1
|
Deng Y, Zeng X, Tang C, Hou X, Zhang Y, Shi L. The effect of exercise training on heart rate variability in patients with hypertension: A systematic review and meta-analysis. J Sports Sci 2024; 42:1272-1287. [PMID: 39115012 DOI: 10.1080/02640414.2024.2388984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
We aimed to assess the effect of exercise training on heart rate variability (HRV) in hypertensive patients and to provide practical recommendations. We systematically searched seven databases for randomized controlled trials (RCTs) comparing the efficacy of exercise interventions vs. non-exercise control for HRV in adults with hypertension. HRV parameters, blood pressure (BP), and heart rate (HR) from the experimental and control groups were extracted to carry out meta-analysis. To explore the heterogeneity, we performed sensitivity analysis, sub-analysis, and meta-regression. Twelve RCTs were included, and the main results demonstrated exercise produced improvement in root mean square of successive RR-intervals differences (RMSSD) and high frequency (HF), and reductions in LF/HF, resting systolic blood pressure (SBP), and HR. The sub-analysis and meta-regression showed that AE improved more HRV indices and was effective in reducing BP compared with RE. Follow-up duration was also an important factor. Data suggests exercise training has ameliorating effects on HRV parameters, resting SBP, and HR in hypertensive patients, showing enhanced autonomic nervous system function and vagal activity. This effect may be better realized with exercise interventions of 4 weeks or more. Considering our results and the hypertension practice guidelines, we tend to recommend patients choose supervised AE.
Collapse
Affiliation(s)
- Yuxiao Deng
- Department of Exercise Physiology, Beijing Sport University, Beijing, P. R. China
| | - Xianxiang Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing, P. R. China
| | - Chunxue Tang
- Department of Exercise Physiology, Beijing Sport University, Beijing, P. R. China
| | - Xiao Hou
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, P. R. China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, P. R. China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
| |
Collapse
|
2
|
Zheng H, Katsurada K, Nandi S, Li Y, Patel KP. A Critical Role for the Paraventricular Nucleus of the Hypothalamus in the Regulation of the Volume Reflex in Normal and Various Cardiovascular Disease States. Curr Hypertens Rep 2022; 24:235-246. [PMID: 35384579 DOI: 10.1007/s11906-022-01187-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW This review focuses on studies implicating forebrain neural pathways and neuromodulator systems, particularly, the nitric oxide system within the paraventricular nucleus of the hypothalamus in regulating neurohumoral drive, autonomic pathways, and fluid balance. RECENT FINDINGS Accumulating evidence from animals with experimental models of hypertension and heart failure as well as humans with hypertension suggests that alterations in central neural pathways, particularly, within the PVN neuromodulated by neuronal nitric oxide, are involved in regulating sympathetic outflow particularly to the kidney resulting in alterations in fluid balance commonly observed in hypertension and heart failure states. The characteristics of the hypertensive and heart failure states include alterations in neuronal nitric oxide within the PVN to cause an increase in renal sympathetic nerve activity to result in sodium and fluid retention in these diseases. A comprehensive understanding of these mechanisms will enhance our ability to treat hypertensive and heart failure conditions and their cardiovascular complications more efficiently.
Collapse
Affiliation(s)
- Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, SD 57069, Vermillion, USA
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Shyam Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Yifan Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, SD 57069, Vermillion, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| |
Collapse
|
3
|
Souza HCD, Philbois SV, Veiga AC, Aguilar BA. Heart Rate Variability and Cardiovascular Fitness: What We Know so Far. Vasc Health Risk Manag 2021; 17:701-711. [PMID: 34803382 PMCID: PMC8598208 DOI: 10.2147/vhrm.s279322] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Fluctuation analysis in intervals between heartbeats provides important indices related to autonomic modulation of heart rate variability (HRV). These indices are considered predictors of morbidity and mortality as they are frequently altered in patients with chronic degenerative diseases, especially in those with cardiovascular and metabolic diseases. Similarly, a reduction in HRV is common with aging. In all cases, cardiovascular fitness is often reduced to below the predicted values. In turn, increases in cardiovascular fitness through regular physical exercise, especially aerobic exercise, represent an important therapeutic tool capable of promoting positive adjustments in cardiac autonomic modulation. These adjustments are characterized by reduced sympathetic modulatory influence and/or increased vagal modulatory influence on the heart, increasing the HRV. Therefore, several methodological tools have been used to assess the degree of impairment of autonomic modulation and the therapeutic effects of physical exercise. In contrast, establishment of strict protocols in experimental design is a main challenge in establishing HRV analysis as a robust parameter for evaluating cardiovascular homeostasis. Thus, this review aimed to contribute to the understanding of autonomic modulation of HRV and its relationship with cardiovascular fitness, highlighting the advances made thus far, the applicability of analysis tools, and the confounding factors observed frequently.
Collapse
Affiliation(s)
- Hugo Celso Dutra Souza
- Department of Health Science, Ribeirão Preto Medical School of University of São Paulo, São Paulo, Brazil
| | - Stella Vieira Philbois
- Department of Health Science, Ribeirão Preto Medical School of University of São Paulo, São Paulo, Brazil
| | - Ana Catarine Veiga
- Department of Health Science, Ribeirão Preto Medical School of University of São Paulo, São Paulo, Brazil
| | - Bruno Augusto Aguilar
- Department of Health Science, Ribeirão Preto Medical School of University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Sympathetic neural responses in heart failure during exercise and after exercise training. Clin Sci (Lond) 2021; 135:651-669. [DOI: 10.1042/cs20201306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Abstract
The sympathetic nervous system coordinates the cardiovascular response to exercise. This regulation is impaired in both experimental and human heart failure with reduced ejection fraction (HFrEF), resulting in a state of sympathoexcitation which limits exercise capacity and contributes to adverse outcome. Exercise training can moderate sympathetic excess at rest. Recording sympathetic nerve firing during exercise is more challenging. Hence, data acquired during exercise are scant and results vary according to exercise modality. In this review we will: (1) describe sympathetic activity during various exercise modes in both experimental and human HFrEF and consider factors which influence these responses; and (2) summarise the effect of exercise training on sympathetic outflow both at rest and during exercise in both animal models and human HFrEF. We will particularly highlight studies in humans which report direct measurements of efferent sympathetic nerve traffic using intraneural recordings. Future research is required to clarify the neural afferent mechanisms which contribute to efferent sympathetic activation during exercise in HFrEF, how this may be altered by exercise training, and the impact of such attenuation on cardiac and renal function.
