1
|
Lucinian YA, Martineau P, Abikhzer G, Harel F, Pelletier-Galarneau M. Novel tracers to assess myocardial inflammation with radionuclide imaging. J Nucl Cardiol 2024:102012. [PMID: 39069249 DOI: 10.1016/j.nuclcard.2024.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Myocardial inflammation plays a central role in the pathophysiology of various cardiac diseases. While FDG-PET is currently the primary method for molecular imaging of myocardial inflammation, its effectiveness is hindered by physiological myocardial uptake as well as its propensity for uptake by multiple disease-specific mechanisms. Novel radiotracers targeting diverse inflammatory immune cells and molecular pathways may provide unique insight through the visualization of underlying mechanisms central to the pathogenesis of inflammatory cardiac diseases, offering opportunities for increased understanding of immunocardiology. Moreover, the potentially enhanced specificity may lead to better quantification of disease activity, aiding in the guidance and monitoring of immunomodulatory therapy. This review aims to provide an update on advancements in non-FDG radiotracers for imaging myocardial inflammatory diseases, with a focus on cardiac sarcoidosis, myocarditis, and acute myocardial infarction.
Collapse
Affiliation(s)
| | | | - Gad Abikhzer
- Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
2
|
Dong F, Yin L, Sisakian H, Hakobyan T, Jeong LS, Joshi H, Hoff E, Chandler S, Srivastava G, Jabir AR, Kimball K, Chen YR, Chen CL, Kang PT, Shabani P, Shockling L, Pucci T, Kegecik K, Kolz C, Jia Z, Chilian WM, Ohanyan V. Takotsubo syndrome is a coronary microvascular disease: experimental evidence. Eur Heart J 2023; 44:2244-2253. [PMID: 37170610 PMCID: PMC10290875 DOI: 10.1093/eurheartj/ehad274] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND AND AIMS Takotsubo syndrome (TTS) is a conundrum without consensus about the cause. In a murine model of coronary microvascular dysfunction (CMD), abnormalities in myocardial perfusion played a key role in the development of TTS. METHODS AND RESULTS Vascular Kv1.5 channels connect coronary blood flow to myocardial metabolism and their deletion mimics the phenotype of CMD. To determine if TTS is related to CMD, wild-type (WT), Kv1.5-/-, and TgKv1.5-/- (Kv1.5-/- with smooth muscle-specific expression Kv1.5 channels) mice were studied following transaortic constriction (TAC). Measurements of left ventricular (LV) fractional shortening (FS) in base and apex, and myocardial blood flow (MBF) were completed with standard and contrast echocardiography. Ribonucleic Acid deep sequencing was performed on LV apex and base from WT and Kv1.5-/- (control and TAC). Changes in gene expression were confirmed by real-time-polymerase chain reaction. MBF was increased with chromonar or by smooth muscle expression of Kv1.5 channels in the TgKv1.5-/-. TAC-induced systolic apical ballooning in Kv1.5-/-, shown as negative FS (P < 0.05 vs. base), which was not observed in WT, Kv1.5-/- with chromonar, or TgKv1.5-/-. Following TAC in Kv1.5-/-, MBF was lower in LV apex than in base. Increasing MBF with either chromonar or in TgKv1.5-/- normalized perfusion and function between LV apex and base (P = NS). Some genetic changes during TTS were reversed by chromonar, suggesting these were independent of TAC and more related to TTS. CONCLUSION Abnormalities in flow regulation between the LV apex and base cause TTS. When perfusion is normalized between the two regions, normal ventricular function is restored.
Collapse
Affiliation(s)
- Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Hamayak Sisakian
- Department of Cardiology, Yerevan State Medical University, Yerevan, Kentron, Armenia
| | - Tatevik Hakobyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Lacey S Jeong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Hirva Joshi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Ellianna Hoff
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Selena Chandler
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Geetika Srivastava
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Abdur Rahman Jabir
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Kelly Kimball
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Chwen-Lih Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Patrick T Kang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Parisa Shabani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Lindsay Shockling
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Thomas Pucci
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Karlina Kegecik
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| |
Collapse
|
3
|
Winnicki A, Gadd J, Ohanyan V, Hernandez G, Wang Y, Enrick M, McKillen H, Kiedrowski M, Kundu D, Kegecik K, Penn M, Chilian WM, Yin L, Dong F. Role of endothelial CXCR4 in the development of aortic valve stenosis. Front Cardiovasc Med 2022; 9:971321. [PMID: 36148060 PMCID: PMC9488705 DOI: 10.3389/fcvm.2022.971321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background CXCL12/CXCR4 signaling is essential in cardiac development and repair, however, its contribution to aortic valve stenosis (AVS) remains unclear. In this study, we tested the role of endothelial CXCR4 on the development of AVS. Materials and methods We generated CXCR4 endothelial cell-specific knockout mice (EC CXCR4 KO) by crossing CXCR4fl/fl mice with Tie2-Cre mice to study the role of endothelial cell CXCR4 in AVS. CXCR4fl/fl mice were used as controls. Echocardiography was used to assess the aortic valve and cardiac function. Heart samples containing the aortic valve were stained using Alizarin Red for detection of calcification. Masson’s trichrome staining was used for the detection of fibrosis. The apex of the heart samples was stained with wheat germ agglutinin (WGA) to visualize ventricular hypertrophy. Results Compared with the control group, the deletion of CXCR4 in endothelial cells led to significantly increased aortic valve peak velocity and aortic valve peak pressure gradient, with decreased aortic valve area and ejection fraction. EC CXCR4 KO mice also developed cardiac hypertrophy as evidenced by increased diastolic and systolic left ventricle posterior wall thickness (LVPW), cardiac myocyte size, and heart weight (HW) to body weight (BW) ratio. Our data also confirmed increased microcalcifications, interstitial fibrosis, and thickened valvular leaflets of the EC CXCR4 KO mice. Conclusion The data collected throughout this study suggest the deletion of CXCR4 in endothelial cells is linked to the development of aortic valve stenosis and left ventricular hypertrophy. The statistically significant parameters measured indicate that endothelial cell CXCR4 plays an important role in aortic valve development and function. We have compiled compelling evidence that EC CXCR4 KO mice can be used as a novel model for AVS.
