0.05) in FMD between BRJ + HIE versus BRJ + CON, while BRJ + MIE had medium effects compared with BRJ + CON. In conclusion, NO3- supplementation combined with HIE improved FMD in postmenopausal females. NO3- supplementation combined with MIE may offer an alternative to those unwilling to perform HIE. Future studies should test whether long-term exercise training at high intensities with NO3- supplementation can enhance vascular health in females PM.NEW & NOTEWORTHY This study compared exercise-induced changes in flow-mediated dilation after acute moderate- and high-intensity exercise in females postmenopause supplementing either inorganic nitrate (beetroot juice) or placebo. BRJ improved peak ΔFMD postexercise, and BRJ + HIE increased FMD measured as FMD over time. Neither PL + MIE nor PL + HIE improved FMD. These findings suggest that inorganic nitrate supplementation combined with high-intensity exercise may benefit vascular health in females PM.
Collapse
Affiliation(s)
- Austin C Hogwood
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - Joaquin Ortiz de Zevallos
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - Nathan Weeldreyer
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - James R Clark
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - Vincent Mazzella
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - Lauren Cain
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - Dylan Myaing
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - Kaitlin M Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Arthur Weltman
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
- Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Jason D Allen
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
- Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
15
|
Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens 2023; 37:609-618. [PMID: 36319856 PMCID: PMC10919324 DOI: 10.1038/s41371-022-00771-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally for men and women. Premenopausal women have a lower incidence of hypertension and other cardiovascular events than men of the same age, but diminished sex differences after menopause implicates 17-beta-estradiol (E2) as a protective agent. The cardioprotective effects of E2 are mediated by nuclear estrogen receptors (ERα and ERβ) and a G protein-coupled estrogen receptor (GPER). This review summarizes both established as well as emerging estrogen-mediated mechanisms that underlie sex differences in the vasculature during hypertension and CVD. In addition, remaining knowledge gaps inherent in the association of sex differences and E2 are identified, which may guide future clinical trials and experimental studies in this field.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ariane Imulinde Sugi
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
| |
Collapse
|
16
|
Piťha J, Vaněčková I, Zicha J. Hypertension after the Menopause: What Can We Learn from Experimental Studies? Physiol Res 2023; 72:S91-S112. [PMID: 37565415 PMCID: PMC10660576 DOI: 10.33549/physiolres.935151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Hypertension is the most prevalent cardiovascular disease of the adult population and is closely associated with serious cardiovascular events. The burden of hypertension with respect to vascular and other organ damage is greater in women. These sex differences are not fully understood. The unique feature in women is their transition to menopause accompanied by profound hormonal changes that affect the vasculature that are also associated with changes of blood pressure. Results from studies of hormone replacement therapy and its effects on the cardiovascular system are controversial, and the timing of treatment after menopause seems to be important. Therefore, revealing potential sex- and sex hormone-dependent pathophysiological mechanisms of hypertension in experimental studies could provide valuable information for better treatment of hypertension and vascular impairment, especially in postmenopausal women. The experimental rat models subjected to ovariectomy mimicking menopause could be useful tools for studying the mechanisms of blood pressure regulation after menopause and during subsequent therapy.
Collapse
Affiliation(s)
- J Piťha
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
17
|
Folahan JT, Olorundare OE, Ajayi AM, Oyewopo AO, Soyemi SS, Adeneye AA, Okoye II, Afolabi SO, Njan AA. Oxidized dietary lipids induce vascular inflammation and atherogenesis in post-menopausal rats: estradiol and selected antihyperlipidemic drugs restore vascular health in vivo. Lipids Health Dis 2023; 22:107. [PMID: 37495992 PMCID: PMC10369757 DOI: 10.1186/s12944-023-01818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Thermoxidation of edible oil through deep fat frying results in the generation of several oxidized products that promote lipid peroxidation and ROS production when eaten. Consumption of thermoxidized oil in post-menopausal conditions where the estrogen level is low contributes to cardiovascular disease. This study evaluates the role of estradiol and antihyperlipidemic agents (AHD) in restoring the vascular health of ovariectomized (OVX) rats fed with thermoxidized palm oil (TPO) and thermoxidized soya oil (TSO) diets. METHOD A total of 10 groups of rats (n = 6) were set up for the experiment. Group I (normal control) rats were sham handled while other groups were OVX to bring about estrogen deficient post-menopausal state. Group II (OVX only) was not treated and received normal rat chow. Groups III-X were fed with either TPO or TSO diet for 12 weeks and treated with estradiol (ETD) 0.2 mg/kg/day, atorvastatin (ATV) 10 mg/kg/day, and a fixed-dose combination of ezetimibe and ATV (EZE 3 mg/kg/day + ATV 10 mg/kg/day). RESULTS Pro-atherogenic lipids levels were significantly elevated in untreated TSO and TPO groups compared to OVX and sham, resulting in increased atherogenic and Coronary-risk indices. Treatment with Estradiol and AHDs significantly reduced the total cholesterol, triglycerides, low-density lipoprotein cholesterol as well as AI and CRI compared to untreated TSO and TPO groups, whereas TSO and TPO groups showed significant elevation in these parameters compared to Group I values. Moreover, aortic TNF-α levels were extremely elevated in the untreated TSO and TPO compared to Group I. TNF-α levels were significantly reduced in rats treated with AHDs and ETD. Localized oxidative stress was indicated in the aortic tissues of TSO and TPO-fed OVX rats by increased malondialdehyde and decreased glutathione, catalase, and superoxide dismutase levels. This contributed to a depletion in aortic nitric oxide. AHDs and ETD replenished the nitric oxide levels significantly. Histological evaluation of the aorta of TSO and TPO rats revealed increased peri-adventitia fat, aortic medial hypertrophy, and aortic recanalization. These pathologic changes were less seen in AHDs and ETD rats. CONCLUSION This study suggests that ETD and AHDs profoundly attenuate oxidized lipid-induced vascular inflammation and atherogenesis through oxidative-stress reduction and inhibition of TNF-α signaling.
Collapse
Affiliation(s)
- Joy Temiloluwa Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71209, USA
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| | - Olufunke Esan Olorundare
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria.
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Adeoye Oyetunji Oyewopo
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara- State, Nigeria
| | - Sunday Sokunle Soyemi
- Department of Pathology and Forensic Medicine, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Adejuwon Adewale Adeneye
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Ikechukwu Innocent Okoye
- Department of Oral Pathology and Medicine, Faculty of Dentistry, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Saheed Olanrewaju Afolabi
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| | - Anoka Ayembe Njan
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| |
Collapse
|
18
|
Cappola AR, Auchus RJ, El-Hajj Fuleihan G, Handelsman DJ, Kalyani RR, McClung M, Stuenkel CA, Thorner MO, Verbalis JG. Hormones and Aging: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2023; 108:1835-1874. [PMID: 37326526 PMCID: PMC11491666 DOI: 10.1210/clinem/dgad225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Multiple changes occur across various endocrine systems as an individual ages. The understanding of the factors that cause age-related changes and how they should be managed clinically is evolving. This statement reviews the current state of research in the growth hormone, adrenal, ovarian, testicular, and thyroid axes, as well as in osteoporosis, vitamin D deficiency, type 2 diabetes, and water metabolism, with a specific focus on older individuals. Each section describes the natural history and observational data in older individuals, available therapies, clinical trial data on efficacy and safety in older individuals, key points, and scientific gaps. The goal of this statement is to inform future research that refines prevention and treatment strategies in age-associated endocrine conditions, with the goal of improving the health of older individuals.