Collapse
|
5
|
Sharma NM, Haibara AS, Katsurada K, Liu X, Patel KP. Central angiotensin II-Protein inhibitor of neuronal nitric oxide synthase (PIN) axis contribute to neurogenic hypertension. Nitric Oxide 2019; 94:54-62. [PMID: 31654775 DOI: 10.1016/j.niox.2019.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Activation of renin-angiotensin- system, nitric oxide (NO•) bioavailability and subsequent sympathoexcitation plays a pivotal role in the pathogenesis of many cardiovascular diseases, including hypertension. Previously we have shown increased protein expression of PIN (a protein inhibitor of nNOS: neuronal nitric oxide synthase, known to dissociate nNOS dimers into monomers) with concomitantly reduced levels of catalytically active dimers of nNOS in the PVN of rats with heart failure. To elucidate the molecular mechanism by which Angiotensin II (Ang II) increases PIN expression, we used Sprague-Dawley rats (250-300 g) subjected to intracerebroventricular infusion of Ang II (20 ng/min, 0.5 μl/h) or saline as vehicle (Veh) for 14 days through osmotic mini-pumps and NG108-15 hybrid neuronal cell line treated with Ang II as an in vitro model. Ang II infusion significantly increased baseline renal sympathetic nerve activity and mean arterial pressure. Ang II infusion increased the expression of PIN (1.24 ± 0.04* Ang II vs. 0.65 ± 0.07 Veh) with a concomitant 50% decrease in dimeric nNOS and PIN-Ub conjugates (0.73 ± 0.04* Ang II vs. 1.00 ± 0.03 Veh) in the PVN. Substrate-dependent ligase assay in cells transfected with pCMV-(HA-Ub)8 vector revealed a reduction of HA-Ub-PIN conjugates after Ang II and a proteasome inhibitor, Lactacystin (LC), treatment (4.5 ± 0.7* LC Ang II vs. 9.2 ± 2.5 LC). TUBE (Tandem Ubiquitin-Binding Entities) assay showed decrease PIN-Ub conjugates in Ang II-treated cells (0.82 ± 0.12* LC Ang II vs. 1.21 ± 0.06 LC) while AT1R blocker, Losartan (Los) treatment diminished the Ang II-mediated stabilization of PIN (1.21 ± 0.07 LC Los vs. 1.16 ± 0.04* LC Ang II Los). Taken together, our studies suggest that increased central levels of Ang II contribute to the enhanced expression of PIN leading to reduced expression of the dimeric form of nNOS, thus diminishing the inhibitory action of NO• on pre-autonomic neurons in the PVN resulting in increased sympathetic outflow.
Collapse
Affiliation(s)
- Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| | - Andrea S Haibara
- Department of Physiology and Biophysics, University of Minas Gerais, Belo Horizonte, MG, 31270-910, Brazil
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Xuefei Liu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| |
Collapse
|
6
|
Sharma NM, Liu X, Llewellyn TL, Katsurada K, Patel KP. Exercise training augments neuronal nitric oxide synthase dimerization in the paraventricular nucleus of rats with chronic heart failure. Nitric Oxide 2019; 87:73-82. [PMID: 30878404 PMCID: PMC6527363 DOI: 10.1016/j.niox.2019.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/06/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Exercise training (ExT) is an established non-pharmacological therapy that improves the health and quality of life in patients with chronic heart failure (CHF). Exaggerated sympathetic drive characterizes CHF due to an imbalance of the autonomic nervous system. Neuronal nitric oxide synthase (nNOS) in the paraventricular nucleus (PVN) produce nitric oxide (NO•), which is known to regulate the sympathetic tone. Previously we have shown that during CHF, the catalytically active dimeric form of nNOS is significantly decreased with a concurrent increase in protein inhibitor of nNOS (PIN) expression, a protein that dissociates dimeric nNOS to monomers and facilitates its degradation. Dimerization of nNOS also requires (6R)-5,6,7,8-tetrahydrobiopterin (BH4) for stability and activity. Previously, we have shown that ExT improves NO-mediated sympathetic inhibition in the PVN; however, the molecular mechanism remains elusive. We hypothesized; ExT restores the sympathetic drive by increasing the levels and catalytically active form of nNOS by abrogating changes in the PIN in the PVN of CHF rats. CHF was induced in adult male Sprague-Dawley rats by coronary artery ligation, which reliably mimics CHF in patients with myocardial infarction. After 4 weeks of surgery, Sham and CHF rats were subjected to 3 weeks of progressive treadmill exercise. ExT significantly (p < 0.05) decreased PIN expression and increased dimer/monomer ratio of nNOS in the PVN of rats with CHF. Moreover, we found decreased GTP cyclohydrolase 1(GCH1) expression: a rate-limiting enzyme for BH4 biosynthesis in the PVN of CHF rats suggesting that perhaps reduced BH4 availability may also contribute to decreased nNOS dimers. Interestingly, CHF induced decrease in GCH1 expression was increased with ExT. Our findings revealed that ExT rectified decreased PIN and GCH1 expression and increased dimer/monomer ratio of nNOS in the PVN, which may lead to increase NO• bioavailability resulting in amelioration of activated sympathetic drive during CHF.
Collapse
Affiliation(s)
- Neeru M Sharma
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE 68198-5850, USA.
| | - Xuefei Liu
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE 68198-5850, USA
| | - Tamra L Llewellyn
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE 68198-5850, USA
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE 68198-5850, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE 68198-5850, USA
| |
Collapse
|
7
|
Felix ACS, Gastaldi AC, Dutra SG, de Freitas ACS, Philbois SV, de Paula Facioli T, Da Silva VJ, Fares TH, de Souza HCD. Early ovarian hormone deprivation increases cardiac contractility in old female rats—Role of physical training. Auton Neurosci 2019; 218:1-9. [DOI: 10.1016/j.autneu.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022]
|
8
|
Shen Y, Park JB, Lee SY, Han SK, Ryu PD. Exercise training normalizes elevated firing rate of hypothalamic presympathetic neurons in heart failure rats. Am J Physiol Regul Integr Comp Physiol 2018; 316:R110-R120. [PMID: 30485115 DOI: 10.1152/ajpregu.00225.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exercise training (ExT) normalizes elevated sympathetic nerve activity in heart failure (HF), but the underlying mechanisms are not well understood. In this study, we examined the effects of 3 wk of ExT on the electrical activity of the hypothalamic presympathetic neurons in the brain slice of HF rats. HF rats were prepared by ligating the left descending coronary artery. The electrophysiological properties of paraventricular nucleus neurons projecting to the rostral ventrolateral medulla (PVN-RVLM) were examined using the slice patch-clamp technique. The neuronal firing rate was elevated in HF rats, and ExT induced a reduction in the firing rate ( P < 0.01). This ExT-induced decrease in the firing rate was associated with an increased frequency of spontaneous and miniature inhibitory postsynaptic current (IPSCs; P < 0.05). There was no significant change in excitatory postsynaptic current. Replacing Ca2+ with Mg2+ in the recording solution reduced the elevated IPSC frequency in HF rats with ExT ( P < 0.01) but not in those without ExT, indicating an increase in the probability of GABA release. In contrast, ExT did not restore the reduced GABAA receptor-mediated tonic inhibitory current in HF rats. A GABAA receptor blocker (bicuculline, 20 μM) increased the firing rate in HF rats with ExT ( P < 0.01) but not in those without ExT. Collectively, these results show that ExT normalized the elevated firing activity by increasing synaptic GABA release in PVN-RVLM neurons in HF rats. Our findings provide a brain mechanism underlying the beneficial effects of ExT in HF, which may shed light on the pathophysiology of other diseases accompanied by sympathetic hyperactivation.
