1
|
Polman R, Hurst JR, Uysal OF, Mandal S, Linz D, Simons S. Cardiovascular disease and risk in COPD: a state of the art review. Expert Rev Cardiovasc Ther 2024; 22:177-191. [PMID: 38529639 DOI: 10.1080/14779072.2024.2333786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Chronic Obstructive Pulmonary Disease (COPD) and cardiovascular diseases (CVD) commonly co-exist. Outcomes of people living with both conditions are poor in terms of symptom burden, receiving evidence-based treatment and mortality. Increased understanding of the underlying mechanisms may help to identify treatments to relieve this disease burden. This narrative review covers the overlap of COPD and CVD with a focus on clinical presentation, mechanisms, and interventions. Literature up to December 2023 are cited. AREAS COVERED 1. What is COPD 2. The co-existence of COPD and cardiovascular disease 3. Mechanisms of cardiovascular disease in COPD. 4. Populations with COPD are at risk of CVD 5. Complexity in the co-diagnosis of COPD in those with cardiovascular disease. 6. Therapy for COPD and implications for cardiovascular events and risk. 7. Cardiovascular risk and exacerbations of COPD. 8. Pro-active identification and management of CV risk in COPD. EXPERT OPINION The prospective identification of co-morbid COPD in CVD patients and of CVD and CV risk in people with COPD is crucial for optimizing clinical outcomes. This includes the identification of novel treatment targets and the design of clinical trials specifically designed to reduce the cardiovascular burden and mortality associated with COPD. Databases searched: Pubmed, 2006-2023.
Collapse
Affiliation(s)
- Ricardo Polman
- Department of Respiratory Medicine, Maastricht UMC+, Maastricht, the Netherlands
| | - John R Hurst
- UCL Respiratory, University College London, London, UK
| | | | - Swapna Mandal
- UCL Respiratory, University College London, London, UK
| | - Dominik Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| | - Sami Simons
- Department of Respiratory Medicine, Maastricht UMC+, Maastricht, the Netherlands
- Department of Respiratory Medicine, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Siafakas N, Trachalaki A. By deflating the lungs pulmonologists help the cardiologists. A literature review. Pulmonology 2023; 29 Suppl 4:S86-S91. [PMID: 37031001 DOI: 10.1016/j.pulmoe.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 04/08/2023] Open
Abstract
In this review, we present the effects of lung hyperinflation on the cardiovascular system (CVS) and the beneficial outcomes of different deflation treatment modalities. We discuss the effects of long-acting bronchodilator drugs, medical and surgical lung volume reduction on the performance of the CVS. Although there is a small number of studies investigating lung deflation and the CVS, the short-term improvement in heart function was clearly demonstrated. However, more studies, with longer duration, are needed to verify these significant beneficial effects of deflation of the lungs on the CVS. Dynamic hyperinflation during exercise could be a research model to investigate further the effects of lung hyperinflation and/or deflation on the CVS.
Collapse
Affiliation(s)
- N Siafakas
- University Hospital of Heraklion, University of Crete, Greece.
| | - A Trachalaki
- National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
3
|
Wright SP, Dawkins TG, Harper MI, Stembridge M, Shave R, Eves ND. Mueller maneuver attenuates left atrial phasic volumes and myocardial strain in healthy younger adults. Am J Physiol Heart Circ Physiol 2023; 325:H1235-H1241. [PMID: 37737735 DOI: 10.1152/ajpheart.00505.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
The left atrium (LA) is a key, but incompletely understood, modulator of left ventricular (LV) filling. Inspiratory negative intrathoracic pressure swings alter cardiac loading conditions, which may impact LA function. We studied acute effects of static inspiratory efforts on LA chamber function, LA myocardial strain, and LV diastolic filling. We included healthy adults (10 males/9 females, 24 ± 4 yr) and used Mueller maneuvers to reduce intrathoracic pressure to -30 cmH2O for 15 s. Over six repeated trials, we used echocardiography to acquire LA- and LV-focused two-dimensional (2-D) images, and mitral Doppler inflow and annular tissue velocity spectra. Images were analyzed for LA and LV chamber volumes, tissue relaxation velocities, transmitral filling velocities, and speckle tracking-derived LA longitudinal strain. Repeated measures were made at baseline, early Mueller, late Mueller, then early release, and late release. In the late Mueller compared with baseline, LV stroke volume decreased by -10 ± 4 mL (P < 0.05) and then returned to baseline upon release; this occurred with a -11 ± 9 mL (P < 0.05) end-diastolic volume reduction. Early diastolic LV filling was attenuated, reflected by decreased tissue relaxation velocity (-2 ± 2 cm/s, P < 0.05), E-wave filling velocity (-13 ± 14 cm/s, P < 0.05), and LA passive emptying volume (-5 ± 5 mL, P < 0.05), each returning to baseline with release. LA maximal volume decreased (-5 ± 5 mL, P < 0.05) during the Mueller maneuver, but increased relative to baseline following release (+4 ± 5 mL, P < 0.05), whereas LA peak positive longitudinal strain decreased (-6 ± 6%, P < 0.05) and then returned to baseline. Attenuated LA and in turn, LV filling may contribute to acute stroke volume reductions experienced during forceful inspiratory efforts.NEW & NOTEWORTHY In healthy younger adults, the Mueller maneuver transiently reduces left atrial filling and passive emptying during the reservoir and conduit phases, respectively. Corresponding reductions are seen in left atrial reservoir and conduit phase longitudinal myocardial strain and strain rate. However, left atrial pump phase active function and mechanics are largely preserved compared with baseline. Rapid changes in LA chamber volumes and myocardial strain with recurrent forceful inspiratory efforts and relaxation may reflect acute LA stress.