Collapse
Affiliation(s)
- Anne R Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard J Auchus
- Departments of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Endocrinology and Metabolism Section, Medical Service, LTC Charles S. Kettles Veteran Affairs Medical Center, Ann Arbor, MI 48015, USA
| | - Ghada El-Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, Division of Endocrinology, Department of Internal Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney and Andrology Department, Concord Repatriation General Hospital, Sydney 2139, Australia
| | - Rita R Kalyani
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael McClung
- Oregon Osteoporosis Center, Portland, OR 97213, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Cynthia A Stuenkel
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Michael O Thorner
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22903, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joseph G Verbalis
- Division of Endocrinology and Metabolism, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
19
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
20
|
Fatty acids act on vascular endothelial cells and influence the development of cardiovascular disease. Prostaglandins Other Lipid Mediat 2023; 165:106704. [PMID: 36621562 DOI: 10.1016/j.prostaglandins.2023.106704] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Endothelial cells (ECs) maintain the health of blood vessels and prevent the development of cardiovascular disease (CVD). Free saturated fatty acids (FAs) induce EC damage and increase the risk of CVD by promoting arteriosclerosis. Conversely, polyunsaturated FAs (PUFAs), such as docosahexaenoic acid, are thought to suppress EC damage induced during the early stages of CVD. This review describes the effects of multiple dietary FAs on EC disorders involved in the development of CVD. The roles of FAs in atherosclerosis and CVD were analyzed by evaluating articles published in PubMed, Science Direct, and Web of Science. Saturated FAs were found to induce EC damage by reducing the production and action of EC-derived nitric oxide. Oxidative stress, inflammation, and the renin-angiotensin system were found to be involved in EC disorder. Furthermore, n-3 PUFAs were found to reduce EC dysfunction and prevent the development of EC disorder. These results indicate that FAs may affect EC failure induced during the early stages of CVD and reduce the risk of developing the disease.
Collapse
|
21
|
Mori R, Macaya F, Giacobbe F, Moreno V, Quadri G, Chipayo D, Bianco M, Salinas P, Rolfo C, Mejía-Rentería H, Boi A, Tirado-Conte G, Cavallino C, Nombela-Franco L, Cinconze S, Jiménez-Quevedo P, Pavani M, Fernández-Ortiz A, Chinaglia A, Fuentes-Ferrer ME, Núñez-Gil IJ, Gonzalo N, Cerrato E, Varbella F, Escaned J. Association between hormone therapy and short-term cardiovascular events in women with spontaneous coronary artery dissection. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2023; 76:165-172. [PMID: 35850485 DOI: 10.1016/j.rec.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION AND OBJECTIVES Changes in sex hormone levels are a known triggering factor for spontaneous coronary artery dissection (SCAD) in women. However, it is unknown whether exposure to exogenous hormone therapy (HT) at the time of SCAD presentation modifies the clinical course of this condition. We investigated the association between HT in female patients presenting with SCAD and short-term clinical outcomes. METHODS We enrolled consecutive patients presenting with SCAD from the DISCO-IT/SPA (dissezioni spontanee coronariche Italian-Spanish) registry. Women on HT (estrogens, progestagens, or gonadotropins) at the time of presentation were identified, and their clinical characteristics and short-term outcomes were compared with those not receiving active HT. The outcome measure was nonfatal myocardial infarction and/or unplanned percutaneous coronary intervention during the first 28 days after the index catheterization. RESULTS Of 224 women presenting with SCAD (mean age 52.0±10.0 years), 39 (17.4%) were currently using HT while 185 (82.6%) were not. No significant differences were noted in the baseline demographics, clinical presentation, angiographic features, or initial treatment received between the 2 groups. All patients on systemic HT (n=36, 92%) discontinued it at the time of diagnosis. The composite outcome occurred in 7 (17.9%) patients with prior HT compared with 14 (7.6%) without (P=.039). After multivariable adjustment, HT remained associated with the composite outcome recorded in the first 28 days of follow-up (HR, 3.53; 95%CI, 1.30-9.61; P=.013). CONCLUSIONS In women with SCAD, exposure to HT at the time of clinical presentation was associated with short-term recurrent cardiovascular events such as nonfatal myocardial infarction and/or unplanned percutaneous revascularization.
Collapse
Affiliation(s)
- Ricardo Mori
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Macaya
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain.
| | - Federico Giacobbe
- Dipartimento di Cardiologia, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | - Víctor Moreno
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Giorgio Quadri
- Dipartimento di Cardiologia, San Luigi Gonzaga University Hospital, Orbassano and Rivoli Infermi Hospital, Rivoli, Turin, Italy
| | - David Chipayo
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Matteo Bianco
- Dipartimento di Cardiologia, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | - Pablo Salinas
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Rolfo
- Dipartimento di Cardiologia, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | - Hernán Mejía-Rentería
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Boi
- Dipartimento di Cardiologia, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Gabriela Tirado-Conte
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Chiara Cavallino
- Dipartimento di Cardiologia, Sant'Andrea Hospital, Vercelli, Italy
| | - Luis Nombela-Franco
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Sebastian Cinconze
- Dipartimento di Cardiologia, Azienda Ospedaliera S Croce e Carle, Cuneo, Italy
| | - Pilar Jiménez-Quevedo
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Marco Pavani
- Dipartimento di Cardiologia, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Antonio Fernández-Ortiz
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Alessandra Chinaglia
- Dipartimento di Cardiologia, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | - Manuel Enrique Fuentes-Ferrer
- Departamento de Medicina Preventiva, Unidad de soporte metodológico a la investigación, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Iván J Núñez-Gil
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Nieves Gonzalo
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Enrico Cerrato
- Dipartimento di Cardiologia, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | - Ferdinando Varbella
- Dipartimento di Cardiologia, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | - Javier Escaned
- Departamento de Cardiología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Hyperuricemia and Endothelial Function: Is It a Simple Association or Do Gender Differences Play a Role in This Binomial? Biomedicines 2022; 10:biomedicines10123067. [PMID: 36551823 PMCID: PMC9775568 DOI: 10.3390/biomedicines10123067] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
The endothelium plays a fundamental role in the biological processes that ensure physiological vessel integrity, synthesizing numerous substances that are capable of modulating the tone of vessels, inflammation and the immune system, and platelet function. Endothelial dysfunction refers to an anomaly that develops at the level of the tunica that lines the internal surface of arterial and venous vessels, or, more precisely, an alteration to normal endothelial function, which involves the loss of some structural and/or functional characteristics. Studies on sex differences in endothelial function are conflicting, with some showing an earlier decline in endothelial function in men compared to women, while others show a similar age of onset between the sexes. Since increased cardiovascular risk coincides with menopause, female hormones, particularly estrogen, are generally believed to be cardioprotective. Furthermore, it is often proposed that androgens are harmful. In truth, these relationships are more complex than one might think and are not just dependent on fluctuations in circulating hormones. An increase in serum uric acid is widely regarded as a possible risk factor for cardiovascular disease; however, its role in the occurrence of endothelial dysfunction has not yet been elucidated. Several studies in the literature have evaluated sex-related differences in the association between elevated uric acid levels and cardiovascular events, with conflicting results. The association between uric acid and cardiovascular disease is still controversial, and it is not yet clear how gender differences affect the serum concentration of these substances. This review was primarily aimed at clarifying the effects of uric acid at the level of the vascular endothelium and describing how it could theoretically cause damage to endothelial integrity. The second aim was to determine if there are gender differences in uric acid metabolism and how these differences interact with the vascular endothelium.