Collapse
Affiliation(s)
- Yiming Shen
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| | - Jin Bong Park
- Department of Physiology, School of Medicine, Chungnam National University , Daejeon , Republic of Korea
| | - So Yeong Lee
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Pan Dong Ryu
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
9
|
Raquel HDA, Ferreira NZ, Lucchetti BFC, Falquetto B, Pinge-Filho P, Michelini LC, Martins-Pinge MC. The essential role of hypothalamic paraventricular nucleus nNOS in the modulation of autonomic control in exercised rats. Nitric Oxide 2018; 79:14-24. [DOI: 10.1016/j.niox.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/24/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
|
10
|
Totou NL, Moura SS, Coelho DB, Oliveira EC, Becker LK, Lima WG. Swimming exercise demonstrates advantages over running exercise in reducing proteinuria and glomerulosclerosis in spontaneously hypertensive rats. Physiol Int 2018; 105:76-85. [PMID: 29602293 DOI: 10.1556/2060.105.2018.1.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experimental studies in animal models have described the benefits of physical exercise (PE) to kidney diseases associated with hypertension. Land- and water-based exercises induce different responses in renal function. Our aim was to evaluate the renal alterations induced by different environments of PE in spontaneously hypertensive rats (SHRs). The SHRs were divided into sedentary (S), swimming exercise (SE), and running exercise (RE) groups, and were trained for 8 weeks under similar intensities (60 min/day). Arterial pressure (AP) and heart rate (HR) were recorded. The renal function was evaluated through urinary volume at each week of training; sodium and potassium excretions, plasma and urinary osmolarities, glomerular filtration rate (GFR), levels of proteinuria, and renal damage were determined. SE and RE rats presented reduced mean AP, systolic blood pressure, and HR in comparison with S group. SE and RE rats showed higher urine osmolarity compared with S. SE rats showed higher free water clearance (P < 0.01), lower urinary density (P < 0.0001), and increased weekly urine volume (P < 0.05) in comparison with RE and S groups. GFR was increased in both SE and RE rats. The proteinuria of SE (7.0 ± 0.8 mg/24 h) rats was decreased at the 8th week of the PE in comparison with RE (9.6 ± 0.8 mg/24 h) and S (9.8 ± 0.5 mg/24 h) groups. The glomerulosclerosis was reduced in SE rats (P < 0.02). SE produced different response in renal function in comparison with RE, in which only swimming-trained rats had better profile for proteinuria and glomerulosclerosis.
Collapse
Affiliation(s)
- N L Totou
- 1 Department of Biological Sciences (DECBI), Federal University of Ouro Preto , Minas Gerais, Brazil
| | - S S Moura
- 2 Sports Center (CEDUFOP), Federal University of Ouro Preto , Minas Gerais, Brazil
| | - D B Coelho
- 2 Sports Center (CEDUFOP), Federal University of Ouro Preto , Minas Gerais, Brazil
| | - E C Oliveira
- 2 Sports Center (CEDUFOP), Federal University of Ouro Preto , Minas Gerais, Brazil
| | - L K Becker
- 2 Sports Center (CEDUFOP), Federal University of Ouro Preto , Minas Gerais, Brazil
| | - W G Lima
- 1 Department of Biological Sciences (DECBI), Federal University of Ouro Preto , Minas Gerais, Brazil
| |
Collapse
|
11
|
Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. Compr Physiol 2017; 8:103-151. [DOI: 10.1002/cphy.c160040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Sharma NM, Cunningham CJ, Zheng H, Liu X, Patel KP. Hypoxia-Inducible Factor-1α Mediates Increased Sympathoexcitation via Glutamatergic N-Methyl-d-Aspartate Receptors in the Paraventricular Nucleus of Rats With Chronic Heart Failure. Circ Heart Fail 2017; 9:CIRCHEARTFAILURE.116.003423. [PMID: 27810863 DOI: 10.1161/circheartfailure.116.003423] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Increased sympathetic outflow is a major contributor to the progression of chronic heart failure (CHF). Potentiation of glutamatergic tone has been causally related to the sympathoexcitation in CHF. Specifically, an increase in the N-methyl-d-aspartate-type 1 receptor (NMDA-NR1) expression within the paraventricular nucleus (PVN) is critically linked to the increased sympathoexcitation during CHF. However, the molecular mechanism(s) for the upregulation of NMDA-NR1 remains unexplored. We hypothesized that hypoxia via hypoxia-inducible factor 1α (HIF-1α) might contribute to the augmentation of the NMDA-NR1-mediated sympathoexcitatory responses from the PVN in CHF. METHODS AND RESULTS Immunohistochemistry staining, mRNA, and protein for hypoxia-inducible factor 1α were upregulated within the PVN of left coronary artery-ligated CHF rats. In neuronal cell line (NG108-15) in vitro, hypoxia caused a significant increase in mRNA and protein for HIF-1α (2-fold) with the concomitant increase in NMDA-NR1 mRNA, protein levels, and glutamate-induced Ca+ influx. Chromatin immunoprecipitation assay identified HIF-1α binding to NMDA-NR1 promoter during hypoxia. Silencing of HIF-1α in NG108 cells leads to a significant decrease in expression of NMDA-NR1, suggesting that expression of HIF-1α is necessary for the upregulation of NMDA-NR1. Consistent with these observations, HIF-1α silencing within the PVN abrogated the increased basal sympathetic tone and sympathoexcitatory responses to microinjection of NMDA in the PVN of rats with CHF. CONCLUSIONS These results uncover a critical role for HIF-1 in the upregulation of NMDA-NR1 to mediate sympathoexcitation in CHF. We conclude that subtle hypoxia within the PVN may act as a metabolic cue to modulate sympathoexcitation during CHF.
Collapse
Affiliation(s)
- Neeru M Sharma
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha
| | - Craig J Cunningham
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha
| | - Hong Zheng
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha
| | - Xuefei Liu
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha
| | - Kaushik P Patel
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha.
| |
Collapse
|
13
|
Sharma NM, Nandi SS, Zheng H, Mishra PK, Patel KP. A novel role for miR-133a in centrally mediated activation of the renin-angiotensin system in congestive heart failure. Am J Physiol Heart Circ Physiol 2017; 312:H968-H979. [PMID: 28283551 DOI: 10.1152/ajpheart.00721.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
Abstract
An activated renin-angiotensin system (RAS) within the central nervous system has been implicated in sympathoexcitation during various disease conditions including congestive heart failure (CHF). In particular, activation of the RAS in the paraventricular nucleus (PVN) of the hypothalamus has been recognized to augment sympathoexcitation in CHF. We observed a 2.6-fold increase in angiotensinogen (AGT) in the PVN of CHF. To elucidate the molecular mechanism for increased expression of AGT, we performed in silico analysis of the 3'-untranslated region (3'-UTR) of AGT and found a potential binding site for microRNA (miR)-133a. We hypothesized that decreased miR-133a might contribute to increased AGT in the PVN of CHF rats. Overexpression of miR-133a in NG108 cells resulted in 1.4- and 1.5-fold decreases in AGT and angiotensin type II (ANG II) type 1 receptor (AT1R) mRNA levels, respectively. A luciferase reporter assay performed on NG108 cells confirmed miR-133a binding to the 3'-UTR of AGT. Consistent with these in vitro data, we observed a 1.9-fold decrease in miR-133a expression with a concomitant increase in AGT and AT1R expression within the PVN of CHF rats. Furthermore, restoring the levels of miR-133a within the PVN of CHF rats with viral transduction resulted in a significant reduction of AGT (1.4-fold) and AT1R (1.5-fold) levels with a concomitant decrease in basal renal sympathetic nerve activity (RSNA). Restoration of miR-133a also abrogated the enhanced RSNA responses to microinjected ANG II within the PVN of CHF rats. These results reveal a novel and potentially unique role for miR-133a in the regulation of ANG II within the PVN of CHF rats, which may potentially contribute to the commonly observed sympathoexcitation in CHF.NEW & NOTEWORTHY Angiotensinogen (AGT) expression is upregulated in the paraventricular nucleus of the hypothalamus through posttranscriptional mechanism interceded by microRNA-133a in heart failure. Understanding the mechanism of increased expression of AGT in pathological conditions leading to increased sympathoexcitation may provide the basis for the possible development of new therapeutic agents with enhanced specificity.