Collapse
Affiliation(s)
- Stephen P Wright
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Tony G Dawkins
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Megan I Harper
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mike Stembridge
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Rob Shave
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Neil D Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Hamahata N, Pinsky MR. Heart-Lung Interactions. Semin Respir Crit Care Med 2023; 44:650-660. [PMID: 37541314 DOI: 10.1055/s-0043-1770062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
The pulmonary and cardiovascular systems have profound effects on each other. Overall cardiac function is determined by heart rate, preload, contractility, and afterload. Changes in lung volume, intrathoracic pressure (ITP), and hypoxemia can simultaneously change all of these four hemodynamic determinants for both ventricles and can even lead to cardiovascular collapse. Intubation using sedation depresses vasomotor tone. Also, the interdependence between right and left ventricles can be affected by lung volume-induced changes in pulmonary vascular resistance and the rise in ITP. An increase in venous return due to negative ITP during spontaneous inspiration can shift the septum to the left and cause a decrease in left ventricle compliance. During positive pressure ventilation, the increase in ITP causes a decrease in venous return (preload), minimizing ventricular interdependence and will decrease left ventricle afterload augmenting cardiac output. Thus, positive pressure ventilation is beneficial in acute heart failure patients and detrimental in hypovolemic patients where it can cause a significant decrease in venous return and cardiac output. Recently, this phenomenon has been used to assess patient's volume responsiveness to fluid by measuring pulse pressure variation and stroke volume variation. Heart-lung interaction is very dynamic and changes in lung volume, ITP, and oxygen level can have various effects on the cardiovascular system depending on preexisting cardiovascular function and volume status. Heart failure and either hypo or hypervolemia predispose to greater effects of ventilation of cardiovascular function and gas exchange. This review is an overview of the basics of heart-lung interaction.
Collapse
Affiliation(s)
- Natsumi Hamahata
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Caplan M, Hamzaoui O. Cardio-respiratory interactions in acute asthma. Front Physiol 2023; 14:1232345. [PMID: 37781226 PMCID: PMC10540856 DOI: 10.3389/fphys.2023.1232345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Asthma encompasses of respiratory symptoms that occur intermittently and with varying intensity accompanied by reversible expiratory airflow limitation. In acute exacerbations, it can be life-threatening due to its impact on ventilatory mechanics. Moreover, asthma has significant effects on the cardiovascular system, primarily through heart-lung interaction-based mechanisms. Dynamic hyperinflation and increased work of breathing caused by a sharp drop in pleural pressure, can affect cardiac function and cardiac output through different mechanisms. These mechanisms include an abrupt increase in venous return, elevated right ventricular afterload and interdependence between the left and right ventricle. Additionally, Pulsus paradoxus, which reflects the maximum consequences of this heart lung interaction when intrathoracic pressure swings are exaggerated, may serve as a convenient bedside tool to assess the severity of acute asthma acute exacerbation and its response to therapy.
Collapse
Affiliation(s)
- Morgan Caplan
- Service de Médecine Intensive Réanimation, Hôpital Robert Debré, Université de Reims, Reims, France
| | - Olfa Hamzaoui
- Service de Médecine Intensive Réanimation, Hôpital Robert Debré, Université de Reims, Reims, France
- Unité HERVI, Hémostase et Remodelage Vasculaire Post-Ischémie, Reims, France
| |
Collapse
|
6
|
Stucky F, Uva B, Kayser B, Aliverti A. Blood shifts between body compartments during submaximal exercise with induced expiratory flow limitation in healthy humans. J Physiol 2023; 601:227-244. [PMID: 36367253 DOI: 10.1113/jp283176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
External expiratory flow limitation (EFLe) can be applied in healthy subjects to mimic the effects of chronic obstructive pulmonary disease during exercise. At maximal exercise intensity, EFLe leads to exercise intolerance owing to respiratory pump dysfunction limiting venous return. We quantified blood shifts between body compartments to determine whether such effects can be observed during submaximal exercise, when the load on the respiratory system is milder. Ten healthy men (25.2 ± 3.2 years of age, 177.3 ± 5.4 cm in height and weighing 67.4 ± 5.8 kg) exercised at 100 W (∼40% of maximal oxygen uptake) while breathing spontaneously (CTRL) or with EFLe. We measured respiratory dynamics with optoelectronic plethysmography, oesophageal (Pes ) and gastric (Pga ) pressures with balloon catheters, and blood shifting between body compartments with double body plethysmography. During exercise, EFLe resulted in the following changes: (i) greater intrabreath blood shifts between the trunk and the extremities [518 ± 221 (EFLe) vs. 224 ± 60 ml (CTRL); P < 0.001] associated with lower Pes during inspiration (r = 0.53, P < 0.001) and higher Pga during expiration (r = 0.29, P < 0.024); and (ii) a progressive pooling of blood in the trunk over time (∼700 ml after 3 min of exercise; P < 0.05), explained by a predominant effect of lower inspiratory Pes (r = 0.54, P < 0.001) over that of increased Pga . It follows that during submaximal exercise, EFLe amplifies the respiratory pump mechanism, with a prevailing contribution from lower inspiratory Pes over increased expiratory Pga , drawing blood into the trunk. Whether these results can be replicated in chronic obstructive pulmonary disease patients remains to be determined. KEY POINTS: External expiratory flow limitation (EFLe) can be applied in healthy subjects to mimic the effects of chronic obstructive pulmonary disease and safely study the mechanisms of exercise intolerance associated with the disease. At maximal exercise intensity with EFLe, exercise intolerance results from high expiratory pressures altering the respiratory pump mechanism and limiting venous return. We used double body plethysmography to quantify blood shifting between the trunk and the extremities and to examine whether the same effects occur with EFLe at submaximal exercise intensity, where the increase in expiratory pressures is milder. Our data show that during submaximal exercise, EFLe amplifies the respiratory pump mechanism, each breath producing greater blood displacements between the trunk and the extremities, with a prevailing effect from lower inspiratory intrathoracic pressure progressively drawing blood into the trunk. These results help us to understand the haemodynamic effects of respiratory pressures during submaximal exercise with expiratory flow restriction.