Collapse
|
23
|
Yang J, Hall JE, Jose PA, Chen K, Zeng C. Comprehensive insights in GRK4 and hypertension: From mechanisms to potential therapeutics. Pharmacol Ther 2022; 239:108194. [PMID: 35487286 PMCID: PMC9728143 DOI: 10.1016/j.pharmthera.2022.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to diverse extracellular stimuli that play vital roles in the regulation of biology, including behavior. Abnormal G protein-coupled receptor kinase (GRK)-mediated regulation of GPCR function is involved in the pathogenesis of hypertension. Among the seven GRK subtypes, GRK4 has attracted attention because of its constitutive activity and tissue-specific expression. Increasing number of studies show that GRK4 affects blood pressure by GPCR-mediated regulation of renal and arterial function. The target receptor of GRK4 is confined not only to GPCRs, but also to other blood pressure-regulating receptors, such as the adiponectin receptor. Genetic studies in humans show that in several ethnic groups, GRK4 gene variants (R65L, A142V, and A486V) are associated with salt-sensitive or salt-resistant essential hypertension and blood pressure responses to antihypertensive medicines. In this article, we present a comprehensive overview of GRK-mediated regulation of blood pressure, focusing on the latest research progress on GRK4 and hypertension and highlighting potential and novel strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China; Department of Cardiology, Chongqing General Hospital, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
24
|
Wang LW, He JF, Xu HY, Zhao PF, Zhao J, Zhuang CC, Ma JN, Ma CM, Liu YB. Effects and mechanisms of 6-hydroxykaempferol 3,6-di-O-glucoside-7-O-glucuronide from Safflower on endothelial injury in vitro and on thrombosis in vivo. Front Pharmacol 2022; 13:974216. [PMID: 36210813 PMCID: PMC9541210 DOI: 10.3389/fphar.2022.974216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The florets of Carthamus tinctorius L. (Safflower) is an important traditional medicine for promoting blood circulation and removing blood stasis. However, its bioactive compounds and mechanism of action need further clarification. Objective: This study aims to investigate the effect and possible mechanism of 6-hydroxykaempferol 3,6-di-O-glucoside-7-O-glucuronide (HGG) from Safflower on endothelial injury in vitro, and to verify its anti-thrombotic activity in vivo. Methods: The endothelial injury on human umbilical vein endothelial cells (HUVECs) was induced by oxygen-glucose deprivation followed by reoxygenation (OGD/R). The effect of HGG on the proliferation of HUVECs under OGD/R was evaluated by MTT, LDH release, Hoechst-33342 staining, and Annexin V-FITC apoptosis assay. RNA-seq, RT-qPCR, Enzyme-linked immunosorbent assay and Western blot experiments were performed to uncover the molecular mechanism. The anti-thrombotic effect of HGG in vivo was evaluated using phenylhydrazine (PHZ)-induced zebrafish thrombosis model. Results: HGG significantly protected OGD/R induced endothelial injury, and decreased HUVECs apoptosis by regulating expressions of hypoxia inducible factor-1 alpha (HIF-1α) and nuclear factor kappa B (NF-κB) at both transcriptome and protein levels. Moreover, HGG reversed the mRNA expression of pro-inflammatory cytokines including IL-1β, IL-6, and TNF-α, and reduced the release of IL-6 after OGD/R. In addition, HGG exhibited protective effects against PHZ-induced zebrafish thrombosis and improved blood circulation. Conclusion: HGG regulates the expression of HIF-1α and NF-κB, protects OGD/R induced endothelial dysfunction in vitro and has anti-thrombotic activity in PHZ-induced thrombosis in vivo.
Collapse
Affiliation(s)
- Li-Wei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Biotechnology Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jiang-Feng He
- Biotechnology Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Hai-Yan Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peng-Fei Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jie Zhao
- Center of Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Cong-Cong Zhuang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jian-Nan Ma
- Department of Traditional Chinese Medicine Resources and Development, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Chao-Mei Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Yong-Bin Liu, ; Chao-Mei Ma,
| | - Yong-Bin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Yong-Bin Liu, ; Chao-Mei Ma,
| |
Collapse
|
25
|
Mori R, Macaya F, Giacobbe F, Moreno V, Quadri G, Chipayo D, Bianco M, Salinas P, Rolfo C, Mejía-Rentería H, Boi A, Tirado-Conte G, Cavallino C, Nombela-Franco L, Cinconze S, Jiménez-Quevedo P, Pavani M, Fernández-Ortiz A, Chinaglia A, Fuentes-Ferrer ME, Núñez-Gil IJ, Gonzalo N, Cerrato E, Varbella F, Escaned J. Asociación entre el tratamiento hormonal y los eventos clínicos tempranos en mujeres con disección coronaria espontánea. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Freemas JA, Worley ML, Gabler MC, Hess HW, Mcdeavitt J, Baker TB, Johnson BD, Chapman CL, Schlader ZJ. Glomerular filtration rate reserve is reduced during mild passive heat stress in healthy young adults. Am J Physiol Regul Integr Comp Physiol 2022; 323:R340-R350. [PMID: 35816723 PMCID: PMC9423723 DOI: 10.1152/ajpregu.00090.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that, compared with normothermia, the increase in glomerular filtration rate (GFR) after an oral protein load (defined as the GFR reserve) is attenuated during moderate passive heat stress in young healthy adults. Sixteen participants (5 women; 26 ± 2 yr) completed two experimental visits, heat stress or a normothermic time-control, assigned in a block-randomized crossover design. During the heat stress trial, core temperature was increased by 0.6°C in the first hour before commencing a 2-min cold pressor test (CPT) to assess renal vasoconstrictor responses. One-hour post-CPT, subjects ingested a whey protein shake (1.2 g of protein/kg body wt), and measurements were taken pre-, 75, and 150 min postprotein. Segmental artery vascular resistance was calculated as the quotient of Doppler ultrasound-derived segmental artery blood velocity and mean arterial pressure and provided an estimate of renal vascular tone. GFR was estimated from creatinine clearance. The increase in segmental artery vascular resistance during the CPT was attenuated during heat stress (end CPT: 5.6 ± 0.9 vs. 4.7 ± 1.1 mmHg/cm/s, P = 0.024). However, the reduction in segmental artery vascular resistance in response to an oral protein load did not differ between heat stress (at 150 min: 1.9 ± 0.4 mmHg/cm/s) and normothermia (at 150 min: 1.8 ± 0.5 mmHg/cm/s; P = 0.979). The peak increase in creatinine clearance postprotein, independent of time, was attenuated during heat stress (+26 ± 19 vs. +16 ± 20 mL/min, P = 0.013, n = 13). GFR reserve is diminished by mild passive heat stress. Moreover, renal vasoconstrictor responses are attenuated by mild passive heat stress, but renal vasodilator responses are maintained.