Collapse
Affiliation(s)
- Anna Winnicki
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - James Gadd
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Gilbert Hernandez
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Yang Wang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Hannah McKillen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Matthew Kiedrowski
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Dipan Kundu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Karlina Kegecik
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Marc Penn
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
- Summa Cardiovascular Institute, Summa Health, Akron, OH, United States
| | - William M. Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
- Liya Yin,
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
- *Correspondence: Feng Dong,
| |
Collapse
|
4
|
Wen X, Peng Y, Gao M, Zhu Y, Zhu Y, Yu F, Zhou T, Shao J, Feng L, Ma X. Endothelial Transient Receptor Potential Canonical Channel Regulates Angiogenesis and Promotes Recovery After Myocardial Infarction. J Am Heart Assoc 2022; 11:e023678. [PMID: 35253458 PMCID: PMC9075314 DOI: 10.1161/jaha.121.023678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background
Transient receptor potential canonical (TRPC) channels play a role in angiogenesis. However, the involvement of TRPC1 in myocardial infarction (MI) remains unclear. The present study was aimed at investigating whether TRPC1 can improve the recovery of cardiac function via prompting angiogenesis following MI.
Methods and Results
In vitro, coronary artery endothelial cells from floxed TRPC1 mice and endothelial cell‐specific TRPC1 channel knockout mice were cultured to access EC angiogenesis. Both EC tube formation and migration were significantly suppressed in mouse coronary artery endothelial cells from endothelial cell‐specific TRPC1 channel knockout mice. In vivo, coronary artery endothelial cells from floxed TRPC1 and endothelial cell‐specific TRPC1 channel knockout mice were subjected to MI, then echocardiography, triphenyltetrazolium chloride staining and immunofluorescence were performed to assess cardiac repair on day 28. Endothelial cell‐specific TRPC1 channel knockout mice had higher ejection fraction change, larger myocardial infarct size, and reduced capillary density in the infarct area compared with coronary artery endothelial cells from floxed TRPC1 mice. Furthermore, we found underlying regulation by HIF‐1α (hypoxic inducible factor‐1α) and MEK‐ERK (mitogen‐activated protein kinase/extracellular signal‐regulated kinase) that could be the mechanism for the angiogenetic action of TRPC1. Significantly, treatment with dimethyloxaloylglycine, an activator of HIF‐1α, induced cardiac improvement via the HIF‐1α‐TRPC1‐MEK/ERK pathway in MI mice.
Conclusions
Our study demonstrated TRPC1 improves cardiac function after MI by increasing angiogenesis via the upstream regulator HIF‐1α and downstream MEK/ERK, and dimethyloxaloylglycine treatment has protective effect on MI through the HIF‐1α‐TRPC1‐MEK/ERK pathway.
Collapse
Affiliation(s)
- Xin Wen
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Yidi Peng
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| | - Mengru Gao
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| | - Yuzhong Zhu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Yifei Zhu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Fan Yu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Tingting Zhou
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Jing Shao
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Lei Feng
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Xin Ma
- Wuxi School of Medicine Jiangnan University Wuxi China
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| |
Collapse
|
5
|
Cardiac Immunology: A New Era for Immune Cells in the Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 32910424 DOI: 10.1007/5584_2020_576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The immune system is essential for the development and homeostasis of the human body. Our current understanding of the immune system on disease pathogenesis has drastically expanded over the last decade with the definition of additional non-canonical roles in various tissues. Recently, tissue-resident immune cells have become an important research topic for understanding their roles in the prevention, pathogenesis, and recovery from the diseases. Heart resident immune cells, particularly macrophage subtypes, and their characteristic morphology, distribution in the cardiac tissue, and transcriptional profile have been recently reported in the experimental animal models, unrevealing novel and unexpected roles in electrophysiological regulation of the heart both at the steady-state and diseased state. Immunological processes have been widely studied in both sterile cardiac disorders, such as myocardial infarction, autoimmune cardiac diseases, or infectious cardiac diseases, such as myocarditis, endocarditis, and acute rheumatic carditis. Following cardiac injury, innate and adaptive immunity have critical roles in pro- and anti-inflammatory processes. Heart resident immune cells not only provide defense against infectious diseases but also contribute to the homeostasis. In recent years, physiological changes and pathological processes were demonstrated to alter the abundance, distribution, polarization, and diversity of immune cells in the heart. Accumulating evidence indicates that cardiac remodeling is controlled by the complex crosstalk between cardiomyocytes and cardiac immune cells through the gap junctions, providing the ion flow to achieve synchronization and modulation of contractility. This review article aims to review the well-documented roles of both resident and recruited immune cell in the heart, as well as their recently uncovered unconventional roles in both cardiac homeostasis and cardiovascular diseases. We have mostly focused on studies on animal models used in preclinical research, underlying the need for further investigations in humans or in vitro human models. It may be foreseen that the further comprehensive investigations of cardiac immunology might harbor new therapeutic options for cardiac disorders that have tremendous medical potential.