Collapse
Affiliation(s)
- Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| |
Collapse
|
14
|
Billinger SA, Craig JC, Kwapiszeski SJ, Sisante JFV, Vidoni ED, Maletsky R, Poole DC. Dynamics of middle cerebral artery blood flow velocity during moderate-intensity exercise. J Appl Physiol (1985) 2017; 122:1125-1133. [PMID: 28280106 DOI: 10.1152/japplphysiol.00995.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/21/2017] [Accepted: 03/02/2017] [Indexed: 12/25/2022] Open
Abstract
The dynamic response to a stimulus such as exercise can reveal valuable insights into systems control in health and disease that are not evident from the steady-state perturbation. However, the dynamic response profile and kinetics of cerebrovascular function have not been determined to date. We tested the hypotheses that bilateral middle cerebral artery blood flow mean velocity (MCAV) increases exponentially following the onset of moderate-intensity exercise in 10 healthy young subjects. The MCAV response profiles were well fit to a delay (TD) + exponential (time constant, τ) model with substantial agreement for baseline [left (L): 69, right (R): 64 cm/s, coefficient of variation (CV) 11%], response amplitude (L: 16, R: 13 cm/s, CV 23%), TD (L: 54, R: 52 s, CV 9%), τ (L: 30, R: 30 s, CV 22%), and mean response time (MRT) (L: 83, R: 82 s, CV 8%) between left and right MCAV as supported by the high correlations (e.g., MRT r = 0.82, P < 0.05) and low CVs. Test-retest reliability was high with CVs for the baseline, amplitude, and MRT of 3, 14, and 12%, respectively. These responses contrasted markedly with those of three healthy older subjects in whom the MCAV baseline and exercise response amplitude were far lower and the kinetics slowed. A single older stroke patient showed baseline ipsilateral MCAV that was lower still and devoid of any exercise response whatsoever. We conclude that kinetics analysis of MCAV during exercise has significant potential to unveil novel aspects of cerebrovascular function in health and disease.NEW & NOTEWORTHY Resolution of the dynamic stimulus-response profile provides a greater understanding of the underlying the physiological control processes than steady-state measurements alone. We report a novel method of measuring cerebrovascular blood velocity (MCAv) kinetics under ecologically valid conditions from rest to moderate-intensity exercise. This technique reveals that brain blood flow increases exponentially following the onset of exercise with 1) a strong bilateral coherence in young healthy individuals, and 2) a potential for unique age- and disease-specific profiles.
Collapse
Affiliation(s)
- Sandra A Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas;
| | - Jesse C Craig
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,College of Veterinary Medicine, Kansas State University, Manhattan, Kansas; and
| | - Sarah J Kwapiszeski
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason-Flor V Sisante
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Center, Fairway, Kansas
| | | | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,College of Veterinary Medicine, Kansas State University, Manhattan, Kansas; and
| |
Collapse
|
15
|
Ichige MHA, Pereira MG, Brum PC, Michelini LC. Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:181-206. [PMID: 29022264 DOI: 10.1007/978-981-10-4307-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heart Failure (HF), a common end point for many cardiovascular diseases, is a syndrome with a very poor prognosis. Although clinical trials in HF have achieved important outcomes in reducing mortality, little is known about functional mechanisms conditioning health improvement in HF patients. In parallel with clinical studies, basic science has been providing important discoveries to understand the mechanisms underlying the pathophysiology of HF, as well as to identify potential targets for the treatment of this syndrome. In spite of being the end-point of cardiovascular derangements caused by different etiologies, autonomic dysfunction, sympathetic hyperactivity, oxidative stress, inflammation and hormonal activation are common factors involved in the progression of this syndrome. Together these causal factors create a closed link between three important organs: brain, heart and the skeletal muscle. In the past few years, we and other groups have studied the beneficial effects of aerobic exercise training as a safe therapy to avoid the progression of HF. As summarized in this chapter, exercise training, a non-pharmacological tool without side effects, corrects most of the HF-induced neurohormonal and local dysfunctions within the brain, heart and skeletal muscles. These adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neurohormonal control and improve both cardiovascular and skeletal muscle function, thus increasing the quality of life and reducing patients' morbimortality.
Collapse
Affiliation(s)
- Marcelo H A Ichige
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo G Pereira
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia C Brum
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil. .,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil.
| | - Lisete C Michelini
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Sharma NM, Patel KP. Post-translational regulation of neuronal nitric oxide synthase: implications for sympathoexcitatory states. Expert Opin Ther Targets 2017; 21:11-22. [PMID: 27885874 PMCID: PMC5488701 DOI: 10.1080/14728222.2017.1265505] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Nitric oxide (NO) synthesized via neuronal nitric oxide synthase (nNOS) plays a significant role in regulation/modulation of autonomic control of circulation. Various pathological states are associated with diminished nNOS expression and blunted autonomic effects of NO in the central nervous system (CNS) including heart failure, hypertension, diabetes mellitus, chronic renal failure etc. Therefore, elucidation of the molecular mechanism/s involved in dysregulation of nNOS is essential to understand the pathogenesis of increased sympathoexcitation in these diseased states. Areas covered: nNOS is a highly regulated enzyme, being regulated at transcriptional and posttranslational levels via protein-protein interactions and modifications viz. phosphorylation, ubiquitination, and sumoylation. The enzyme activity of nNOS also depends on the optimal concentration of substrate, cofactors and association with regulatory proteins. This review focuses on the posttranslational regulation of nNOS in the context of normal and diseased states within the CNS. Expert opinion: Gaining insight into the mechanism/s involved in the regulation of nNOS would provide novel strategies for manipulating nNOS directed therapeutic modalities in the future, including catalytically active dimer stabilization and protein-protein interactions with intracellular protein effectors. Ultimately, this is expected to provide tools to improve autonomic dysregulation in various diseases such as heart failure, hypertension, and diabetes.