Collapse
Affiliation(s)
- Jessica A Freemas
- H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Morgan L Worley
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | - Mikaela C Gabler
- H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Hayden W Hess
- H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Jovi Mcdeavitt
- H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Tyler B Baker
- H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Blair D Johnson
- H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Christopher L Chapman
- Department of Human Physiology, Bowerman Sports Science Center, University of Oregon, Eugene, Oregon
| | - Zachary J Schlader
- H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
27
|
Cipriani S, Simon JA. Sexual Dysfunction as a Harbinger of Cardiovascular Disease in Postmenopausal Women: How Far Are We? J Sex Med 2022; 19:1321-1332. [DOI: 10.1016/j.jsxm.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 05/04/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
|
28
|
Identification of an Epigenetic Signature for Coronary Heart Disease in Postmenopausal Women’s PBMC DNA. Mediators Inflamm 2022; 2022:2185198. [PMID: 36032780 PMCID: PMC9417773 DOI: 10.1155/2022/2185198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Menopause is accompanied with an increased risk of cardiovascular disease. DNA methylation may have a significant impact on postmenopausal women's development of coronary heart disease. DNA methylation alterations in peripheral blood mononuclear cells (PBMCs) from women with coronary heart disease and healthy controls were detected using the Illumina Infinium MethylationEPIC BeadChip platform in this work. We employed Sangerbox technology and the GO and KEGG databases to further study the pathogenesis of coronary heart disease in postmenopausal women. After that, we used functional epigenetic module analysis and Cytoscape to remove the hub genes from the protein–protein interaction networks. Five genes (FOXA2, PTRD, CREB1, CTNAP2, and FBN2) were the hub genes. Lipid accumulation, endothelial cell failure, inflammatory responses, monocyte recruitment and aggregation, and other critical biological processes were all influenced by these genes. Finally, we employed methylation-specific PCR to demonstrate that FOXA2 was methylated at a high level in postmenopausal women with coronary heart disease. To better understand coronary heart disease in postmenopausal women's molecular mechanisms, our study examine the major factors contributing to the state of DNA methylation modification, which will help discover novel diagnostic tools and treatment options.
Collapse
|
29
|
Association of Leu432Val (rs1056836) polymorphism of the CYP1B1 gene with lipid profile in hypertensive Slovak women. ANTHROPOLOGICAL REVIEW 2022. [DOI: 10.18778/1898-6773.85.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leu432Val (rs1056836) polymorphism of the CYP1B1 gene was examined in relationship with lipid profile in hypertensive Slovak women according to their menopausal status. The entire study sample comprised 255 women suffering from hypertension aged from 39 to 65 years who were recruited from different localities in the western, southern, and middle parts of Slovakia. The participants provided a saliva or blood sample for DNA genotyping and a blood sample for biochemical analysis. The Leu432Val genotypes demonstrated statistically significant associations with all monitored atherogenic indices – total cholesterol-to-HDL-Cholesterol (AI1), Non-HDL-Cholesterol (AI2), LDL-Cholesterol-to-HDL-Cholesterol (AI3), and the logarithm of the ratio of plasma concentration of triglycerides to HDL-cholesterol (AIP log) in hypertensive pre/perimenopausal women. The mean values were significantly lower in women carrying the Val/Val genotype. In early postmenopausal hypertensive women the Leu432Val genotypes were statistically significant and associated with LDL-cholesterol (LDL-C) and AI2. The mean values of LDL-C and AI2 were significantly lower in women carrying the Leu/Leu genotype. In conclusion, the Leu432Val polymorphism may be associated with the atherogenic indices and LDL-C in hypertensive women.
Collapse
|
30
|
Comparative effects of estrogen and silibinin on cardiovascular risk biomarkers in ovariectomized rats. Gene 2022; 823:146365. [PMID: 35257789 DOI: 10.1016/j.gene.2022.146365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Silibinin is a polyphenolic compound that could modulate estrogen receptor activation. Vascular dysfunction is considered a key initiator in atherosclerosis and may occur in the postmenopausal period. This manuscript compares estrogen and silibinin's impacts on factors that change endothelial function in ovariectomized (OVX) rats. METHODS 32 female Wistar rats were subdivided into control; OVX; OVX + estrogen (1 mg/kg/day); and OVX + silibinin (50 mg/kg/day) groups. After the experimental period, lipid profile, atherogenic indices, and histopathology of endothelium were monitored. The vascular oxidative stress, adhesion molecules, inflammatory cytokine levels, nitric oxide (NO), angiotensin-II (Ang-II), and endothelin-1 (ET-1) were also analyzed. RESULTS Silibinin treatment, similar to estrogen, significantly normalized the adverse changes of OVX on vascular function, including improved lipid profile and oxidative stress, increased endothelial nitric oxide synthase (eNOS) expression, diminished inflammatory status, and reduced adhesion molecule levels, ET-1 and Ang-II substances. Our findings also revealed that the administration with estrogen or silibinin resulted in a normal endothelium layer in the aorta tissues of OVX rats. CONCLUSION Estrogen and silibinin have similar effects in improving vascular function. These treatments' protective impacts on vasculature indicate their potential benefits on the cardiovascular system in the postmenopausal period.
Collapse
|
31
|
Gottfried S. Women: Diet, Cardiometabolic Health, and Functional Medicine. Phys Med Rehabil Clin N Am 2022; 33:621-645. [DOI: 10.1016/j.pmr.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Sabe SA, Feng J, Sellke FW, Abid MR. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am J Physiol Heart Circ Physiol 2022; 322:H819-H841. [PMID: 35333122 PMCID: PMC9018047 DOI: 10.1152/ajpheart.00603.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.