Collapse
|
6
|
Ji Y, Yao J, He Y. Extracellular ubiquitin protects cardiomyocytes during ischemia/hypoxia by inhibiting mitochondrial apoptosis pathway through CXCR4. Biomed Pharmacother 2020; 131:110787. [PMID: 33152945 DOI: 10.1016/j.biopha.2020.110787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022] Open
Abstract
AIM Acute myocardial infarction (AMI) is one of the deadliest diseases worldwide. The search for countermeasures to reduce cardiomyocytes death in the infarcted area has always been the focus of research. Ubiquitin (UB) is a small polypeptide mainly involved in proteasome-mediated protein degradation in cells, whereas extracellular UB in body fluids can also function through its receptor CXC chemokine receptor type 4 (CXCR4). This study aimed to explore the functional roles of extracellular UB in cardiomyocytes during ischemia/hypoxia (I/H). METHODS H9C2 cells were subjected to I/H treatment and cell injury was evaluated by cell viability, morphology changes and apoptosis rate. UB expression and levels of ubiquitinated proteins after I/H injury were measured. The effects of extracellular UB on I/H-induced cardiomyocytes apoptosis and the possible underlying mechanisms were studied. RESULTS I/H injury induced the decrease of cell viability as well as enhanced impaired cell morphology and apoptosis rate in H9C2 cells. Levels of UB mRNA and ubiquitinated proteins were significantly up-regulated after I/H treatment, whereas the concentration of extracellular UB in the conditioned media did not show significant change and the intracellular mono-UB levels in cells were down-regulated. Extracellular UB treatment protected cardiomyocytes from I/H injury by inhibiting the overactivation of mitochondria-dependent apoptosis pathway and up-regulating autophagy level. Inhibition of CXCR4 receptor using AMD3100 abolished cardioprotective effects of extracellular UB. CONCLUSION The up-regulation of UB was suggested to be an adaptive response to resist I/H-induced cardiomyocytes apoptosis, and additional extracellular UB treatment might serve as a new potential therapeutic drug for AMI.
Collapse
Affiliation(s)
- Yiqun Ji
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jialu Yao
- Department of Cardiology, Suzhou Municipal Hospital, Suzhou, Jiangsu Province, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
7
|
Ji Y, Yao J, Zhao Y, Zhai J, Weng Z, He Y. Extracellular ubiquitin levels are increased in coronary heart disease and associated with the severity of the disease. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:256-264. [PMID: 32077763 DOI: 10.1080/00365513.2020.1728783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aim: This study aimed to evaluate concentration of plasma extracellular ubiquitin (UB) in coronary heart disease (CHD) patients and its correlation with the disease severity.Methods: Levels of UB and stromal cell-derived factor-1a (SDF-1a) were measured in 60 healthy controls and 67 CHD cases. Coronary atherosclerosis was assessed with Gensini scoring system. Spearman correlation was used to evaluate the correlation between UB and low-density lipoprotein cholesterol (LDL-C), C-reactive protein (CRP), creatine kinase-MB (CK-MB), cardiac troponin I (cTnI) or SDF-1a. The receiver-operating characteristic (ROC) curve was established to assess the predictive value of UB.Results: Plasma UB levels were significantly higher in CHD patients than in controls (p < .0001), and the levels in those with acute myocardial infarction (AMI) were higher than stable angina pectoris (SAP) and unstable angina pectoris (UAP) groups (both p < .01). UB was also positively correlated with Gensini score, CRP, CK-MB and cTnI in CHD. ROC analysis of UB showed that the area under the curve (AUC) were 0.711 (95%CI, 0.623-0.799) and 0.778 (95%CI, 0.666-0.890) for CHD and acute coronary syndrome (ACS), respectively. Plasma SDF-1a levels were elevated in CHD patients but showed no significant correlation with UB concentration or the severity of the disease.Conclusion: Plasma UB concentration was increased in CHD and the change of UB levels may reflect the progression of CHD.
Collapse
Affiliation(s)
- Yiqun Ji
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jialu Yao
- Department of Cardiology, Suzhou Municipal Hospital, Suzhou, China
| | - Yunxiao Zhao
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juping Zhai
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Weng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Feng M, Li Z, Wang D, Wang F, Wang C, Wang C, Ding F. MicroRNA-210 aggravates hypoxia-induced injury in cardiomyocyte H9c2 cells by targeting CXCR4. Biomed Pharmacother 2018; 102:981-987. [PMID: 29710553 DOI: 10.1016/j.biopha.2018.03.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI), a leading cause of mortality, is identified as the myocardial necrosis due to prolonged ischemia. Hypoxia, resulting from ischemia, induces cell apoptosis during MI. Since miR-210 is a hypoxia inducible factor, we aimed to explore the functional role of miR-210 in hypoxic H9c2 cells. METHODS Hypoxia-induced cell injury was evaluated according to cell viability, apoptosis and expression of apoptosis-associated proteins. miR-210 expression after hypoxia was tested. Then, miR-210 was overexpressed or silenced, and its effects on viability and apoptosis of H9c2 cells under normoxia and hypoxia were measured. Utilizing bioinformatics method, possible target genes of miR-210 were screened, and the interaction between miR-210 and target gene was investigated. Moreover, the effect of co-transfections with microRNAs and small interfering RNAs on hypoxia-induced cell injury as well as the possible involved signaling pathways was also determined. RESULTS Hypoxia induced cell injury and up-regulation of miR-210 in H9c2 cells. Hypoxia-induced cell injury was aggravated by miR-210 overexpression but was attenuated by miR-210 suppression. CXC chemokine receptor 4 (CXCR4) was a target gene of miR-210, and CXCR4 inhibition could reverse the effects of miR-210 inhibition on H9c2 cells. Furthermore, the key kinases involved in the SMAD and mTOR signaling pathways were down-regulated by hypoxia, and the down-regulations were reversed by miR-210 suppression through modulating CXCR4. CONCLUSION miR-210 was up-regulated in hypoxic H9c2 cells. Suppression of miR-210 attenuated hypoxia-induced cell injury in H9c2 cells by targeting CXCR4, along with activations of the SMAD and mTOR signaling pathways.