Collapse
Affiliation(s)
- Neeru M Sharma
- a Department of Cellular & Integrative Physiology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Kaushik P Patel
- a Department of Cellular & Integrative Physiology , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
17
|
Zhang Y, Yu XJ, Chen WS, Gao HL, Liu KL, Shi XL, Fan XY, Jia LL, Cui W, Zhu GQ, Liu JJ, Kang YM. Exercise training attenuates renovascular hypertension partly via RAS- ROS- glutamate pathway in the hypothalamic paraventricular nucleus. Sci Rep 2016; 6:37467. [PMID: 27881877 PMCID: PMC5121597 DOI: 10.1038/srep37467] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
Exercise training (ExT) has been reported to benefit hypertension; however, the exact mechanisms involved are unclear. We hypothesized that ExT attenuates hypertension, in part, through the renin-angiotensin system (RAS), reactive oxygen species (ROS), and glutamate in the paraventricular nucleus (PVN). Two-kidney, one-clip (2K1C) renovascular hypertensive rats were assigned to sedentary (Sed) or treadmill running groups for eight weeks. Dizocilpine (MK801), a glutamate receptor blocker, or losartan (Los), an angiotensin II type1 receptor (AT1-R) blocker, were microinjected into the PVN at the end of the experiment. We found that 2K1C rats had higher mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These rats also had excessive oxidative stress and overactivated RAS in PVN. Eight weeks of ExT significantly decreased MAP and RSNA in 2K1C hypertensive rats. ExT inhibited angiotensin-converting enzyme (ACE), AT1-R, and glutamate in the PVN, and angiotensin II (ANG II) in the plasma. Moreover, ExT attenuated ROS by augmenting copper/zinc superoxide dismutase (Cu/Zn-SOD) and decreasing p47phox and gp91phox in the PVN. MK801or Los significantly decreased blood pressure in rats. Together, these findings suggest that the beneficial effects of ExT on renovascular hypertension may be, in part, through the RAS-ROS-glutamate pathway in the PVN.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Wen-Sheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Yan Fan
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Lin-Lin Jia
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| |
Collapse
|
18
|
Amlodipine and enalapril promote distinct effects on cardiovascular autonomic control in spontaneously hypertensive rats: the role of aerobic physical training. J Hypertens 2016; 34:2383-2392. [PMID: 27607457 DOI: 10.1097/hjh.0000000000001112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND We compared the autonomic and hemodynamic cardiovascular effects of amlodipine and enalapril treatment associated with an aerobic physical training program on spontaneously hypertensive rats. METHODS Eighteen-week-old (n = 48) spontaneously hypertensive rats were assigned to one of two groups: sedentary (n = 24) and trained (n = 24) through a 10-week swimming training program. Each group was subdivided into three groups (n = 8): control (vehicle group), amlodipine (amlodipine group; 10 mg/kg per day) and enalapril (enalapril group; 10 mg/kg per day) (both for 10 weeks). We cannulated the femoral artery and vein of all animals for recording arterial pressure and injecting drugs, respectively. Autonomic assessment was performed by double blockade with propranolol and atropine, analysis of heart rate variability (HRV), systolic arterial pressure variability and baroflex sensitivity. RESULTS Arterial pressure reduction was more prominent in the sedentary and trained enalapril groups. Amlodipine sedentary group presented important autonomic adjustments characterized by a predominance of vagal tone in cardiac autonomic balance, increased HRV associated with sympathetic autonomic modulation reduction and increased vagal autonomic modulation, and increased baroflex sensitivity. All findings were not potentialized by physical training. In turn, the enalapril trained group, but not its sedentary counterpart, also had vagal tone prevalence in cardiac autonomic balance, increased HRV, increased baroflex sensitivity and decreased low-frequency band in systolic arterial pressure variability. CONCLUSION Amlodipine was more effective in promoting beneficial autonomic cardiovascular adaptations in sedentary animals. In contrast, enalapril achieved better autonomic results only when combined with aerobic physical training.
Collapse
|
19
|
Besnier F, Labrunée M, Pathak A, Pavy-Le Traon A, Galès C, Sénard JM, Guiraud T. Exercise training-induced modification in autonomic nervous system: An update for cardiac patients. Ann Phys Rehabil Med 2016; 60:27-35. [PMID: 27542313 DOI: 10.1016/j.rehab.2016.07.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Patients with cardiovascular disease show autonomic dysfunction, including sympathetic activation and vagal withdrawal, which leads to fatal events. This review aims to place sympathovagal balance as an essential element to be considered in management for cardiovascular disease patients who benefit from a cardiac rehabilitation program. Many studies showed that exercise training, as non-pharmacologic treatment, plays an important role in enhancing sympathovagal balance and could normalize levels of markers of sympathetic flow measured by microneurography, heart rate variability or plasma catecholamine levels. This alteration positively affects prognosis with cardiovascular disease. In general, cardiac rehabilitation programs include moderate-intensity and continuous aerobic exercise. Other forms of activities such as high-intensity interval training, breathing exercises, relaxation and transcutaneous electrical stimulation can improve sympathovagal balance and should be implemented in cardiac rehabilitation programs. Currently, the exercise training programs in cardiac rehabilitation are individualized to optimize health outcomes. The sports science concept of the heart rate variability (HRV)-vagal index used to manage exercise sessions (for a goal of performance) could be implemented in cardiac rehabilitation to improve cardiovascular fitness and autonomic nervous system function.
Collapse
Affiliation(s)
- Florent Besnier
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France; Clinic of Saint-Orens, Cardiovascular and Pulmonary Rehabilitation Center, Saint-Orens-de-Gameville, France
| | - Marc Labrunée
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France; Department of Rehabilitation, Toulouse University Hospital, Toulouse, France
| | - Atul Pathak
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France; Unit of Hypertension, Risk Factors and Heart Failure, Clinique Pasteur, Toulouse, France
| | - Anne Pavy-Le Traon
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France
| | - Céline Galès
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France
| | - Jean-Michel Sénard
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France
| | - Thibaut Guiraud
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France; Clinic of Saint-Orens, Cardiovascular and Pulmonary Rehabilitation Center, Saint-Orens-de-Gameville, France.
| |
Collapse
|
20
|
Tjen-A-Looi SC, Guo ZL, Fu LW, Longhurst JC. Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture. Sci Rep 2016; 6:25910. [PMID: 27181844 PMCID: PMC4867624 DOI: 10.1038/srep25910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/25/2016] [Indexed: 12/25/2022] Open
Abstract
The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism.
Collapse
Affiliation(s)
- Stephanie C. Tjen-A-Looi
- Susan Samueli Center for Integrative Medicine School of Medicine, Univ. of California, Irvine, CA 92697, USA
| | - Zhi-Ling Guo
- Susan Samueli Center for Integrative Medicine School of Medicine, Univ. of California, Irvine, CA 92697, USA
| | - Liang-Wu Fu
- Susan Samueli Center for Integrative Medicine School of Medicine, Univ. of California, Irvine, CA 92697, USA
| | - John C. Longhurst
- Susan Samueli Center for Integrative Medicine School of Medicine, Univ. of California, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Reis WL, Biancardi VC, Zhou Y, Stern JE. A Functional Coupling Between Carbon Monoxide and Nitric Oxide Contributes to Increased Vasopressin Neuronal Activity in Heart Failure rats. Endocrinology 2016; 157:2052-66. [PMID: 26982634 PMCID: PMC4870874 DOI: 10.1210/en.2015-1958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the pathophysiological importance of neurohumoral activation in patients with heart failure (HF), the precise underlying mechanisms contributing to elevated vasopressin (VP) activation in HF remains unknown. Carbon monoxide (CO) is a gaseous neurotransmitter in the central nervous system that stimulates VP neuronal firing activity. Recently, we showed that the excitatory effect of CO on VP neurons in the hypothalamic paraventricular nucleus (PVN) was mediated by inhibition of nitric oxide (NO). Given that previous studies showed that VP neuronal activity is enhanced, whereas NO inhibitory signaling is blunted in HF rats, we tested whether an enhanced endogenous CO availability within the PVN contributes to elevated VP neuronal activity and blunted NO signaling in HF rats. We found that both haeme-oxygenase 1 (the CO-synthesizing enzyme) protein and mRNA expression levels were enhanced in the PVN of HF compared with sham rats (∼18% and ∼38%, respectively). We report that in sham rats, bath application of a CO donor (tricarbonyldichlororuthenium dimer) increased the firing activity of identified PVN VP neurons (P < .05), whereas inhibition of endogenous CO production (Tin-protoporphyrin IX [SnPP]) failed to affect neuronal activity. In HF rats, however, SnPP decreased VP activity (P < .05), an effect that was occluded by previous NO synathase blockade NG-nitro-larginine methyl ester. Finally, we found that SnPP increased the mean frequency of γ-aminobutyric acid inhibitory postsynaptic currents in VP neurons in HF (P < .05) but not sham rats. Our results support an enhanced endogenous CO excitatory signaling in VP neurons, which likely contributes to blunted NO and γ-aminobutyric acid inhibitory function in HF rats.