Collapse
Affiliation(s)
- Sharif A Sabe
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Jun Feng
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
33
|
Richey RE, Hemingway HW, Moore AM, Olivencia-Yurvati AH, Romero SA. Acute heat exposure improves microvascular function in skeletal muscle of aged adults. Am J Physiol Heart Circ Physiol 2022; 322:H386-H393. [PMID: 35060753 PMCID: PMC8858667 DOI: 10.1152/ajpheart.00645.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute heat exposure improves microvascular function in aged adults as assessed using reactive hyperemia. The cutaneous and skeletal muscle microcirculations are thought to contribute to this response, but this has never been confirmed due to the methodological challenges associated with differentiating blood flow between these vascular beds. We hypothesized that acute hot water immersion would improve endothelial-dependent, but not endothelial-independent vasodilation in the microcirculation of the vastus lateralis muscle in healthy aged adults. Participants (70 ± 5 yr) were immersed for 60 min in thermoneutral (36°C) or hot (40°C) water. Ninety minutes following immersion, skeletal muscle microdialysis was used to bypass the cutaneous circulation and directly assess endothelial-dependent and endothelial-independent vasodilation by measuring the local hyperemic response to graded infusions of acetylcholine (ACh, 27.5 and 55.0 mM) and sodium nitroprusside (SNP, 21 and 42 mM), respectively. The hyperemic response to 27.5 mM ACh did not differ between thermal conditions (P = 0.9). However, the hyperemic response to 55.0 mM ACh was increased with prior hot water immersion (thermoneutral immersion, 43.9 ± 23.2 mL/min/100 g vs. hot water immersion, 66.5 ± 25.5 mL/min/100 g; P < 0.01). Similarly, the hyperemic response to 21 mM SNP did not differ between thermal conditions (P = 0.3) but was increased following hot water immersion with the infusion of 42 mM SNP (thermoneutral immersion, 48.8 ± 25.6 mL/min/100 g vs. hot water immersion, 90.7 ± 53.5 mL/min/100 g; P < 0.01). These data suggest that acute heat exposure improves microvascular function in skeletal muscle of aged humans.NEW & NOTEWORTHY Acute heat exposure improves microvascular function in aged adults as assessed using reactive hyperemia. The cutaneous and skeletal muscle microcirculations are thought to contribute to this response, but this has never been confirmed due to the methodological challenges associated with differentiating blood flow between these vascular beds. Using the microdialysis technique to bypass the cutaneous circulation, we demonstrated that heat exposure improves endothelial-dependent and endothelial-independent vasodilation in the microcirculation of skeletal muscle in aged humans.
Collapse
Affiliation(s)
- Rauchelle E. Richey
- 1Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas
| | - Holden W. Hemingway
- 1Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas
| | - Amy M. Moore
- 1Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H. Olivencia-Yurvati
- 1Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas,2Department of Surgery, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A. Romero
- 1Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
34
|
Arterial stiffness and cardiometabolic health in omnivores and vegetarians: a cross-sectional pilot study. BMC Res Notes 2022; 15:69. [PMID: 35183248 PMCID: PMC8858561 DOI: 10.1186/s13104-022-05957-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Arterial stiffness is a strong predictor of cardiovascular mortality, and often precedes elevations in blood pressure. This cross-sectional pilot study examined differences in arterial stiffness, blood pressure, cardiometabolic markers, anthropometric outcomes, and inflammation in vegetarians and matched omnivores. Participants were healthy, non-smoking adults (18–65 years old) adhering to either a vegetarian/vegan or omnivore diet. Omnivores were matched to vegetarians using broad body mass index (BMI) categories. Results Arterial stiffness trended higher in omnivores versus vegetarians (7.0 ± 1.5 and 6.8 ± 1.1 m/s, respectively; p = 0.073). This trend was mainly driven by the male omnivores (p = 0.006 for gender effect and p = 0.294 for eating pattern effect). Omnivores displayed higher HDL concentrations compared to vegetarians, 63.8 ± 18.5 and 55.2 ± 16.9 mg/dL; however, total cholesterol/HDL ratio did not vary significantly between groups; p = 0.310. In men, a vegetarian eating pattern may reduce arterial stiffness; however, this benefit may be limited in women, particularly those who are premenopausal. Future research should examine arterial stiffness and cardiometabolic health outcomes in younger versus older female vegetarians, as these data can provide valuable insights on the role of plant-based eating patterns on arterial stiffness and cardiometabolic health.
Collapse
|
35
|
Sukul P, Grzegorzewski S, Broderius C, Trefz P, Mittlmeier T, Fischer DC, Miekisch W, Schubert JK. Physiological and metabolic effects of healthy female aging on exhaled breath biomarkers. iScience 2022; 25:103739. [PMID: 35141500 PMCID: PMC8810402 DOI: 10.1016/j.isci.2022.103739] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Healthy aging driven physio-metabolic events in females hold the key to complex in vivo mechanistic links and systemic cross talks. Effects from basic changes at genome, proteome, metabolome, and lipidome levels are often reflected at the upstream phenome (e.g., breath volatome) cascades. Here, we have analyzed exhaled volatile metabolites (measured via real time mass spectrometry based breathomics) data from 204 healthy females, aged between 07 and 80 years. Age related substance-specific differences were observed in breath biomarkers. Exhalation of blood-borne endogenous organosulfur, short-chain fatty acids, alcohols, aldehydes, alkene, ketones and exogenous nitriles, terpenes, and aromatics have denominated interplay between endocrine differences, energy homeostasis, systemic microbial diversity, oxidative stress, and lifestyle. Overall marker expressions were suppressed under daily oral contraception. Young homosexual/lesbian adults turned out as breathomic outliers. Previously proposed disease-specific breath biomarkers should be reevaluated upon aging effects. Breathomics offers a noninvasive window toward system-wide understanding and personalized monitoring of aging i.e., translatable to gerontology.
Collapse
Affiliation(s)
- Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Simon Grzegorzewski
- Department of Traumatology, Hand and Reconstructive Surgery, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Celine Broderius
- Department of Traumatology, Hand and Reconstructive Surgery, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Phillip Trefz
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Thomas Mittlmeier
- Department of Traumatology, Hand and Reconstructive Surgery, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Dagmar-Christiane Fischer
- Department of Pediatrics, University Medicine Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Jochen K. Schubert
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
36
|
Armeni E, Lambrinoudaki I. Menopause, androgens, and cardiovascular ageing: a narrative review. Ther Adv Endocrinol Metab 2022; 13:20420188221129946. [PMID: 36325501 PMCID: PMC9619256 DOI: 10.1177/20420188221129946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide; however, women tend to be less affected than men during their reproductive years. The female cardiovascular risk increases significantly around the time of the menopausal transition. The loss of the protective action of ovarian oestrogens and the circulating androgens has been implicated in possibly inducing subclinical and overt changes in the cardiovascular system after the menopausal transition. In vitro studies performed in human or animal cell lines demonstrate an adverse effect of testosterone on endothelial cell function and nitric oxide bioavailability. Cohort studies evaluating associations between testosterone and/or dehydroepiandrosterone and subclinical vascular disease and clinical cardiovascular events show an increased risk for women with more pronounced androgenicity. However, a mediating effect of insulin resistance is possible. Data on cardiovascular implications following low-dose testosterone treatment in middle-aged women or high-dose testosterone supplementation for gender affirmatory purposes remain primarily inconsistent. It is prudent to consider the possible adverse association between testosterone and endothelial function during the decision-making process of the most appropriate treatment for a postmenopausal woman.
Collapse
Affiliation(s)
| | - Irene Lambrinoudaki
- Second Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Sex steroids receptors, hypertension, and vascular ageing. J Hum Hypertens 2022; 36:120-125. [PMID: 34230581 PMCID: PMC8850193 DOI: 10.1038/s41371-021-00576-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Sex hormone receptors are expressed throughout the vasculature and play an important role in the modulation of blood pressure in health and disease. The functions of these receptors may be important in the understanding of sexual dimorphism observed in the pathophysiology of both hypertension and vascular ageing. The interconnectivity of these factors can be exemplified in postmenopausal females, who with age and estrogen deprivation, surpass males with regard to hypertension prevalence, despite experiencing significantly less disease burden in their estrogen replete youth. Estrogen and androgen receptors mediate their actions via direct genomic effects or rapid non-genomic signaling, involving a host of mediators. The expression and subtype composition of these receptors changes through the lifespan in response to age, disease and hormonal exposure. These factors may promote sex steroid receptor-mediated alterations to the Renin-Angiotensin-Aldosterone System (RAAS), and increases in oxidative stress and inflammation, thereby contributing to the development of hypertension and vascular injury with age.