Collapse
Affiliation(s)
- Min Feng
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, 256603, China.
| | - Zongqing Li
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Dong Wang
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, 256603, China.
| | - Fang Wang
- Department of State-owned Assets Management, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Chenyan Wang
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Chunfang Wang
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Faming Ding
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, 256603, China
| |
Collapse
|
9
|
Renko O, Tolonen AM, Rysä J, Magga J, Mustonen E, Ruskoaho H, Serpi R. SDF1 gradient associates with the distribution of c-Kit+ cardiac cells in the heart. Sci Rep 2018; 8:1160. [PMID: 29348441 PMCID: PMC5773575 DOI: 10.1038/s41598-018-19417-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022] Open
Abstract
Identification of the adult cardiac stem cells (CSCs) has offered new therapeutic possibilities for treating ischemic myocardium. CSCs positive for the cell surface antigen c-Kit are known as the primary source for cardiac regeneration. Accumulating evidence shows that chemokines play important roles in stem cell homing. Here we investigated molecular targets to be utilized in modulating the mobility of endogenous CSCs. In a four week follow-up after experimental acute myocardial infarction (AMI) with ligation of the left anterior descending (LAD) coronary artery of Sprague-Dawley rats c-Kit+ CSCs redistributed in the heart. The number of c-Kit+ CSCs in the atrial c-Kit niche was diminished, whereas increased amount was observed in the left ventricle and apex. This was associated with increased expression of stromal cell-derived factor 1 alpha (SDF1α), and a significant positive correlation was found between c-Kit+ CSCs and SDF1α expression in the heart. Moreover, the migratory capacity of isolated c-Kit+ CSCs was induced by SDF1 treatment in vitro. We conclude that upregulation of SDF1α after AMI associates with increased expression of endogenous c-Kit+ CSCs in the injury area, and show induced migration of c-Kit+ cells by SDF1.
Collapse
Affiliation(s)
- Outi Renko
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Anna-Maria Tolonen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Erja Mustonen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| |
Collapse
|
10
|
Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314:H812-H838. [PMID: 29351451 PMCID: PMC5966768 DOI: 10.1152/ajpheart.00335.2017] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| | - John M Canty
- Division of Cardiovascular Medicine, Departments of Biomedical Engineering and Physiology and Biophysics, The Veterans Affairs Western New York Health Care System and Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital , Würzburg , Germany
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia Health System , Charlottesville, Virginia
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes , Pasadena, California.,Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana
| | - Ronglih Liao
- Harvard Medical School , Boston, Massachusetts.,Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Peipei Ping
- National Institutes of Health BD2KBig Data to Knowledge (BD2K) Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California , Los Angeles, California
| | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione G. Monasterio, Pisa , Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Lisa Schwartz Longacre
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California , Davis, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School , Essen , Germany
| |
Collapse
|
11
|
Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 2018; 314:H733-H752. [PMID: 29351456 PMCID: PMC5966769 DOI: 10.1152/ajpheart.00339.2017] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death, and translational research is needed to understand better mechanisms whereby the left ventricle responds to injury. Mouse models of heart disease have provided valuable insights into mechanisms that occur during cardiac aging and in response to a variety of pathologies. The assessment of cardiovascular physiological responses to injury or insult is an important and necessary component of this research. With increasing consideration for rigor and reproducibility, the goal of this guidelines review is to provide best-practice information regarding how to measure accurately cardiac physiology in animal models. In this article, we define guidelines for the measurement of cardiac physiology in mice, as the most commonly used animal model in cardiovascular research. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-for-measuring-cardiac-physiology-in-mice/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | | |
Collapse
|
12
|
Mayorga ME, Kiedrowski M, McCallinhart P, Forudi F, Ockunzzi J, Weber K, Chilian W, Penn MS, Dong F. Role of SDF-1:CXCR4 in Impaired Post-Myocardial Infarction Cardiac Repair in Diabetes. Stem Cells Transl Med 2017; 7:115-124. [PMID: 29119710 PMCID: PMC5746149 DOI: 10.1002/sctm.17-0172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a risk factor for worse outcomes following acute myocardial infarction (AMI). In this study, we tested the hypothesis that SDF‐1:CXCR4 expression is compromised in post‐AMI in diabetes, and that reversal of this defect can reverse the adverse effects of diabetes. Mesenchymal stem cells (MSC) isolated from green fluorescent protein (GFP) transgenic mice (control MSC) were induced to overexpress stromal cell‐derived factor‐1 (SDF‐1). SDF‐1 expression in control MSC and SDF‐1‐overexpressing MSC (SDF‐1:MSC) were quantified using enzyme‐linked immunosorbent assay (ELISA). AMI was induced on db/db and control mice. Mice were randomly selected to receive infusion of control MSC, SDF‐1:MSC, or saline into the border zone after AMI. Serial echocardiography was used to assess cardiac function. SDF‐1 and CXCR4 mRNA expression in the infarct zone of db/db mice and control mice were quantified. Compared to control mice, SDF‐1 levels were decreased 82%, 91%, and 45% at baseline, 1 day and 3 days post‐AMI in db/db mice, respectively. CXCR4 levels are increased 233% at baseline and 54% 5 days post‐AMI in db/db mice. Administration of control MSC led to a significant improvement in ejection fraction (EF) in control mice but not in db/db mice 21 days after AMI. In contrast, administration of SDF‐1:MSC produced a significant improvement in EF in both control mice and db/db mice 21 days after AMI. The SDF‐1:CXCR4 axis is compromised in diabetes, which appears to augment the deleterious consequences of AMI. Over‐express of SDF‐1 expression in diabetes rescues cardiac function post AMI. Our results suggest that modulation of SDF‐1 may improve post‐AMI cardiac repair in diabetes. stemcellstranslationalmedicine2018;7:115–124