Collapse
Affiliation(s)
- Wagner L Reis
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912
| | - Vinicia C Biancardi
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912
| | - Yiqiang Zhou
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912
| |
Collapse
|
22
|
Ramchandra R, Barrett CJ. Regulation of the renal sympathetic nerves in heart failure. Front Physiol 2015; 6:238. [PMID: 26388778 PMCID: PMC4556040 DOI: 10.3389/fphys.2015.00238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
Heart failure (HF) is a serious debilitating condition with poor survival rates and an increasing level of prevalence. HF is associated with an increase in renal norepinephrine (NE) spillover, which is an independent predictor of mortality in HF patients. The excessive sympatho-excitation that is a hallmark of HF has long-term effects that contribute to disease progression. An increase in directly recorded renal sympathetic nerve activity (RSNA) has also been recorded in animal models of HF. This review will focus on the mechanisms controlling sympathetic nerve activity (SNA) to the kidney during normal conditions and alterations in these mechanisms during HF. In particular the roles of afferent reflexes and central mechanisms will be discussed.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Department of Physiology, The University of Auckland Auckland, New Zealand
| | - Carolyn J Barrett
- Department of Physiology, The University of Auckland Auckland, New Zealand
| |
Collapse
|
23
|
Felix ACS, Dutra SGV, Tezini GCSV, Simões MV, de Souza HCD. Aerobic physical training increases contractile response and reduces cardiac fibrosis in rats subjected to early ovarian hormone deprivation. J Appl Physiol (1985) 2015; 118:1276-85. [DOI: 10.1152/japplphysiol.00483.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 03/17/2015] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of early ovarian hormone deprivation on the heart and the role of physical training in this condition using different approaches: cardiac autonomic tone, contractility, morphology and function, and cardiac fibrosis. Female Wistar rats ( n = 48) were assigned into two groups: ovariectomized (Ovx; 10-wk-old) and control rats (Sham; 10-wk-old). Each group was further divided into two subgroups, sedentary and trained (aerobic training by swimming for 10 wk). The sedentary groups showed similar cardiac autonomic tone values; however, only the Sham group had an increase in vagal participation for the determination of the basal heart rate after physical training. The contractile responses to cardiac β-agonists of the sedentary groups were similar, including an increased response to a β1-agonist (dobutamine) observed after physical training. The Ovx sedentary group presented changes in cardiac morphology, which resulted in decreases in the ejection fraction, fractional shortening, and cardiac index compared with the Sham sedentary group. Physical training did little to alter these findings. Moreover, histology analysis showed a significant increase in cardiac fibrosis in the sedentary Ovx group, which was not observed in the trained Ovx group. We conclude that early ovarian hormone deprivation in rats impairs autonomic control, cardiac morphology, and cardiac function and increases cardiac fibrosis; however, it does not affect the contractility induced by dobutamine and salbutamol. Furthermore, this model of physical training prevented an increase in fibrosis and promoted an increase in the cardiac contractile response but had little effect on cardiac autonomic control or morphological and functional parameters.
Collapse
Affiliation(s)
- Ana Carolina S. Felix
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Sabrina G. V. Dutra
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Geisa C. S. V. Tezini
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Marcus Vinicius Simões
- Division of Cardiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hugo Celso Dutra de Souza
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| |
Collapse
|
24
|
Abstract
The article discusses the problem of motivating and encouraging patients with heart failure to perform regular exercise training. Firstly, the benefits of exercise training are presented, and rational and convincing arguments justifying its implementation in heart failure patients are provided. Secondly, the issue of overcoming barriers to exercise training implementation is considered. Finally, the role of the medical team and family members in supporting patients with heart failure in long-term adherence to recommendations is defined and analyzed. In addition, the article presents various ways of performing exercise training easily.
Collapse
|
25
|
Zucker IH, Schultz HD, Patel KP, Wang H. Modulation of angiotensin II signaling following exercise training in heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H781-91. [PMID: 25681422 PMCID: PMC4398865 DOI: 10.1152/ajpheart.00026.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Sympathetic activation is a consistent finding in the chronic heart failure (CHF) state. Current therapy for CHF targets the renin-angiotensin II (ANG II) and adrenergic systems. Angiotensin converting enzyme (ACE) inhibitors and ANG II receptor blockers are standard treatments along with β-adrenergic blockade. However, the mortality and morbidity of this disease is still extremely high, even with good medical management. Exercise training (ExT) is currently being used in many centers as an adjunctive therapy for CHF. Clinical studies have shown that ExT is a safe, effective, and inexpensive way to improve quality of life, work capacity, and longevity in patients with CHF. This review discusses the potential neural interactions between ANG II and sympatho-excitation in CHF and the modulation of this interaction by ExT. We briefly review the current understanding of the modulation of the angiotensin type 1 receptor in sympatho-excitatory areas of the brain and in the periphery (i.e., in the carotid body and skeletal muscle). We discuss possible cellular mechanisms by which ExT may impact the sympatho-excitatory process by reducing oxidative stress, increasing nitric oxide. and reducing ANG II. We also discuss the potential role of ACE2 and Ang 1-7 in the sympathetic response to ExT. Fruitful areas of further investigation are the role and mechanisms by which pre-sympathetic neuronal metabolic activity in response to individual bouts of exercise regulate redox mechanisms and discharge at rest in CHF and other sympatho-excitatory states.