Collapse
Affiliation(s)
- Frédéric Stucky
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Barbara Uva
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| |
Collapse
|
7
|
Ogilvie LM, Edgett BA, Gray S, Al-Mufty S, Huber JS, Brunt KR, Simpson JA. A new approach to improve the hemodynamic assessment of cardiac function independent of respiratory influence. Sci Rep 2021; 11:17223. [PMID: 34446745 PMCID: PMC8390640 DOI: 10.1038/s41598-021-96050-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/19/2021] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular and respiratory systems are anatomically and functionally linked; inspiration produces negative intrathoracic pressures that act on the heart and alter cardiac function. Inspiratory pressures increase with heart failure and can exceed the magnitude of ventricular pressure during diastole. Accordingly, respiratory pressures may be a confounding factor to assessing cardiac function. While the interaction between respiration and the heart is well characterized, the extent to which systolic and diastolic indices are affected by inspiration is unknown. Our objective was to understand how inspiratory pressure affects the hemodynamic assessment of cardiac function. To do this, we developed custom software to assess and separate indices of systolic and diastolic function into inspiratory, early expiratory, and late expiratory phases of respiration. We then compared cardiac parameters during normal breathing and with various respiratory loads. Variations in inspiratory pressure had a small impact on systolic pressure and function. Conversely, diastolic pressure strongly correlated with negative inspiratory pressure. Cardiac pressures were less affected by respiration during expiration; late expiration was the most stable respiratory phase. In conclusion, inspiration is a large confounding influence on diastolic pressure, but minimally affects systolic pressure. Performing cardiac hemodynamic analysis by accounting for respiratory phase yields more accuracy and analytic confidence to the assessment of diastolic function.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- IMPART Investigator Team Canada, Saint John, Canada
| | - Brittany A Edgett
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
- IMPART Investigator Team Canada, Saint John, Canada
| | - Simon Gray
- Cambridge Electronic Design Limited, Milton, Cambridge, England
| | - Sally Al-Mufty
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- IMPART Investigator Team Canada, Saint John, Canada
| | - Jason S Huber
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
- IMPART Investigator Team Canada, Saint John, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- IMPART Investigator Team Canada, Saint John, Canada.
| |
Collapse
|
8
|
Urban MH, Mayr AK, Schmidt I, Grasmuk-Siegl E, Burghuber OC, Funk GC. Effects of Dynamic Hyperinflation on Left Ventricular Diastolic Function in Healthy Subjects - A Randomized Controlled Crossover Trial. Front Med (Lausanne) 2021; 8:659108. [PMID: 34017848 PMCID: PMC8129530 DOI: 10.3389/fmed.2021.659108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Diastolic dysfunction of the left ventricle is common in patients with chronic obstructive pulmonary disease (COPD). Dynamic hyperinflation has been suggested as a key determinant of reduced diastolic function in COPD. We aimed to investigate the effects of induced dynamic hyperinflation on left ventricular diastolic function in healthy subjects to exclude other confounding mechanisms associated with COPD. Design: In this randomized controlled crossover trial (NCT03500822, https://www.clinicaltrials.gov/), we induced dynamic hyperinflation using the validated method of expiratory resistance breathing (ERB), which combines tachypnea with expiratory resistance, and compared the results to those of tachypnea alone. Healthy male subjects (n = 14) were randomly assigned to the ERB or control group with subsequent crossover. Mild, moderate, and severe hyperinflation (i.e., ERB1, ERB2, ERB3) were confirmed by intrinsic positive end-expiratory pressure (PEEPi) using an esophageal balloon catheter. The effects on diastolic function of the left ventricle were measured by transthoracic echocardiographic assessment of the heart rate-adjusted transmitral E/A-ratio and E/e'-ratio. Results: We randomly assigned seven participants to the ERB group and seven to the control group (age 26 [24-26] vs. 24 [24-34], p = 0.81). Severe hyperinflation decreased the E/A-ratio compared to the control condition (1.63 [1.49-1.77] vs. 1.85 [0.95-2.75], p = 0.039), and moderate and severe ERB significantly increased the septal E/e'-ratio. No changes in diastolic function were found during mild hyperinflation. PEEPi levels during ERB were inversely correlated with the E/A ratio (regression coefficient = -0.007, p = 0.001). Conclusions: Our data indicate dynamic hyperinflation as a determinant of left ventricular diastolic dysfunction in healthy subjects. Therapeutic reduction of hyperinflation might be a treatable trait to improve diastolic function in patients with COPD.
Collapse
Affiliation(s)
- Matthias Helmut Urban
- Department of Internal and Respiratory Medicine, Klinik Floridsdorf, Vienna, Austria.,Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Vienna, Austria.,Otto Wagner Hospital, Ludwig-Boltzmann Institute for Lung Health, Vienna, Austria
| | - Anna Katharina Mayr
- Department of Internal and Respiratory Medicine, Klinik Floridsdorf, Vienna, Austria.,Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Vienna, Austria
| | - Ingrid Schmidt
- Department of Internal and Respiratory Medicine, Klinik Floridsdorf, Vienna, Austria.,Institute for Physical and Rehabilitation Medicine/Cardiorespiratory Therapy, Klinik Floridsdorf, Vienna, Austria
| | - Erwin Grasmuk-Siegl
- Department of Internal and Respiratory Medicine, Klinik Floridsdorf, Vienna, Austria.,Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Vienna, Austria
| | - Otto Chris Burghuber
- Otto Wagner Hospital, Ludwig-Boltzmann Institute for Lung Health, Vienna, Austria.,Medical School, Sigmund Freud University, Vienna, Austria
| | - Georg-Christian Funk
- Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Vienna, Austria.,Department of Internal and Respiratory Medicine, Klinik Ottakring, Vienna, Austria
| |
Collapse
|
9
|
Wright SP, Cheyne WS, Gelinas JC, Harper MI, Sasso JP, Eves ND. Systolic reserve maintains left ventricular-vascular coupling when challenged by adverse breathing mechanics and hypertension in healthy adults. J Appl Physiol (1985) 2021; 130:1171-1182. [PMID: 33571052 DOI: 10.1152/japplphysiol.00833.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Augmented negative intrathoracic pressures (nITP) and dynamic hyperinflation (DH) are adverse breathing mechanics (ABM) associated with chronic obstructive pulmonary disease (COPD) that attenuate left ventricular (LV) preload and augment afterload. In COPD, hypertension (elevated systemic arterial load) commonly adds additional afterload to the LV. Combined ABM and hypertension may profoundly challenge ventricular-vascular coupling and attenuate stroke volume (SV), particularly if LV systolic reserve is limited. However, even in the healthy heart, the combined impact of ABM and systemic arterial loading on LV function and ventricular-vascular coupling has not been fully elucidated. Healthy volunteers (10 M/9 F, 24 ± 3 yr old) were challenged with mild (-10 cmH2O nITP and 25% DH) and severe (-20 cmH2O nITP and 100% DH) ABM, without and with postexercise ischemia (PEI) at each severity. LV SV, chamber geometry, end-systolic elastance (Ees), arterial elastance (Ea), and ventricular-vascular coupling (Ees:Ea) were quantified using echocardiography. Compared with resting control (58 ± 13 mL), SV decreased during mild ABM (51 ± 13 mL), mild ABM + PEI (51 ± 11 mL), severe ABM (50 ± 12 mL), and severe ABM + PEI (47 ± 11 mL) (P < 0.001); similar trends were observed for LV end-diastolic volume. The end-diastolic radius of septal curvature increased, indicating direct ventricular interaction, during severe ABM and severe ABM + PEI (P < 0.001). Compared with control (1.99 ± 0.41 mmHg/mL), Ea increased progressively with mild ABM (2.21 ± 0.47 mmHg/mL) and severe ABM (2.50 ± 0.56 mmHg/mL); at each severity, Ea was greater with superimposed PEI (P < 0.001). However, well-matched Ees increases occurred, and Ees:Ea was unchanged throughout. ABM pose a challenge to ventricular-vascular coupling that is accentuated by superimposed PEI; however, in healthy younger adults, the LV has substantial systolic reserve to maintain coupling.NEW & NOTEWORTHY In healthy younger adults, combined dynamic hyperinflation (DH) and negative intrathoracic pressures (nITP) attenuate left ventricular filling, but through different mechanisms at different severities. DH and nITP contribute to increased left ventricular afterload through mechanical effects in addition to presumed reflexive regulation, which can be further increased by elevated arterial loading. However, within this demographic, the left ventricle has substantial reserve to increase systolic performance, which matches contractility to afterload to preserve stroke volume.