Collapse
Affiliation(s)
- Maritza E Mayorga
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Matthew Kiedrowski
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Patricia McCallinhart
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Farhad Forudi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Jeremiah Ockunzzi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Kristal Weber
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - William Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Marc S Penn
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Summa Cardiovascular Institute, Summa Health System, Akron, Ohio, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
13
|
Jeong YM, Cheng XW, Lee S, Lee KH, Cho H, Kang JH, Kim W. Preconditioning with far-infrared irradiation enhances proliferation, cell survival, and migration of rat bone marrow-derived stem cells via CXCR4-ERK pathways. Sci Rep 2017; 7:13718. [PMID: 29057951 PMCID: PMC5651919 DOI: 10.1038/s41598-017-14219-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/06/2017] [Indexed: 01/06/2023] Open
Abstract
Far-infrared radiation (FIR) has been shown to exert positive effects on the cardiovascular system. However, the biological effects of FIR on bone marrow-derived stem cells (BMSCs) are not understood. In the present study, BMSCs were isolated from rat femur bone marrow and cultured in vitro. To investigate the effects of an FIR generator with an energy flux of 0.13 mW/cm2 on rat BMSCs, survival of BMSCs was measured by crystal violet staining, and cell proliferation was additionally measured using Ez-Cytox cell viability, EdU, and Brd U assays. FIR preconditioning was found to significantly increase BMSC proliferation and survival against H2O2. The scratch and transwell migration assays showed that FIR preconditioning resulted in an increase in BMSC migration. qRT-PCR and Western blot analyses demonstrated that FIR upregulated Nanog, Sox2, c-Kit, Nkx2.5, and CXCR4 at both the mRNA and protein levels. Consistent with these observations, PD98059 (an ERK inhibitor) and AMD3100 (a CXCR4 inhibitor) prevented the activation of CXCR4/ERK and blocked the cell proliferation and migration induced by FIR. Overall, these findings provide the first evidence that FIR confers a real and significant benefit on the preconditioning of BMSCs, and might lead to novel strategies for improving BMSC therapy for cardiac ischemia.
Collapse
Affiliation(s)
- Yun-Mi Jeong
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Xian Wu Cheng
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea.,The Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Sora Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung Hye Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Haneul Cho
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jung Hee Kang
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Lan X, Wang G, Xu X, Lu S, Li X, Zhang B, Shi G, Zhao Y, Du C, Wang H. Stromal Cell-Derived Factor-1 Mediates Cardiac Allograft Tolerance Induced by Human Endometrial Regenerative Cell-Based Therapy. Stem Cells Transl Med 2017; 6:1997-2008. [PMID: 28941322 PMCID: PMC6430050 DOI: 10.1002/sctm.17-0091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Endometrial regenerative cells (ERCs) are mesenchymal-like stromal cells, and their therapeutic potential has been tested in the prevention of renal ischemic reperfusion injury, acute liver injury, ulcerative colitis, and immunosuppression. However, their potential in the induction of transplant tolerance has not been investigated. The present study was undertaken to investigate the efficacy of ERCs in inducing cardiac allograft tolerance and the function of stromal cell-derived factor-1 (SDF-1) in the ERC-mediated immunoregulation. The inhibitory efficacy of human ERCs in the presence or absence of rapamycin was examined in both mouse cardiac allograft models between BALB/c (H-2d ) donors and C57BL/6 (H-2b ) recipients and in vitro cocultured splenocytes. AMD3100 was used to inhibit the function of SDF-1. Intragraft antibody (IgG and IgM) deposition and immune cell (CD4+ and CD8+ ) infiltration were measured by immunohistochemical staining, and splenocyte phenotypes were determined by fluorescence-activated cell sorting analysis. The results showed that ERC-based therapy induced donor-specific allograft tolerance, and functionally inhibiting SDF-1 resulted in severe allograft rejection. The negative effects of inhibiting SDF-1 on allograft survival were correlated with increased levels of intragraft antibodies and infiltrating immune cells, and also with reduced levels of regulatory immune cells including MHC class IIlow CD86low CD40low dendritic cells, CD68+ CD206+ macrophages, CD4+ CD25+ Foxp3+ T cells, and CD1dhigh CD5high CD83low IL-10high B cells both in vivo and in vitro. These data showed that human ERC-based therapy induces cardiac allograft tolerance in mice, which is associated with SDF-1 activity, suggesting that SDF-1 mediates the immunosuppression of ERC-based therapy for the induction of transplant tolerance. Stem Cells Translational Medicine 2017;6:1997-2008.