Collapse
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hanjun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
26
|
Arrick DM, Yang S, Li C, Cananzi S, Mayhan WG. Vigorous exercise training improves reactivity of cerebral arterioles and reduces brain injury following transient focal ischemia. Microcirculation 2015; 21:516-23. [PMID: 24617555 DOI: 10.1111/micc.12127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/07/2014] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Our objective was to examine whether vigorous exercise training (VExT) could influence nitric oxide synthase (NOS)-dependent vasodilation and transient focal ischemia-induced brain injury. Rats were divided into sedentary (SED) or VExT groups. MATERIALS AND METHODS Exercise was carried out 5 days/week for a period of 8-10 weeks. First, we measured responses of pial arterioles to an eNOS-dependent (ADP), an nNOS-dependent (NMDA) and a NOS-independent (nitroglycerin) agonist in SED and VExT rats. Second, we measured infarct volume in SED and VExT rats following middle cerebral artery occlusion (MCAO). Third, we measured superoxide levels in brain tissue of SED and VExT rats under basal and stimulated conditions. RESULTS We found that eNOS- and nNOS-dependent, but not NOS-independent vasodilation, was increased in VExT compared to SED rats, and this could be inhibited with L-NMMA in both groups. In addition, we found that VExT reduced infarct volume following MCAO when compared to SED rats. Further, superoxide levels were similar in brain tissue from SED and VExT rats under basal and stimulated conditions. CONCLUSIONS We suggest that VExT potentiates NOS-dependent vascular reactivity and reduces infarct volume following MCAO via a mechanism that appears to be independent of oxidative stress, but presumably related to an increase in the contribution of nitric oxide.
Collapse
Affiliation(s)
- Denise M Arrick
- Department of Cellular Biology and Anatomy and the Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | | | | | | | | |
Collapse
|
27
|
Negrao CE, Middlekauff HR, Gomes-Santos IL, Antunes-Correa LM. Effects of exercise training on neurovascular control and skeletal myopathy in systolic heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H792-802. [PMID: 25681428 DOI: 10.1152/ajpheart.00830.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Neurohormonal excitation and dyspnea are the hallmarks of heart failure (HF) and have long been associated with poor prognosis in HF patients. Sympathetic nerve activity (SNA) and ventilatory equivalent of carbon dioxide (VE/VO2) are elevated in moderate HF patients and increased even further in severe HF patients. The increase in SNA in HF patients is present regardless of age, sex, and etiology of systolic dysfunction. Neurohormonal activation is the major mediator of the peripheral vasoconstriction characteristic of HF patients. In addition, reduction in peripheral blood flow increases muscle inflammation, oxidative stress, and protein degradation, which is the essence of the skeletal myopathy and exercise intolerance in HF. Here we discuss the beneficial effects of exercise training on resting SNA in patients with systolic HF and its central and peripheral mechanisms of control. Furthermore, we discuss the exercise-mediated improvement in peripheral vasoconstriction in patients with HF. We will also focus on the effects of exercise training on ventilatory responses. Finally, we review the effects of exercise training on features of the skeletal myopathy in HF. In summary, exercise training plays an important role in HF, working synergistically with pharmacological therapies to ameliorate these abnormalities in clinical practice.
Collapse
Affiliation(s)
- Carlos E Negrao
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Holly R Middlekauff
- Departament of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California
| | - Igor L Gomes-Santos
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | |
Collapse
|
28
|
Sharma RK, Choudhary RC, Reddy MK, Ray A, Ravi K. Role of posterior hypothalamus in hypobaric hypoxia induced pulmonary edema. Respir Physiol Neurobiol 2014; 205:66-76. [PMID: 25448396 DOI: 10.1016/j.resp.2014.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/10/2023]
Abstract
To investigate the role of posterior hypothalamus and central neurotransmitters in the pulmonary edema due to hypobaric hypoxia, rats were placed in a high altitude simulation chamber (barometric pressure-294.4 mmHg) for 24 h. Exposure to hypobaric hypoxia resulted in increases in mean arterial blood pressure, renal sympathetic nerve activity, right ventricular systolic pressure, lung wet to dry weight ratio and Evans blue dye leakage. There was a significant attenuation in these responses to hypobaric hypoxia (a) after lesioning posterior hypothalamus and (b) after chronic infusion of GABAA receptor agonist muscimol into posterior hypothalamus. No such attenuation was evident with the chronic infusion of the nitric oxide donor SNAP into the posterior hypothalamus. It is concluded that in hypobaric hypoxia, there is over-activity of posterior hypothalamic neurons probably due to a local decrease in GABA-ergic inhibition which increases the sympathetic drive causing pulmonary hypertension and edema.
Collapse
Affiliation(s)
- R K Sharma
- Department of Physiology, V. P. Chest Institute, University of Delhi, Delhi, India
| | - R C Choudhary
- Department of Physiology, V. P. Chest Institute, University of Delhi, Delhi, India
| | - M K Reddy
- Defence Institute of Physiology & Allied Sciences, Timarpur, Delhi, India
| | - A Ray
- Department of Pharmacology, V. P. Chest Institute, University of Delhi, Delhi, India
| | - K Ravi
- Department of Physiology, V. P. Chest Institute, University of Delhi, Delhi, India.
| |
Collapse
|
29
|
Haack KKV, Zucker IH. Central mechanisms for exercise training-induced reduction in sympatho-excitation in chronic heart failure. Auton Neurosci 2014; 188:44-50. [PMID: 25458427 DOI: 10.1016/j.autneu.2014.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/19/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022]
Abstract
The control of sympathetic outflow in the chronic heart failure (CHF) state is markedly abnormal. Patients with heart failure present with increased plasma norepinephrine and increased sympathetic nerve activity. The mechanism for this sympatho-excitation is multiple and varied. Both depression in negative feedback sensory control mechanisms and augmentation of excitatory reflexes contribute to this sympatho-excitation. These include the arterial baroreflex, cardiac reflexes, arterial chemoreflexes and cardiac sympathetic afferent reflexes. In addition, abnormalities in central signaling in autonomic pathways have been implicated in the sympatho-excitatory process in CHF. These mechanisms include increases in central Angiotensin II and the Type 1 receptor, increased in reactive oxygen stress, upregulation in glutamate signaling and NR1 (N-methyl-D-aspartate subtype 1) receptors and others. Exercise training in the CHF state has been shown to reduce sympathetic outflow and result in increased survival and reduced cardiac events. Exercise training has been shown to reduce central Angiotensin II signaling including the Type 1 receptor and reduce oxidative stress by lowering the expression of many of the subunits of NADPH oxidase. In addition, there are profound effects on the central generation of nitric oxide and nitric oxide synthase in sympatho-regulatory areas of the brain. Recent studies have pointed to the balance between Angiotensin Converting Enzyme (ACE) and ACE2, translating into Angiotensin II and Angiotensin 1-7 as important regulators of sympathetic outflow. These enzymes appear to be normalized following exercise training in CHF. Understanding the precise molecular mechanisms by which exercise training is sympatho-inhibitory will uncover new targets for therapy.