Collapse
Affiliation(s)
- S P Wright
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - W S Cheyne
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - J C Gelinas
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - M I Harper
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - J P Sasso
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - N D Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
10
|
Huang YC, Lin TY, Wu HT, Chang PJ, Lo CY, Wang TY, Kuo CHS, Lin SM, Chung FT, Lin HC, Hsieh MH, Lo YL. Cardiorespiratory coupling is associated with exercise capacity in patients with chronic obstructive pulmonary disease. BMC Pulm Med 2021; 21:22. [PMID: 33435937 PMCID: PMC7802271 DOI: 10.1186/s12890-021-01400-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Background The interaction between the pulmonary function and cardiovascular mechanics is a crucial issue, particularly when treating patients with chronic obstructive pulmonary disease (COPD). Synchrogram index is a new parameter that can quantify this interaction and has the potential to apply in COPD patients. Our objective in this study was to characterize cardiorespiratory interactions in terms of cardiorespiratory coupling (CRC) using the synchrogram index of the heart rate and respiratory flow signals in patients with chronic obstructive pulmonary disease. Methods This is a cross-sectional and preliminary data from a prospective study, which examines 55 COPD patients. K-means clustering analysis was applied to cluster COPD patients based on the synchrogram index. Linear regression and multivariable regression analysis were used to determine the correlation between the synchrogram index and the exercise capacity assessed by a six-minute walking test (6MWT). Results The 55 COPD patients were separated into a synchronized group (median 0.89 (0.64–0.97), n = 43) and a desynchronized group (median 0.23 (0.02–0.51), n = 12) based on K-means clustering analysis. Synchrogram index was correlated significantly with six minutes walking distance (r = 0.42, p = 0.001) and distance saturation product (r = 0.41, p = 0.001) assessed by 6MWT, and still was an independent variable by multivariable regression analysis. Conclusion This is the first result studying the heart–lung interaction in terms of cardiorespiratory coupling in COPD patients by the synchrogram index, and COPD patients are clustered into synchronized and desynchronized groups. Cardiorespiratory coupling is associated with exercise capacity in patients with COPD.
Collapse
Affiliation(s)
- Yu-Chen Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hau-Tieng Wu
- Department of Mathematics, Duke University, Durham, NC, USA.,Department of Statistical Sciences, Duke University, Durham, NC, USA
| | - Po-Jui Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Yu Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hsi Scott Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Tsai Chung
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Heng Hsieh
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Stucky F, Aliverti A, Kayser B, Uva B. Priming the cardiodynamic phase of pulmonary oxygen uptake through voluntary modulations of the respiratory pump at the onset of exercise. Exp Physiol 2020; 106:555-566. [PMID: 33369778 DOI: 10.1113/ep089180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/11/2020] [Indexed: 01/15/2023]
Abstract
NEW FINDINGS What is the central question of this study? The initial increase in oxygen uptake ( V ̇ O 2 ) at exercise onset results from pulmonary perfusion changes secondary to an increased venous return. Breathing mechanics contribute to venous return through abdominal and intrathoracic pressures variation. Can voluntary breathing techniques (abdominal or rib cage breathing) increase venous return and improve V ̇ O 2 at exercise onset? What is the main finding and its importance? Abdominal and rib cage breathing increase venous return and V ̇ O 2 at exercise onset. This mechanism could be clinically relevant in patients with impaired cardiac function limiting oxygen transport. ABSTRACT We examined how different breathing patterns can modulate venous return and alveolar gas transfer during exercise transients in humans. Ten healthy men transitioned from rest to moderate cycling while breathing spontaneously (SP) or with voluntary increases in abdominal (AB) or intrathoracic (RC) pressure swings. We used double body plethysmography to determine blood displacements between the trunk and the extremities (Vbs ). From continuous signals of airflow and O2 fraction, we calculated breath-by-breath oxygen uptake at the mouth and used optoelectronic plethysmography to correct for lung O2 store changes and calculate alveolar O2 transfer ( V ̇ O 2 A ). Oesophageal (Poes ) and gastric (Pga ) pressures were monitored using balloon-tipped catheters. Cardiac stroke volume was measured using impedance cardiography. During the cardiodynamic phase (Φ1) of V ̇ O 2 A -on kinetics (20 s following exercise onset), AB and RC increased total alveolar oxygen transfer compared to SP (227 ± 32, P = 0.019 vs. 235 ± 27, P = 0.001 vs. 206 ± 20 ml, mean ± SD). Pga and Poes swings increased with AB (by 24.4 ± 9.6 cmH2 O, P < 0.001) and RC (by 14.5 ± 5.7 cmH2 O, P < 0.001), respectively. AB yielded a greater increase in intra-breath Vbs swings compared with RC and SP (+0.30 ± 0.14 vs. +0.16 ± 0.11, P < 0.001 vs. +0.10 ± 0.05 ml, P = 0.006) and increased the sum of stroke volumes compared to SP (4.47 ± 1.28 vs. 3.89 ± 0.96 litres, P = 0.053), while RC produced significant central blood translocation from the extremities compared with SP (by 493 ± 311 ml, P < 0.001). Our findings indicate that combining exercise onset with AB or RC increases venous return, thus increasing mass oxygen transport above metabolic consumption during Φ1 and limiting the oxygen deficit incurred.