Collapse
Affiliation(s)
- Xu Lan
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Grace Wang
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoxi Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Shanzheng Lu
- Department of Anorectal Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Ganggang Shi
- Department of Colorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Caigan Du
- Department of Urologic Sciences, the University of British Columbia, Vancouver, British Columbia, Canada.,Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
15
|
Beji S, Milano G, Scopece A, Cicchillitti L, Cencioni C, Picozza M, D'Alessandra Y, Pizzolato S, Bertolotti M, Spaltro G, Raucci A, Piaggio G, Pompilio G, Capogrossi MC, Avitabile D, Magenta A, Gambini E. Doxorubicin upregulates CXCR4 via miR-200c/ZEB1-dependent mechanism in human cardiac mesenchymal progenitor cells. Cell Death Dis 2017; 8:e3020. [PMID: 28837147 PMCID: PMC5596590 DOI: 10.1038/cddis.2017.409] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/06/2023]
Abstract
Doxorubicin (DOXO) treatment is limited by its cardiotoxicity, since it causes cardiac-progenitor-cell depletion. Although the cardioprotective role of the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF1/CXCR4) axis is well established, its involvement during DOXO-induced cardiotoxicity has never been investigated. We showed that in a mouse model of DOXO-induced cardiomyopathy, CXCR4+ cells were increased in response to DOXO, mainly in human cardiac mesenchymal progenitor cells (CmPC), a subpopulation with regenerative potential. Our in vitro results showed a CXCR4 induction after 24 h of DOXO exposure in CmPC. SDF1 administration protected from DOXO-induced cell death and promoted CmPC migration. CXCR4 promoter analysis revealed zinc finger E-box binding homeobox 1 (ZEB1) binding sites. Upon DOXO treatment, ZEB1 binding decreased and RNA-polymerase-II increased, suggesting a DOXO-mediated transcriptional increase in CXCR4. Indeed, DOXO induced the upregulation of miR-200c, that directly targets ZEB1. SDF1 administration in DOXO-treated mice partially reverted the adverse remodeling, decreasing left ventricular (LV) end diastolic volume, LV ejection fraction and LV anterior wall thickness in diastole, recovering LV end systolic pressure and reducing±dP/dt. Moreover, in vivo administration of SDF1 partially reverted DOXO-induced miR-200c and p53 protein upregulation in mouse hearts. In addition, downmodulation of ZEB1 mRNA and protein by DOXO was significantly increased by SDF1. In keeping, p21 mRNA, that is induced by p53 and inhibited by ZEB1, is induced by DOXO treatment and is decreased by SDF1 administration. This study showed new players of the DOXO-induced cardiotoxicity, that can be exploited to ameliorate DOXO-associated cardiomyopathy.
Collapse
Affiliation(s)
- Sara Beji
- Vascular Pathology Laboratory, Istituto Dermopatico dell’Immacolata, IRCCS, Via dei Monti di Creta 104, Rome 00167, Italy
| | - Giuseppina Milano
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
- Laboratory of Cardiovascular Research, Department of Surgery and Anesthesiology, University Hospital Lausanne; Rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Alessandro Scopece
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Lucia Cicchillitti
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano, 64, Rome 00143, Italy
| | - Mario Picozza
- Vascular Pathology Laboratory, Istituto Dermopatico dell’Immacolata, IRCCS, Via dei Monti di Creta 104, Rome 00167, Italy
| | - Yuri D'Alessandra
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino (CCM), IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Sarah Pizzolato
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Matteo Bertolotti
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino (CCM), IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Gabriella Spaltro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino (CCM), IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, Milan 20122, Italy
| | - Maurizio C Capogrossi
- Vascular Pathology Laboratory, Istituto Dermopatico dell’Immacolata, IRCCS, Via dei Monti di Creta 104, Rome 00167, Italy
| | - Daniele Avitabile
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| | - Alessandra Magenta
- Vascular Pathology Laboratory, Istituto Dermopatico dell’Immacolata, IRCCS, Via dei Monti di Creta 104, Rome 00167, Italy
| | - Elisa Gambini
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, Milan 20138, Italy
| |
Collapse
|
16
|
The promise of stromal cell-derived factor-1 in novel heart disease treatments. J Mol Med (Berl) 2017; 95:821-823. [DOI: 10.1007/s00109-017-1569-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Dong F, Patnaik S, Duan ZH, Kiedrowski M, Penn MS, Mayorga ME. A Novel Role for CAMKK1 in the Regulation of the Mesenchymal Stem Cell Secretome. Stem Cells Transl Med 2017; 6:1759-1766. [PMID: 28688176 PMCID: PMC5689779 DOI: 10.1002/sctm.17-0046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
Transplantation of adult stem cells into myocardial tissue after acute myocardial infarction (AMI), has been shown to improve tissue recovery and prevent progression to ischemic cardiomyopathy. Studies suggest that the effects of mesenchymal stem cells (MSC) are due to paracrine factors released by MSC, as the benefits of MSC can be achieved through delivery of conditioned media (CM) alone. We previously demonstrated that downregulation of Dab2 enhances MSC cardiac protein expression and improves cardiac function after AMI following MSC engraftment. In order to define the molecular mechanisms that regulate MSC secretome, we analyzed gene arrays in MSC following downregulation of Dab2 via TGFβ1 pretreatment or transfection with Dab2:siRNA or miR‐145. We identified 23 genes whose expressions were significantly changed in all three conditions. Among these genes, we have initially focused our validation and functional work on calcium/calmodulin‐dependent protein kinase kinase‐1 (CAMKK1). We quantified the effects of CAMKK1 overexpression in MSC following injection of CM after AMI. Injections of CM from MSC with CAMKK1 over‐expression correlated with an increase in vascular density (CAMKK1 CM: 2,794.95 ± 44.2 versus Control: 1,290.69 ± 2.8 vessels/mm2) and decreased scar formation (CAMKK1 CM 50% ± 3.2% versus Control: 28% ± 1.4%), as well as improved cardiac function. Direct overexpression of CAMKK1 in infarcted tissue using a CAMKK1‐encoding plasmid significantly improved ejection fraction (CAMKK1: 83.2% ± 5.4% versus saline: 51.7% ± 5.8%. Baseline: 91.3% ± 4.3%) and decreased infarct size after AMI. Our data identify a novel role for CAMKK1 as regulator of the MSC secretome and demonstrate that direct overexpression of CAMKK1 in infarcted cardiac tissue, results in therapeutic beneficial effects. Stem Cells Translational Medicine2017;6:1759–1766