Collapse
|
38
|
Cohen KE, Katunaric B, SenthilKumar G, McIntosh JJ, Freed JK. Vascular endothelial adiponectin signaling across the life span. Am J Physiol Heart Circ Physiol 2022; 322:H57-H65. [PMID: 34797171 PMCID: PMC8698498 DOI: 10.1152/ajpheart.00533.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease risk increases with age regardless of sex. Some of this risk is attributable to alterations in natural hormones throughout the life span. The quintessential example of this being the dramatic increase in cardiovascular disease following the transition to menopause. Plasma levels of adiponectin, a "cardioprotective" adipokine released primarily by adipose tissue and regulated by hormones, also fluctuate throughout one's life. Plasma adiponectin levels increase with age in both men and women, with higher levels in both pre- and postmenopausal women compared with men. Younger cohorts seem to confer cardioprotective benefits from increased adiponectin levels yet elevated levels in the elderly and those with existing heart disease are associated with poor cardiovascular outcomes. Here, we review the most recent data regarding adiponectin signaling in the vasculature, highlight the differences observed between the sexes, and shed light on the apparent paradox regarding increased cardiovascular disease risk despite rising plasma adiponectin levels over time.
Collapse
Affiliation(s)
- Katie E. Cohen
- 1Division of Cardiology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Boran Katunaric
- 2Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gopika SenthilKumar
- 2Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin,3Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer J. McIntosh
- 3Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,4Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julie K. Freed
- 2Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin,3Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
39
|
Tarszabó R, Bányai B, Ruisanchez É, Péterffy B, Korsós-Novák Á, Lajtai K, Sziva RE, Gerszi D, Hosszú Á, Benkő R, Benyó Z, Horváth EM, Masszi G, Várbíró S. Influence of Vitamin D on the Vasoactive Effect of Estradiol in a Rat Model of Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:ijms22179404. [PMID: 34502321 PMCID: PMC8431242 DOI: 10.3390/ijms22179404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
We examined the vasoactive effect of estradiol in a rat model of early PCOS and the influence of vitamin D deficiency (VDD). We created a model of chronic hyperandrogenism and VDD in adolescent female Wistar rats (N = 46) with four experimental groups: vitamin D supplemented (T-D+), VDD (T-D-), hyperandrogenic and vitamin D supplemented (T+D+), and hyperandrogenic and VDD (T+D-). T+ groups received an 8-week-long transdermal Androgel treatment, D-animals were on vitamin D-reduced diet and D+ rats were supplemented orally with vitamin D3. Estrogen-induced vasorelaxation of thoracic aorta segments were measured with a wire myograph system with or without the inhibition of endothelial nitric oxide synthase (eNOS) or cyclooxygenase-2 (COX-2). The distribution of estrogen receptor (ER), eNOS and COX-2 in the aortic wall was assessed by immunohistochemistry. VDD aortas showed significantly lower estradiol-induced relaxation independently of androgenic status that was further decreased by COX-2 inhibition. COX-2 inhibition failed to alter vessel function in D+ rats. Inhibition of eNOS abolished the estradiol-induced relaxation in all groups. Changes in vascular function in VDD were accompanied by significantly decreased ER and eNOS staining. Short-term chronic hyperandrogenism failed to, but VDD induced vascular dysfunction, compromised estrogen-dependent vasodilatation and changes in ER and eNOS immunostaining.
Collapse
Affiliation(s)
- Róbert Tarszabó
- Department of Obstetrics and Gynecology, Markusovszky Lajos University Teaching Hospital, Markusovszky Lajos Street 5, 9700 Szombathely, Hungary
- Correspondence:
| | - Bálint Bányai
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
| | - Éva Ruisanchez
- Department of Translational Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (É.R.); (Z.B.)
| | - Borbála Péterffy
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
| | - Ágnes Korsós-Novák
- Department of Pathology, Hetényi Géza Hospital, Tószegi Street 21, 5000 Szolnok, Hungary;
| | - Krisztina Lajtai
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Street 78/a, 1082 Budapest, Hungary;
| | - Réka Eszter Sziva
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Street 78/a, 1082 Budapest, Hungary;
| | - Dóra Gerszi
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Street 78/a, 1082 Budapest, Hungary;
| | - Ádám Hosszú
- 1st Department of Pediatrics, Semmelweis University, 1082 Budapest, Hungary;
| | - Rita Benkő
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
| | - Zoltán Benyó
- Department of Translational Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (É.R.); (Z.B.)
| | - Eszter Mária Horváth
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
| | - Gabriella Masszi
- Department of Internal Medicine, National Institute of Psychiatry and Addictions, Lehel Street 59-61, 1135 Budapest, Hungary;
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Street 78/a, 1082 Budapest, Hungary;
| |
Collapse
|
40
|
Gholami A, Mollanoroozy E, Reza Baradaran H, Hariri M. The efficacy of soy isoflavones combined with soy protein on serum concentration of interleukin-6 and tumour necrosis factor-α among post-menopausal women? A systematic review and meta-analysis of randomized controlled trials. Clin Exp Pharmacol Physiol 2021; 49:10-24. [PMID: 34455600 DOI: 10.1111/1440-1681.13586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
The post-menopausal stage in women's life is associated with the enhancement of inflammation that may be reduced using soy isoflavones or soy protein. The present study aimed to summarize the effect of soy isoflavones plus soy protein on circulating interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) in post-menopausal women. The English-language articles were identified from the databases such as Cochrane Library, clinicaltrials.gov, Web of Science, PubMed, and Scopus until December 2020. The mean change from baseline and its standard deviation (SD) for intervention and comparison groups were used to calculate the effect size. The statistical heterogeneity of the intervention effects was computing by Cochran's Q test and I2 statistic. Nine and seven studies were selected for systematic review and meta-analysis, respectively. The results of our meta-analysis indicated a non-significant effect on the serum concentrations of IL-6 and TNF-α (weighted mean differences [WMD] = 0.07 pg/mL; 95% confidence interval [CI] = -0.03, 0.17 pg/mL; P = 0.190; WMD =0.05 pg/mL; 95% CI = -0.01, 0.12 pg/mL; P = 0.092; respectively). In subgroup analysis, soy isoflavones plus soy protein could increase the serum concentration of IL-6 in studies with soy isoflavones dose ≤87 mg/days, cross-over design, weak quality, and studies on participants who had health risk factors or diseases. The serum concentration of TNF-α increased in studies with cross-over design, intervention duration ≤56 days, and body mass index (BMI) >27, and in studies that were conducted on at-risk or sick participants. In conclusion, our meta-analysis did not confirm any significant effect on serum concentration of IL-6 and TNF-α among post-menopausal women.