Collapse
Affiliation(s)
- Frédéric Stucky
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Barbara Uva
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Karakaya Z, Cavkaytar Ö, Tosun Ö, Arga M. Subclinical cardiovascular dysfunction in children and adolescents with asthma. J Asthma 2020; 59:451-461. [PMID: 33251886 DOI: 10.1080/02770903.2020.1856866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND There is close association between asthma and cardiovascular functions as both diseases share common inflammatory pathways. The current study was aimed at investigating the risk factors, associated with endothelial and cardiac functions in children with newly-diagnosed mild-persistent asthma. METHODS A total of 33 steroid-naive asthmatic children [median(interquartile-range); 9.1 years(7.8-13.5)] and 16 healthy controls [11.5 years(9.9-13.6)] were included. Their demographic, clinical and laboratory findings were recorded. Carotid Artery intima-media thickness (CIMT), stiffness, distensibility and strain were measured as atheroclerosis markers. Conventional and tissue Doppler imaging was performed to evaluate ventricular function. RESULTS The patients with asthma had higher CIMT and stiffness and lower strain and distensibility compared to controls (p < 0.001 for all). There was a significant correlation between the duration of asthmatic symptoms and subclinical-atherosclerosis as well as peripheral eosinophil count (p < 0.001, p < 0.05). The patients had lower tricuspid-annular-plane-systolic-excursion (TAPSE), ejection time, and higher isovolumetric relaxation time (IRT), isovolumetric contraction time (ICT), and left ventricle myocardial performance index (LVMPI) than the control subjects (p < 0.001 for all). A positive correlation was also observed between the duration of asthmatic-symptoms and cardiac-function parameters. CONCLUSION Children with mild persistent asthma had subclinical atherosclerosis and ventricular dysfunction even in the early stage of disease. Symptom duration was closely associated with both subclinical atherosclerosis and ventricular dysfunction. Myocardial performance index was abnormal in the asthmatic children when assessed by tissue Doppler Imaging even though they had normal ejection fraction in conventional echocardiography. Future prospective studies with larger sample sizes are needed to confirm these findings and to assess the possible protective effect of ICSs in the prevention of subclinical atherosclerosis.
Collapse
Affiliation(s)
- Zeynep Karakaya
- Department of Pediatrics, Istanbul Medeniyet University Medical Faculty, İstanbul, Turkey
| | - Özlem Cavkaytar
- Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University Medical Faculty, İstanbul, Turkey
| | - Öykü Tosun
- Department of Pediatric Cardiology, Istanbul Medeniyet University Medical Faculty, İstanbul, Turkey
| | - Mustafa Arga
- Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University Medical Faculty, İstanbul, Turkey
| |
Collapse
|
13
|
Urban MH, Mayr AK, Schmidt I, Margulies E, Grasmuk-Siegl E, Burghuber OC, Funk GC. Induction of dynamic hyperinflation by expiratory resistance breathing in healthy subjects - an efficacy and safety study. Exp Physiol 2020; 106:532-543. [PMID: 33174314 PMCID: PMC7894562 DOI: 10.1113/ep088439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
New Findings What is the central question of this study? The study aimed to establish a novel model to study the chronic obstructive pulmonary disease (COPD)‐related cardiopulmonary effects of dynamic hyperinflation in healthy subjects. What is the main finding and its importance? A model of expiratory resistance breathing (ERB) was established in which dynamic hyperinflation was induced in healthy subjects, expressed both by lung volumes and intrathoracic pressures. ERB outperformed existing methods and represents an efficacious model to study cardiopulmonary mechanics of dynamic hyperinflation without potentially confounding factors as present in COPD.
Abstract Dynamic hyperinflation (DH) determines symptoms and prognosis of chronic obstructive pulmonary disease (COPD). The induction of DH is used to study cardiopulmonary mechanics in healthy subjects without COPD‐related confounders like inflammation, hypoxic vasoconstriction and rarefication of pulmonary vasculature. Metronome‐paced tachypnoea (MPT) has proven effective in inducing DH in healthy subjects, but does not account for airflow limitation. We aimed to establish a novel model incorporating airflow limitation by combining tachypnoea with an expiratory airway stenosis. We investigated this expiratory resistance breathing (ERB) model in 14 healthy subjects using different stenosis diameters to assess a dose–response relationship. Via cross‐over design, we compared ERB to MPT in a random sequence. DH was quantified by inspiratory capacity (IC, litres) and intrinsic positive end‐expiratory pressure (PEEPi, cmH2O). ERB induced a stepwise decreasing IC (means (95% CI): tidal breathing: 3.66 (3.45–3.88), ERB 3 mm: 3.33 (1.75–4.91), 2 mm: 2.05 (0.76–3.34), 1.5 mm: 0.73 (0.12–1.58) litres) and increasing PEEPi (tidal breathing: 0.70 (0.50–0.80), ERB 3 mm: 11.1 (7.0–15.2), 2 mm: 22.3 (17.1–27.6), 1.5 mm: 33.4 (3.40–63) cmH2O). All three MPT patterns increased PEEPi, but to a far lesser extent than ERB. No adverse events during ERB were noted. In conclusion, ERB was proven to be a safe and efficacious model for the induction of DH and might be used for the investigation of cardiopulmonary interaction in healthy subjects.