Collapse
Affiliation(s)
- Feng Dong
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Shyam Patnaik
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | | - Matthew Kiedrowski
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Marc S Penn
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Cardiovascular Department, Summa Cardiovascular Institute, Summa Health System, Akron, Ohio, USA
| | - Maritza E Mayorga
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
18
|
Prolyl-hydroxylase inhibition induces SDF-1 associated with increased CXCR4+/CD11b+ subpopulations and cardiac repair. J Mol Med (Berl) 2017; 95:825-837. [PMID: 28550361 PMCID: PMC5516048 DOI: 10.1007/s00109-017-1543-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
SDF-1/CXCR4 activation facilitates myocardial repair. Therefore, we aimed to activate the HIF-1α target genes SDF-1 and CXCR4 by dimethyloxalylglycine (DMOG)-induced prolyl-hydroxylase (PH) inhibition to augment CXCR4+ cell recruitment and myocardial repair. SDF-1 and CXCR4 expression was analyzed under normoxia and ischemia ± DMOG utilizing SDF-1-EGFP and CXCR4-EGFP reporter mice. In bone marrow and heart, CXCR4-EGFP was predominantly expressed in CD45+/CD11b+ leukocytes which significantly increased after myocardial ischemia. PH inhibition with 500 μM DMOG induced upregulation of SDF-1 mRNA in human microvascular endothelial cells (HMEC-1) and aortic vascular smooth muscle cells (HAVSMC). CXCR4 was highly elevated in HMEC-1 but almost no detectable in HAVSMC. In vivo, systemic administration of the PH inhibitor DMOG without pretreatment upregulated nuclear HIF-1α and SDF-1 in the ischemic mouse heart associated with increased recruitment of CD45+/CXCR4-EGFP+/CD11b+ cell subsets. Enhanced PH inhibition significantly upregulated reparative M2 like CXCR4-EGFP+ CD11b+/CD206+ cells compared to inflammatory M2-like CXCR4-EGFP+ CD11b+/CD86+ cells associated with reduced apoptotic cell death, increased neovascularization, reduced scar size, and an improved heart function after MI. In summary, our data suggest increased PH inhibition as a promising tool for a customized upregulation of SDF-1 and CXCR4 expression to attract CXCR4+/CD11b+ cells to the ischemic heart associated with increased cardiac repair. KEY MESSAGES DMOG-induced prolyl-hydroxylase inhibition upregulates SDF-1 and CXCR4 in human endothelial cells. Systemic application of DMOG upregulates nuclear HIF-1α and SDF-1 in vivo. Enhanced prolyl-hydroxylase inhibition increases mainly CXCR4+/CD11b+ cells. DMOG increased reparative M2-like CD11b+/CD206+ cells compared to M1-like cells after MI. Enhanced prolyl-hydroxylase inhibition improved cardiac repair and heart function.
Collapse
|
19
|
Jamaiyar A, Wan W, Ohanyan V, Enrick M, Janota D, Cumpston D, Song H, Stevanov K, Kolz CL, Hakobyan T, Dong F, Newby BMZ, Chilian WM, Yin L. Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction. Basic Res Cardiol 2017; 112:41. [PMID: 28540527 DOI: 10.1007/s00395-017-0631-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/18/2017] [Indexed: 12/26/2022]
Abstract
Ischemic heart disease is still the leading cause of death even with the advancement of pharmaceutical therapies and surgical procedures. Early vascularization in the ischemic heart is critical for a better outcome. Although stem cell therapy has great potential for cardiovascular regeneration, the ideal cell type and delivery method of cells have not been resolved. We tested a new approach of stem cell therapy by delivery of induced vascular progenitor cells (iVPCs) grown on polymer micro-bundle scaffolds in a rat model of myocardial infarction. iVPCs partially reprogrammed from vascular endothelial cells (ECs) had potent angiogenic potential and were able to simultaneously differentiate into vascular smooth muscle cells (SMCs) and ECs in 2D culture. Under hypoxic conditions, iVPCs also secreted angiogenic cytokines such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) as measured by enzyme-linked immunosorbent assay (ELISA). A longitudinal micro-scaffold made from poly(lactic-co-glycolic acid) was sufficient for the growth and delivery of iVPCs. Co-cultured ECs and SMCs aligned well on the micro-bundle scaffold similarly as in the vessels. 3D cell/polymer micro-bundles formed by iVPCs and micro-scaffolds were transplanted into the ischemic myocardium in a rat model of myocardial infarction (MI) with ligation of the left anterior descending artery. Our in vivo data showed that iVPCs on the micro-bundle scaffold had higher survival, and better retention and engraftment in the myocardium than free iVPCs. iVPCs on the micro-bundles promoted better cardiomyocyte survival than free iVPCs. Moreover, iVPCs and iVPC/polymer micro-bundles treatment improved cardiac function (ejection fraction and fractional shortening, endocardial systolic volume) measured by echocardiography, increased vessel density, and decreased infarction size [endocardial and epicardial infarct (scar) length] better than untreated controls at 8 weeks after MI. We conclude that iVPCs grown on a polymer micro-bundle scaffold are new promising approach for cell-based therapy designed for cardiovascular regeneration in ischemic heart disease.