Collapse
Affiliation(s)
- Ali Gholami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ensiyeh Mollanoroozy
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamid Reza Baradaran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Ageing Clinical and Experimental Research Team, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen, Aberdeen, UK
| | - Mitra Hariri
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
41
|
Protective Effects of Estrogen on Cardiovascular Disease Mediated by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5523516. [PMID: 34257804 PMCID: PMC8260319 DOI: 10.1155/2021/5523516] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Perimenopause is an important stage of female senescence. Epidemiological investigation has shown that the incidence of cardiovascular disease in premenopausal women is lower than that in men, and the incidence of cardiovascular disease in postmenopausal women is significantly higher than that in men. This phenomenon reveals that estrogen has a definite protective effect on the cardiovascular system. In the cardiovascular system, oxidative stress is considered important in the pathogenesis of atherosclerosis, myocardial dysfunction, cardiac hypertrophy, heart failure, and myocardial ischemia. From the perspective of oxidative stress, estrogen plays a regulatory role in the cardiovascular system through the estrogen receptor, providing strategies for the treatment of menopausal women with cardiovascular diseases.
Collapse
|
42
|
Obesity-associated cardiovascular risk in women: hypertension and heart failure. Clin Sci (Lond) 2021; 135:1523-1544. [PMID: 34160010 DOI: 10.1042/cs20210384] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
The pathogenesis of obesity-associated cardiovascular diseases begins long prior to the presentation of a cardiovascular event. In both men and women, cardiovascular events, and their associated hospitalizations and mortality, are often clinically predisposed by the presentation of a chronic cardiovascular risk factor. Obesity increases the risk of cardiovascular diseases in both sexes, however, the clinical prevalence of obesity, as well as its contribution to crucial cardiovascular risk factors is dependent on sex. The mechanisms via which obesity leads to cardiovascular risk is also discrepant in women between their premenopausal, pregnancy and postmenopausal phases of life. Emerging data indicate that at all reproductive statuses and ages, the presentation of a cardiovascular event in obese women is strongly associated with hypertension and its subsequent chronic risk factor, heart failure with preserved ejection fraction (HFpEF). In addition, emerging evidence indicates that obesity increases the risk of both hypertension and heart failure in pregnancy. This review will summarize clinical and experimental data on the female-specific prevalence and mechanisms of hypertension and heart failure in women across reproductive stages and highlight the particular risks in pregnancy as well as emerging data in a high-risk ethnicity in women of African ancestry (AA).
Collapse
|
43
|
Huang CH, Kor CT, Lian IB, Chang CC. Menopausal symptoms and risk of heart failure: a retrospective analysis from Taiwan National Health Insurance Database. ESC Heart Fail 2021; 8:3295-3307. [PMID: 34151548 PMCID: PMC8318496 DOI: 10.1002/ehf2.13480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022] Open
Abstract
Aims Women with menopausal symptoms show evidence of accelerated epigenetic ageing, vascular aging and low‐grade systemic inflammation status. However, data are limited regarding menopausal symptoms and risk of heart failure (HF). We aimed to explore the impact of menopausal symptoms on risk of HF. Methods We included 14 340 symptomatic menopausal women without a history of coronary heart disease (CHD) or HF from the Taiwan National Health Insurance Research Database as the experimental cohort. We included 14 340 asymptomatic women matched for age and comorbidities as controls. We surveyed possible comorbidity‐attributable risks of HF and assessed whether menopausal symptoms play a role in risk of HF. Additional analyses were conducted to ascertain the association of CHD and HF in different risk factor burdens categories in both cohorts and CHD was applied as a sensitivity analysis. Results The incidence of HF was not significantly lower in the experimental than in the control cohort (4.87 vs. 5.06 per 1000 person‐years, P = 0.336). Participants with a higher comorbidity burden had a proportionally increased risk of HF and CHD in both cohorts. The burden of risk factors had a greater impact on risk of HF in the control than in the experimental cohort (≥five risk factors, adjusted hazard ratio 25.69 vs. 14.75). Participants undergoing hormone therapy had no significant effect on the risk of HF, regardless of the presence or absence of menopausal symptoms. Subgroup analysis revealed that compared with the control cohort, the risk of HF in the experimental cohort did not increase significantly in all subgroups. Conclusions Menopausal symptoms were associated with CHD risk but not with risk of HF. Traditional risk factors rather than menopausal symptoms play important roles in the HF risk among middle‐aged women.
Collapse
Affiliation(s)
- Ching-Hui Huang
- Division of Cardiology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Beauty Science and Graduate Institute of Beauty Science Technology, Chienkuo Technology University, Changhua, Taiwan.,Department of Mathematics, National Changhua University of Education, Changhua, Taiwan
| | - Chew-Teng Kor
- Medical Research Center, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ie-Bin Lian
- Department of Mathematics, National Changhua University of Education, Changhua, Taiwan
| | - Chia-Chu Chang
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan.,Department of Nutrition, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
44
|
Zhang L, Li C, Yang L, Adzika GK, Machuki JO, Shi M, Sun Q, Sun H. Estrogen Protects Vasomotor Functions in Rats During Catecholamine Stress. Front Cardiovasc Med 2021; 8:679240. [PMID: 34222374 PMCID: PMC8241912 DOI: 10.3389/fcvm.2021.679240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of dysfunctional vasomotor diseases has mostly occurred in postmenopausal women but not in premenopausal women. Hence, this study sought to investigate the impact of estrogen deficiency during catecholamine stress on vasomotor function. Also, attempts were made to utilize estrogen replacement therapy to mitigate the adverse effects (pathological remodeling) of stress on the aortic vessels to preserve vasomotor functions. To do this, female Sprague-Dawley (SD) rats were ovariectomized (OVX) along with sham operations (Sham). Day 14 after OVX operation, 17-estradiol (E2) was subcutaneously implanted (OVX+E2). Day 35 after operation, stress was induced by isoproterenol (ISO) subcutaneous injections. Clinically relevant blood pressure indexes (systolic, diastolic, and mean atrial blood pressures) were assessed in the rats. Aortic vascular ring tensions were assessed in vitro to ascertain the impact of E2 on their vasomotor function. Aortic vascular rings (AVRs) from OVX+ISO exhibited a significant increase in contractility in response to phenylephrine than AVRs isolated from Sham+ISO rats. Also, sera levels of nitric oxide (NO) and endothelin-1 (ET-1) and the expression of p-eNOS/eNOS from vascular tissues were ascertained. We demonstrate that, during stress, E2 prevented excessive weight gain and OVX rats had higher blood pressures than those in the Sham group. Further, we showed that E2 decreases ET-1 expressions during stress while upregulating NO expressions via enhancing eNOS activities to facilitate vasomotor functions. Finally, histological assessment revealed the E2 treatments during stress preserved vasomotor functions by preventing excessive intima-media thickening and collagen depositions in the aortic vascular walls.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Chenfei Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Liting Yang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | - Mingjin Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Qi Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
45
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|
46
|
Managing cardiometabolic risk factors across a woman's lifespan: A lipidologist's perspective. J Clin Lipidol 2021; 15:423-430. [PMID: 33836983 DOI: 10.1016/j.jacl.2021.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
A recent rise in atherosclerotic cardiovascular disease (ASCVD) mortality in women warrants a heightened focus on the cardiometabolic risk factors that are closely tied to increasing trends in obesity and suboptimal lifestyle. Polycystic ovarian syndrome (PCOS), adverse pregnancy outcomes (APOs) and nonalcoholic fatty liver disease (NAFLD) are often manifestations of cardiometabolic disease that convey cardiovascular risk requiring recognition foremost, as well as a targeted approach to treatment. Similarly, menopause is a time to reflect on a woman's cardiovascular risk as multiple cardiometabolic changes occur during this time. Contraceptives and menopausal replacement therapy (MRT) should be considered along with a woman's individual thrombotic and cardiovascular risk. Clinicians should be attuned to cardiometabolic risk factors throughout a woman's lifespan and familiar with strategies to reduce cardiovascular risk.