Collapse
Affiliation(s)
- Matthias Helmut Urban
- Department of Internal and Respiratory Medicine, Krankenhaus Nord - Klinik Floridsdorf, Vienna, Austria.,Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Vienna, Austria.,Ludwig-Boltzmann Institute for COPD and Respiratory Epidemiology, Vienna, Austria
| | - Anna Katharina Mayr
- Department of Internal and Respiratory Medicine, Krankenhaus Nord - Klinik Floridsdorf, Vienna, Austria.,Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Vienna, Austria
| | - Ingrid Schmidt
- Department of Internal and Respiratory Medicine, Krankenhaus Nord - Klinik Floridsdorf, Vienna, Austria
| | | | - Erwin Grasmuk-Siegl
- Department of Internal and Respiratory Medicine, Krankenhaus Nord - Klinik Floridsdorf, Vienna, Austria.,Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Vienna, Austria
| | - Otto Chris Burghuber
- Ludwig-Boltzmann Institute for COPD and Respiratory Epidemiology, Vienna, Austria.,Medical School, Sigmund Freud University, Vienna, Austria
| | - Georg-Christian Funk
- Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Vienna, Austria.,Department of Internal and Respiratory Medicine, Wilhelminenspital, Vienna, Austria
| |
Collapse
|
14
|
How to ventilate obstructive and asthmatic patients. Intensive Care Med 2020; 46:2436-2449. [PMID: 33169215 PMCID: PMC7652057 DOI: 10.1007/s00134-020-06291-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/12/2020] [Indexed: 11/11/2022]
Abstract
Exacerbations are part of the natural history of chronic obstructive pulmonary disease and asthma. Severe exacerbations can cause acute respiratory failure, which may ultimately require mechanical ventilation. This review summarizes practical ventilator strategies for the management of patients with obstructive airway disease. Such strategies include non-invasive mechanical ventilation to prevent intubation, invasive mechanical ventilation, from the time of intubation to weaning, and strategies intended to prevent post-extubation acute respiratory failure. The role of tracheostomy, the long-term prognosis, and potential future adjunctive strategies are also discussed. Finally, the physiological background that underlies these strategies is detailed.
Collapse
|
15
|
Cheyne WS, Harper MI, Gelinas JC, Sasso JP, Eves ND. Mechanical cardiopulmonary interactions during exercise in health and disease. J Appl Physiol (1985) 2020; 128:1271-1279. [PMID: 32163324 DOI: 10.1152/japplphysiol.00339.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart and lungs are anatomically coupled through the pulmonary circulation and coexist within the sealed thoracic cavity, making the function of these systems highly interdependent. Understanding of the complex mechanical interactions between cardiac and pulmonary systems has evolved over the last century to appreciate that changes in respiratory mechanics significantly impact pulmonary hemodynamics and ventricular filling and ejection. Furthermore, given that the left and right heart share a common septum and are surrounded by the nondistensible pericardium, direct ventricular interaction is an important mediator of both diastolic and systolic performance. Although it is generally considered that cardiopulmonary interaction in healthy individuals at rest minimally affects hemodynamics, the significance during exercise is less clear. Adverse heart-lung interaction in respiratory disease is of growing interest as it may contribute to the pathogenesis of comorbid cardiovascular dysfunction and exercise intolerance in these patients. Similarly, heart failure represents a pathological uncoupling of the cardiovascular and pulmonary systems, whereby cardiac function may be impaired by the normal ventilatory response to exercise. Despite significant research contributions to this complex area, the mechanisms of cardiopulmonary interaction in the intact human and the clinical consequences of adverse interactions in common respiratory and cardiovascular diseases, particularly during exercise, remain incompletely understood. The purpose of this review is to present the key physiological principles of cardiopulmonary interaction as they pertain to resting and exercising hemodynamics in healthy humans and the clinical implications of adverse cardiopulmonary interaction during exercise in chronic obstructive pulmonary disease (COPD), pulmonary hypertension, and heart failure.
Collapse
Affiliation(s)
- William S Cheyne
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Megan I Harper
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jinelle C Gelinas
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - John P Sasso
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Neil D Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
16
|
Smith JR, Johnson BD, Olson TP. Impaired central hemodynamics in chronic obstructive pulmonary disease during submaximal exercise. J Appl Physiol (1985) 2019; 127:691-697. [PMID: 31295068 DOI: 10.1152/japplphysiol.00877.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is unknown whether central hemodynamics are impaired during exercise in chronic obstructive pulmonary disease (COPD) patients. We hypothesized that, at a similar absolute V̇o2 during exercise, COPD patients would have a lower stroke volume and cardiac output compared with healthy controls. Furthermore, we hypothesized that greater static hyperinflation [ratio of inspiratory capacity to total lung capacity (IC/TLC)] and expiratory intrathoracic pressure would be significantly related to the lower cardiac output and stroke volume responses in COPD patients. Clinically stable COPD (n = 13; FEV1/FVC: 52 ± 13%) and controls (n = 10) performed constant workload submaximal exercise at an absolute V̇o2 of ~1.3 L/min. During exercise, inspiratory capacity maneuvers were performed to determine operating lung volumes and cardiac output (via open-circuit acetylene rebreathe technique) and esophageal pressure were measured. At similar absolute V̇o2 during exercise (P = 0.81), COPD had lower cardiac output than controls (COPD: 11.0 ± 1.6 vs. control: 12.2 ± 1.2 L/min, P = 0.03) due to a lower stroke volume (COPD: 107 ± 13 vs. control: 119 ± 19 mL, P = 0.04). The heart rate response during exercise was not different between groups (P = 0.66). FEV1 (%predicted) and IC/TLC were positively related to stroke volume (r = 0.68, P = 0.01 and r = 0.77, P < 0.01). Last, esophageal pressure-time integral during inspiration was positively related to cardiac output (r = 0.56, P = 0.047). These data demonstrate that COPD patients have attenuated cardiac output and stroke volume responses during exercise compared with control. Furthermore, these data suggest that the COPD patients with the most severe hyperinflation and more negative inspiratory intrathoracic pressures have the most impaired central hemodynamic responses.NEW & NOTEWORTHY Chronic obstructive pulmonary disease leads to cardiac structural changes and pulmonary derangements that impact the integrative response to exercise. However, it is unknown whether these pathophysiological alterations influence the cardiac response during exercise. Herein, we demonstrate that COPD patients exhibit impaired central hemodynamics during exercise that are worsened with greater hyperinflation.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bruce D Johnson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Alter P, Jörres RA, Watz H, Welte T, Gläser S, Schulz H, Bals R, Karch A, Wouters EFM, Vestbo J, Young D, Vogelmeier CF. Left ventricular volume and wall stress are linked to lung function impairment in COPD. Int J Cardiol 2018; 261:172-178. [PMID: 29657040 DOI: 10.1016/j.ijcard.2018.02.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cardiovascular comorbidities are common in chronic obstructive pulmonary disease (COPD). We examined the association between airflow limitation, hyperinflation and the left ventricle (LV). METHODS Patients from the COPD cohort COSYCONET underwent evaluations including forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), effective airway resistance (Reff), intrathoracic gas volume (ITGV), and echocardiographic LV end-diastolic volume (LVEDV), stroke volume (LVSV), end-systolic volume (LVESV), and end-diastolic and end-systolic LV wall stress. Data from Visit 1 (baseline) and Visit 3 (18 months later) were used. In addition to comparisons of both visits, multivariate regression analysis was conducted, followed by structural equation modelling (SEM) with latent variables "Lung" and "Left heart". RESULTS A total of 641 participants were included in this analysis. From Visit 1 to Visit 3, there were significant declines in FEV1 and FEV1/FVC, and increases in Reff, ITGV and LV end-diastolic wall stress, and a borderline significant decrease in LV mass. There were significant correlations of: FEV1% predicted with LVEDV and LVSV; Reff with LVSV; and ITGV with LV mass and LV end-diastolic wall stress. The SEM fitted the data of both visits well (comparative fit index: 0.978, 0.962), with strong correlation between "Lung" and "Left heart". CONCLUSIONS We demonstrated a relationship between lung function impairment and LV wall stress in patients with COPD. This supports the hypothesis that LV impairment in COPD could be initiated or promoted, at least partly, by mechanical factors exerted by the lung disorder.