Collapse
Affiliation(s)
- Anurag Jamaiyar
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Weiguo Wan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Danielle Janota
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Devan Cumpston
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Hokyung Song
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Kelly Stevanov
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Christopher L Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Tatev Hakobyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Bi-Min Zhang Newby
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA.
| |
Collapse
|
20
|
Kircher M, Lapa C. Novel Noninvasive Nuclear Medicine Imaging Techniques for Cardiac Inflammation. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017; 10:6. [PMID: 28357026 PMCID: PMC5352761 DOI: 10.1007/s12410-017-9400-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Inflammation is a key player in a wide range of cardiovascular and myocardial diseases. Given the numerous implications of inflammatory processes in disease initiation and progression, functional imaging modalities including positron emission tomography (PET) represent valuable diagnostic, prognostic, and monitoring tools in patient management. Since increased glucose metabolism is a hallmark of inflammation, PET using the radiolabeled glucose analog [18F]-2-deoxy-2-fluoro-d-glucose (FDG) is the mainstay diagnostic test for nuclear imaging of (cardiac) inflammation. Recently, new approaches using more specific tracers to overcome the limited specificity of FDG have emerged. RECENT FINDINGS PET imaging has proven its value in a number of inflammatory conditions of the heart including myocarditis, endocarditis, sarcoidosis, or reactive changes after myocardial infarction. In infection-related endocarditis, FDG-PET and white blood cell scintigraphy have been implemented in current guidelines. FDG-PET is considered as nuclear medical gold standard in myocarditis, pericarditis, or sarcoidosis. Novel strategies, including targeting of somatostatin receptors or C-X-C motif chemokine receptor CXCR4, have shown promising results in first studies. SUMMARY Nuclear medicine techniques offer valuable information in the assessment of myocardial inflammation. Given the possibility to directly visualize inflammatory activity, they represent useful tools for diagnosis, risk stratification, and therapy monitoring.
Collapse
Affiliation(s)
- Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| |
Collapse
|
21
|
Yang C, Zhu W, Han X, Ma A, Bai L, Xu F. Association of CXCR4 expression with coronary collateralization in patients with chronic total coronary occlusion: A nested case-control study. Int J Cardiol 2017; 228:501-506. [PMID: 27875725 DOI: 10.1016/j.ijcard.2016.11.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/05/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE CXCR4 signaling contributes to the development and progression of neovascularization. The objective of this study was to investigate whether CXCR4 expression in peripheral CD34+ cells associated with the coronary collateralization (CC) in patients with chronic total coronary occlusion (CTO). METHODS AND RESULTS We measured CXCR4 expression in peripheral CD34+ cells and assessed its relation with CC in a nested case-control study including 78 cases and 78 matched controls aged 38-69years, assessed in January 2011 to December 2012 and with at least 1year of follow-up before the index date. Cases were defined as good coronary collateralization (GCC) according to the Rentrop scoring system (Rentrop score of 2 or 3); for each case, one age-matched control with poor coronary collateralization (PCC) (Rentrop score 0 or 1) was randomly selected from the study participants. Demographic, biochemical, and angiographic variables were collected. In multivariate analysis, the OR (95% CI) of CXCR4 expression was 0.018 (0.017 to 0.020) in patients with GCC versus PCC. Independent effect of CXCR4 expression on CC was (OR 0.012, 95% CI 0.010-0.014) when adjusted for other variables. A nonlinear relationship between CXCR4 expression and CC was observed. The CC degree increased when CXCR4 expression exceeded the turning point (30%) (OR 0.025, 95% CI 0.022-0.028; p<0.001). When the CXCR4 expression exceeded 75%, increased CXCR4 level could not promoted CC (OR 0.000, 95% CI 0.008-0.007; p=0.974). CONCLUSION Increased CXCR4 level in peripheral CD34+ cells was associated with GCC in patients with CTO.
Collapse
Affiliation(s)
- Chun Yang
- Department of Cardiology, The First Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Wenjin Zhu
- Department of Cardiology, The First Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xiu Han
- Department of Cardiology, The First Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Aiqun Ma
- Department of Cardiology, The First Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Ling Bai
- Department of Cardiology, The First Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| |
Collapse
|
22
|
Relation Between C-X-C Motif Chemokine Receptor 4 Levels and the Presence and Extent of Angiographic Coronary Collaterals in Patients With Chronic Total Coronary Occlusion. Am J Cardiol 2016; 118:1136-1143. [PMID: 27569386 DOI: 10.1016/j.amjcard.2016.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 01/07/2023]
Abstract
Coronary collateral circulation is an alternative source of blood supply to the myocardium in the presence of chronic total coronary occlusion (CTO). C-X-C motif chemokine receptor 4 (CXCR4) signaling usually contributes to neovascularization. Here, we investigate the relation between CXCR4 levels in peripheral blood CD34+ cells and the formation of angiographic coronary collaterals and determine the risk factors that affect CXCR4 expression in patients with CTO. Demographic, biochemical, and angiographic variables were collected from 324 patients with CTO and 90 negative controls. The presence and extent of collaterals were scored according to the Rentrop scoring system (Rentrop's). CXCR4 levels and plasma biochemical factors were detected. Clinical outcomes were collected during a 12-month follow-up. Results show that low (Rentrop's 0 or 1) and high (Rentrop's of 2 or 3) coronary collateralizations were detected in 183 and 141 patients, respectively. The Rentrop scores were positively correlated with CXCR4 levels in patients with CTO. Patients with low CXCR4 expression exhibited worse clinical outcomes compared with those with high CXCR4 expression. Univariate correlation analysis revealed that age of ≥65 years, women, diabetes, increased plasma level of high-sensitivity C-reactive protein (hs-CRP), and N-terminal brain-type natriuretic peptide were associated with low CXCR4 levels. In conclusion, CXCR4 levels were positively correlated with the presence and extent of angiographic coronary collaterals in patients with CTO. Elder age, women, diabetes, increased plasma level of high-sensitivity C-reactive protein, and N-terminal brain-type natriuretic peptide may be risk factors of CXCR4 expression.
Collapse
|