Collapse
|
47
|
Meta-analysis: Early Age at Natural Menopause and Risk for All-Cause and Cardiovascular Mortality. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6636856. [PMID: 33816624 PMCID: PMC7987413 DOI: 10.1155/2021/6636856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
Aims The aim of this meta-analysis was to comprehensively evaluate the association of early age at natural menopause with the risk for all-cause and cardiovascular mortality. Methods Literature retrieval was done on August 4, 2020. Article selection and data extraction were completed independently and in duplicate. Early age at natural menopause was grouped into premature menopause (<40 years), early menopause (40-44 years), and relatively early menopause (45-49 years). Effect-size estimates are summarized as hazard ratio (HR) or relative risk (RR) with 95% confidence interval (CI). Results Sixteen articles involving 321,233 women were meta-analyzed. Overall analyses revealed a statistically significant association of early age at natural menopause with all-cause mortality risk (HRadjusted = 1.08, 95% CI: 1.03 to 1.14, P = 0.002; RRadjusted = 1.05, 95% CI 1.01 to 1.08, P = 0.005), but not with cardiovascular mortality risk. In dose-response analyses, the association with all-cause mortality was significant for premature menopause with (HRadjusted = 1.10; 95% CI: 1.01 to 1.21; P = 0.034) and without (RRadjusted = 1.34; 95% CI: 1.08 to 1.66; P = 0.007) considering follow-up intervals. As for cardiovascular mortality, marginal significance was noted for premature menopause after considering follow-up intervals (HR = 1.09; 95% CI: 1.00-1.19; P = 0.045). Subgroup analyses indicated that gender, country, and follow-up periods were possible causes of heterogeneity. There was an overall low probability of publication bias. Conclusions Our findings indicate that premature menopause is a promising independent risk factor for both all-cause and cardiovascular mortality.
Collapse
|
48
|
Aguayo-Cerón KA, Gutiérrez-Iglesias G, Parra-Barrera A, Ocharan-Hernández ME, Romero-Nava R, Jiménez-Zamarripa CA, Calzada-Mendoza CC. Antisclerothic effect of tibolone by reducing proinflammatory cytokines expression, ROS production and LDL-ox uptake in THP-1 macrophages. Steroids 2021; 167:108779. [PMID: 33383063 DOI: 10.1016/j.steroids.2020.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cardiovascular disease is more frequent in menopausal women, which has been related to factor such as weight gain, altered fat distribution, and increased inflammation markers including adipokines (MCP-1, TNF-α, IL-6) and cytokines (IL-1, IL-6, TNF-α) produced by macrophages. In addition to their phagocytic activity, macrophages secrete cytokines and chemokines that induces cell recruitment, which is a process related to vascular damage that favors the formation of atheromatous plaques. Tibolone (Tb) therapy is used to reduce the symptoms of menopause as well as osteoporosis and it has been shown to decreases the risk of fractures. METHODS To investigate the effect of tibolone in macrophage enzymatic activity, gene expression of cytokines, and its effect on foam cells formation. We use phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells. The cells were incubated 24 h and 48 h using pre and post-treatment schemes. We evaluated total ROS determination by NBT assay, expression of cytokines (IL-1β, IL-6, TNF-α, NOS2, ARG1, TGFβ) by RT-qPCR and foam cell formation in THP-1 differentiated macrophages stimulated with PMA. RESULTS It was observed that the minor levels of total ROS determination were obtained with tibolone at 48 h in post-treatment scheme. Also, in a long term we found decrease the proinflammatory cytokines (IL-1β, IL-6 and TNF-α). Finally, with treatment for 24 h with P4 y Tb we observed fewer LDL vesicles into macrophages cytoplasm. CONCLUSIONS These results suggest that tibolone reduces the inflammatory process, also inhibits the foam cells formation; suggesting a possible role in reducing cardiovascular risk.
Collapse
Affiliation(s)
- Karla A Aguayo-Cerón
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional-Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Gisela Gutiérrez-Iglesias
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional-Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Alberto Parra-Barrera
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional-Escuela Superior de Medicina, Ciudad de México, Mexico
| | - María E Ocharan-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional-Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Rodrigo Romero-Nava
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional-Escuela Superior de Medicina, Ciudad de México, Mexico; Hospital Infantil de México Federico Gómez, Laboratorio de Investigación en Farmacología, Ciudad de México, Mexico
| | - Carlos A Jiménez-Zamarripa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional-Escuela Superior de Medicina, Ciudad de México, Mexico; Hospital Psiquiátrico "Dr. Samuel Ramírez Moreno", Secretaria de Salud, Ciudad de México, Mexico
| | - Claudia C Calzada-Mendoza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional-Escuela Superior de Medicina, Ciudad de México, Mexico.
| |
Collapse
|
49
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
50
|
Dehghan A, Vasan SK, Fielding BA, Karpe F. A prospective study of the relationships between change in body composition and cardiovascular risk factors across the menopause. Menopause 2021; 28:400-406. [PMID: 33534433 PMCID: PMC8284369 DOI: 10.1097/gme.0000000000001721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Menopause increases the risk of cardiovascular disease (CVD) which in part has been attributed to the rise in cholesterol and blood pressure (BP). This study examined the hypothesis that menopausal changes in body composition and regional fat depots relate to the change in CVD risk factors. METHODS A prospective recall study was designed to capture premenopausal women to be re-examined soon after menopause. A total of 97 women from the Oxford Biobank underwent dual x-ray absorptiometry, blood biochemistry, and BP readings pre- and postmenopause. RESULTS Despite minimal changes in body weight over the 5.1 ± 0.9 year follow-up period, there was an increase in total fat mass and a decline in lean mass, where the proportional change of regional fat mass was the greatest for the visceral fat depot (+22%, P < 0.01). Plasma ApoB (+12%, P < 0.01) and C-reactive protein (+45%, P < 0.01) increased as did systolic (+7%, P < 0.001) and diastolic BP (+5%, P < 0.001). Plasma nonesterified fatty acids decreased (-20%, P < 0.05) which may reflect on a change in adipose tissue function across the menopause. PCSK-9 decreased (-26%, P < 0.01) which suggests a compensation for the postmenopausal reduction in low-density lipoprotein receptor activity. Using multilinear regression analyses the changes in ApoB and diastolic BP were associated with visceral fat mass change, but this association was lost when adjusted for total fat mass change. CONCLUSION The increase in CVD risk factor burden across menopause may not be driven by changes in body composition, rather by functional changes in end organs such as adipose tissue and liver.
Collapse
Affiliation(s)
- Aaron Dehghan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Senthil K. Vasan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Centre, Oxford University Hospital Trust and University of Oxford, Oxford, UK
| |
Collapse
|