Collapse
Affiliation(s)
- Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps University of Marburg, Member of the German Centre for Lung Research (DZL), Marburg, Germany.
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig Maximilians University, Comprehensive Pneumology Centre Munich (CPC-M), Member of the German Centre for Lung Research (DZL), Munich, Germany.
| | - Henrik Watz
- Pulmonary Research Institute at Lungen Clinic Grosshansdorf, Airway Research Centre North (ARCN), Member of the German Centre for Lung Research (DZL), Grosshansdorf, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Sven Gläser
- Department for Pneumology, University of Greifswald, Greifswald, Germany
| | - Holger Schulz
- Helmholtz Centre Munich, Institute of Epidemiology, German Research Centre for Environmental Health, Comprehensive Pneumology Centre Munich (CPC-M), Member of the German Centre for Lung Research (DZL), Munich, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, Germany
| | - Annika Karch
- Institute for Biostatistics, Centre for Biometry, Medical Informatics and Medical Technology, Hannover Medical School, Hannover, Germany
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - David Young
- Young Medical Communications and Consulting Limited, Horsham, UK
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps University of Marburg, Member of the German Centre for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
18
|
Abstract
Dynamic hyperinflation (DH) is common in chronic obstructive pulmonary disease and is associated with dyspnea and exercise intolerance. DH also has adverse cardiac effects, although the magnitude of DH and the mechanisms responsible for the hemodynamic impairment remain unclear. We hypothesized that incrementally increasing DH would systematically reduce left ventricular (LV) end-diastolic volume (LVEDV) and LV stroke volume (LVSV) because of direct ventricular interaction. Twenty-three healthy subjects (22 ± 2 yr) were exposed to varying degrees of expiratory loading to induce DH such that inspiratory capacity was decreased by 25%, 50%, 75%, and 100% (100% DH = inspiratory capacity of resting tidal volume plus inspiratory reserve volume ≈ 0.5 l). LV volumes, LV geometry, inferior vena cava collapsibility, and LV end-systolic wall stress were assessed by triplane echocardiography. 25% DH reduced LVEDV (-6 ± 5%) and LVSV (-9 ± 8%). 50% DH elicited a similar response in LVEDV (-6 ± 7%) and LVSV (-11 ± 10%) and was associated with significant septal flattening [31 ± 32% increase in the radius of septal curvature at end diastole (RSC-ED)]. 75% DH caused a larger reduction in LVEDV and LVSV (-9 ± 7% and -16 ± 10%, respectively) and RSC-ED (49 ± 70%). 100% DH caused the largest reduction in LVEDV and LVSV (-13 ± 9% and -18 ± 9%) and an increase in RSC-ED (56 ± 63%). Inferior vena cava collapsibility and LV afterload (LV end-systolic wall stress) were unchanged at all levels of DH. Modest DH (-0.6 ± 0.2 l inspiratory reserve volume) reduced LVSV because of reduced LVEDV, likely because of increased pulmonary vascular resistance. At higher levels of DH, direct ventricular interaction may be the primary cause of attenuated LVSV, as indicated by septal flattening because of a greater relative increase in right ventricular pressure and/or mediastinal constraint. NEW & NOTEWORTHY By systematically reducing inspiratory capacity during spontaneous breathing, we demonstrate that dynamic hyperinflation (DH) progressively reduces left ventricular (LV) end diastolic volume and LV stroke volume. Evidence of significant septal flattening suggests that direct ventricular interaction may be primarily responsible for the reduced LV stroke volume during DH. Hemodynamic impairment appears to occur at relatively lower levels of DH and may have important clinical implications for patients with chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- William S Cheyne
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia , Kelowna, British Columbia , Canada
| | - Jinelle C Gelinas
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia , Kelowna, British Columbia , Canada
| | - Neil D Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia , Kelowna, British Columbia , Canada
| |
Collapse
|
19
|
Cheyne WS, Gelinas JC, Eves ND. The haemodynamic response to incremental increases in negative intrathoracic pressure in healthy humans. Exp Physiol 2018; 103:581-589. [DOI: 10.1113/ep086654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Affiliation(s)
- William S. Cheyne
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences; University of British Columbia; Kelowna BC Canada
| | - Jinelle C. Gelinas
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences; University of British Columbia; Kelowna BC Canada
| | - Neil D. Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences; University of British Columbia; Kelowna BC Canada
| |
Collapse
|
20
|
Schaper-Magalhães F, Pinho JF, Capuruço CAB, Rodrigues-Machado MG. Positive end-expiratory pressure attenuates hemodynamic effects induced by an overload of inspiratory muscles in patients with COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:2943-2954. [PMID: 29062231 PMCID: PMC5638594 DOI: 10.2147/copd.s138737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inspiratory muscle training (IMT) using a Threshold® device is commonly used to improve the strength and endurance of inspiratory muscles. However, the effect of IMT, alone or with positive end-expiratory pressure (PEEP), on hemodynamic parameters in patients with chronic obstructive pulmonary disease (COPD) remains unknown. OBJECTIVE To assess the effects of an overload of inspiratory muscles using IMT fixed at 30% of the maximal inspiratory pressure (MIP), and IMT associated with 5 cmH2O of PEEP (IMT + PEEP), on the echocardiographic parameters in healthy subjects and patients with COPD. METHODS Twenty patients with COPD (forced expiratory volume in 1 second 53.19±24.71 pred%) and 15 age-matched healthy volunteers were evaluated using spirometry, MIP, the COPD assessment test (CAT), and the modified Medical Research Council (mMRC) dyspnea scale. The E- (fast-filling phase) and A- (atrial contraction phase) waves were evaluated at the tricuspid and mitral valves during inspiration and expiration in the following sequence: at basal conditions, using IMT, and using IMT + PEEP. RESULTS Patients with COPD had reduced MIPs versus the control group. Ten patients had CAT scores <10 and 12 patients had mMRC scores <2. E-wave values at the mitral valve were significantly decreased with IMT during the inspiratory phase in both groups. These effects were normalized with IMT + PEEP. During the expiratory phase, use of IMT + PEEP normalized the reduction in E-wave values in the COPD group. During inspiration at the tricuspid valve, reduction in E-wave values during IMT was normalized by IMT + PEEP in COPD group. During the expiratory phase, the value of the E-waves was significantly reduced with overload of the inspiratory muscles in both groups, and these effects were normalized with IMT + PEEP. A-waves did not change under any conditions. CONCLUSION Acute hemodynamic effects induced by overloading of the inspiratory muscles were attenuated and/or reversed by the addition of PEEP in COPD patients.
Collapse
Affiliation(s)
- Flavia Schaper-Magalhães
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | - José Felippe Pinho
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | | | | |
Collapse
|
21
|
Cheyne WS, Williams AM, Harper MI, Eves ND. Acute volume loading exacerbates direct ventricular interaction in a model of COPD. J Appl Physiol (1985) 2017; 123:1110-1117. [PMID: 28729396 DOI: 10.1152/japplphysiol.01109.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/28/2017] [Accepted: 07/18/2017] [Indexed: 11/22/2022] Open
Abstract
Volume loading increases left ventricular (LV) stroke volume (LVSV) through series interaction, but may paradoxically reduce LVSV in the presence of large increases in right ventricular (RV) afterload because of direct ventricular interaction (DVI). RV afterload is often increased in chronic obstructive pulmonary disease (COPD) as a result of pathological changes to respiratory mechanics, namely increased negative intrathoracic pressure (nITP), dynamic lung hyperinflation (DH), and increased pulmonary vascular resistance (PVR). These hallmarks of COPD negatively impact LV hemodynamics in normovolemia. However, it is unknown how these heart-lung interactions are impacted by acute volume loading. Twenty healthy subjects (23 ± 2 yr) completed the study protocol, involving acute volume loading via 20° head-down tilt (HDT) in isolation and with 1) inspiratory resistance of -20 cmH2O (HDT+nITP) and 2) nITP, expiratory resistance to induce DH and hypoxic-mediated increases in PVR (HDT+COPD model). LV volumes and geometry were assessed using triplane echocardiography. HDT significantly increased LVSV by 10 ± 10% through an 8 ± 6% increase in LV end-diastolic volume (LVEDV). HDT+nITP paradoxically decreased LVSV by 11 ± 12% and LVEDV by 6 ± 9% from supine baseline, or -14 ± 10% LVSV and -15 ± 13% LVEDV from HDT (P < 0.001). HDT+COPD model decreased LVSV (21 ± 10% and 28 ± 11%) and LVEDV (16 ± 10% and 22 ± 10%) from both supine and HDT, respectively (P < 0.001). Under all conditions, significant septal flattening (increased radius of septal curvature) occurred, indicating DVI. Thus, when RV afterload is increased and/or an external constraint to ventricular filling exists, acute volume loading appears to paradoxically reduce LVSV. These findings have important implications for understanding how volume status impacts cardiopulmonary interactions in COPD.NEW & NOTEWORTHY Volume loading may exacerbate adverse cardiopulmonary interaction in COPD; however, the mechanisms remain unclear. We found that when negative intrathoracic pressure is increased, acute volume loading paradoxically reduces stroke volume. This reduction in stroke volume is considerably greater in a model of COPD, owing to the effects of lung hyperinflation.
Collapse
Affiliation(s)
- William S Cheyne
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alexandra M Williams
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Megan I Harper
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Neil D Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
22
|
A History of Asthma From Childhood and Left Ventricular Mass in Asymptomatic Young Adults: The Bogalusa Heart Study. JACC-HEART FAILURE 2017; 5:497-504. [PMID: 28662937 DOI: 10.1016/j.jchf.2017.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES This study aimed to examine whether a history of asthma from childhood is associated with left ventricular (LV) mass in adulthood. BACKGROUND Asthma has been related to various cardiovascular risk factors affecting LV hypertrophy. The authors saw a need for a prospective study to analyze the relationship between a history of asthma from childhood and markers of LV mass among asymptomatic young adults. METHODS Prospective analyses were performed among 1,118 Bogalusa Heart Study participants (average age at follow-up 36.7 ± 5.1 years), with a baseline history of self-reported asthma collected since childhood (average age at baseline 26.8 ± 10.1 years). LV mass (g) was assessed using 2-dimensional guided M-mode echocardiography and was indexed for body height (m2.7) as LV mass index (LVMI; g/m2.7). A multivariate linear mixed model was fitted for the repeated measures. RESULTS After an average of 10.4 ± 7.5 years of follow-up, participants with a history of asthma from childhood had a greater LV mass (167.6 vs. 156.9; p = 0.01) and LVMI (40.7 vs. 37.7; p < 0.01) with adjustment for age, sex, race, smoking status, antihypertensive medication, heart rate, and systolic blood pressure (SBP). The difference of LVMI between group with asthma and the group without asthma remained significant after additional adjustment for body mass index (39.0 vs. 37.1; p = 0.03) and high-sensitivity C-reactive protein (38.4 vs. 36.6; p = 0.04). In addition, the authors found significant interactions between SBP and asthma on LV mass and LVMI (p for interaction <0.01, respectively). The associations between asthma and LV measures appeared to be stronger among pre-hypertensive and hypertensive participants (SBP ≥130 mm Hg) compared with participants with normal SBP (<130 mm Hg) (regression coefficient: 39.5 vs. 2.3 for LV mass and 9.0 vs. 0.9 for LVMI). CONCLUSIONS The findings of this study indicate that a history of asthma is associated with higher LVMI, and this association is stronger among participants with pre-hypertension and hypertension.
Collapse
|