Collapse
Affiliation(s)
- Karla K V Haack
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, United States
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, United States.
| |
Collapse
|
30
|
Ito D, Ito O, Mori N, Cao P, Suda C, Muroya Y, Hao K, Shimokawa H, Kohzuki M. Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure. Clin Exp Pharmacol Physiol 2014; 40:617-25. [PMID: 23735016 DOI: 10.1111/1440-1681.12130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 11/30/2022]
Abstract
There is an interaction between heart and kidney diseases, which is a condition termed cardiorenal syndrome. Exercise training has cardioprotective effects, involving upregulation of endothelial (e) nitric oxide synthase (NOS) in the cardiovascular system. However, the effects of exercise training on NOS in the kidney with heart disease are unknown. The aim of the present study was to investigate whether exercise training upregulates NOS in the kidney, left ventricle and aorta of rats with chronic heart failure (CHF). Male Sprague-Dawley rats underwent left coronary artery ligation (LCAL) to induce CHF and were randomly assigned to sedentary or treadmill exercise groups 4 weeks after LCAL. Three days after exercising for 4 weeks, urine samples were collected for 24 h and blood samples were collected following decapitation. Nitric oxide synthase activity and protein expression were examined. Significant interactions between CHF and exercise training were observed on parameters of cardiac and renal function. Exercise training improved cardiac function, decreased plasma B-type natriuretic peptide levels, decreased urinary albumin excretion and increased creatinine clearance in CHF rats. Nitric oxide synthase activity, eNOS expression and neuronal (n) NOS expression were significantly decreased in the left ventricle and kidney of CHF rats. Exercise training significantly increased NOS activity and eNOS and nNOS expression. Upregulation of NOS in the kidney and left ventricle may contribute, in part, to the renal and cardiac protective effects of exercise training in cardiorenal syndrome in CHF rats.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jia LL, Kang YM, Wang FX, Li HB, Zhang Y, Yu XJ, Qi J, Suo YP, Tian ZJ, Zhu Z, Zhu GQ, Qin DN. Exercise training attenuates hypertension and cardiac hypertrophy by modulating neurotransmitters and cytokines in hypothalamic paraventricular nucleus. PLoS One 2014; 9:e85481. [PMID: 24482680 PMCID: PMC3901693 DOI: 10.1371/journal.pone.0085481] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/28/2013] [Indexed: 02/05/2023] Open
Abstract
AIMS Regular exercise as an effective non-pharmacological antihypertensive therapy is beneficial for prevention and control of hypertension, but the central mechanisms are unclear. In this study, we hypothesized that chronic exercise training (ExT) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs) and restoring the neurotransmitters balance in the hypothalamic paraventricular nucleus (PVN) in young spontaneously hypertensive rats (SHR). In addition, we also investigated the involvement of nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in exercise-induced effects. METHODS AND RESULTS Moderate-intensity ExT was administrated to young normotensive Wistar-Kyoto (WKY) and SHR rats for 16 weeks. SHR rats had a significant increase in mean arterial pressure and cardiac hypertrophy. SHR rats also had higher levels of glutamate, norepinephrine (NE), phosphorylated IKKβ, NF-κB p65 activity, NAD(P)H oxidase subunit gp91(phox), PICs and the monocyte chemokine protein-1 (MCP-1), and lower levels of gamma-aminobutyric acid (GABA) and interleukin-10 (IL-10) in the PVN. These SHR rats also exhibited higher renal sympathetic nerve activity (RSNA), and higher plasma levels of PICs, and lower plasma IL-10. However, ExT ameliorates all these changes in SHR rats. CONCLUSION These findings suggest that there are the imbalances between excitatory and inhibitory neurotransmitters and between pro- and anti-inflammatory cytokines in the PVN of SHR rats, which at least partly contributing to sympathoexcitation, hypertension and cardiac hypertrophy; chronic exercise training attenuates hypertension and cardiac hypertrophy by restoring the balances between excitatory and inhibitory neurotransmitters and between pro- and anti-inflammatory cytokines in the PVN; NF-κB and oxidative stress in the PVN may be involved in these exercise-induced effects.
Collapse
Affiliation(s)
- Lin-Lin Jia
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University School of Medicine, Xi’an, China
- * E-mail: (JMK); (DNQ)
| | - Fu-Xin Wang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Yu-Ping Suo
- Department of Obstetrics and Gynecology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Zhen-Jun Tian
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, The Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Da-Nian Qin
- Department of Physiology, Shantou University Medical College, Shantou, China
- * E-mail: (JMK); (DNQ)
| |
Collapse
|
32
|
Zha YP, Wang YK, Deng Y, Zhang RW, Tan X, Yuan WJ, Deng XM, Wang WZ. Exercise training lowers the enhanced tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. CNS Neurosci Ther 2013; 19:244-51. [PMID: 23521912 DOI: 10.1111/cns.12065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 12/01/2022] Open
Abstract
AIMS It is well known that low-intensity exercise training (ExT) is beneficial to cardiovascular dysfunction in hypertension. The tonically active glutamatergic input to the rostral ventrolateral medulla (RVLM), a key region for control of blood pressure and sympathetic tone, has been demonstrated to be increased in hypertensive rats. The aim of this study was to determine the effect of ExT on the increased glutamatergic input to the RVLM in spontaneously hypertensive rat (SHR). METHODS Normotensive rats Wistar-Kyoto (WKY) and SHR were treadmill trained or remained sedentary (Sed) for 12 weeks and classed into four groups (WKY-Sed, WKY-ExT, SHR-Sed, and SHR-ExT). The release of glutamate in the RVLM and its contribution to cardiovascular activity were determined in WKY and SHR after treatment of ExT. RESULTS Blood pressure and sympathetic tone were significantly reduced in SHR after treatment with ExT. Bilateral microinjection of the glutamate receptor antagonist kynurenic acid (2.7 nmol in 100 nL) into the RVLM significantly decreased resting blood pressure, heart rate, and renal sympathetic nerve activity in SHR-Sed but not in WKY groups (WKY-Sed and WKY-ExT). However, the degree of reduction in these cardiovascular parameters evoked by KYN was significantly blunted in SHR-ExT compared with SHR-Sed group. The concentration of glutamate and the protein expression of vesicular glutamate transporter 2 in the RVLM were significantly increased in SHR-Sed compared with WKY-Sed, whereas they were reduced after treatment with ExT. CONCLUSION Our findings suggest that ExT attenuates the enhancement in the tonically acting glutamatergic input to the RVLM of hypertensive rats, thereby reducing the sympathetic hyperactivity and blood pressure.
Collapse
Affiliation(s)
- Yan-Ping Zha
- Department of Physiology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Essential hypertension: an approach to its etiology and neurogenic pathophysiology. Int J Hypertens 2013; 2013:547809. [PMID: 24386559 PMCID: PMC3872229 DOI: 10.1155/2013/547809] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/06/2013] [Indexed: 12/24/2022] Open
Abstract
Essential hypertension, a rise in blood pressure of undetermined cause, includes 90% of all hypertensive cases and is a highly important public health challenge that remains, however, a major modifiable cause of morbidity and mortality. This review emphasizes that, from an evolutionary point of view, we are adapted to ingest and excrete <1 g of sodium (2.5 g of salt) per day and that essential hypertension develops when the kidneys become unable to excrete the amount of sodium ingested, unless blood pressure is increased. The renal-mean arterial pressure set-point model is briefly described to explain that a shift of the pressure natriuresis relationship toward abnormally high pressure levels is a pathophysiological characteristic of essential hypertension. Evidence indicating that this anomaly in the pressure natriuresis relationship arises from a sympathetic nervous system dysfunction is briefly formulated, and the most widely accepted pathophysiologic proposal to explain the development of this sympathetic dysfunction is described, with commentaries about novel action mechanisms of some drugs currently used in essential hypertension treatment.
Collapse
|
34
|
Hafez G, Gonulalan U, Kosan M, Arioglu E, Ozturk B, Cetinkaya M, Gur S. Acetylsalicylic acid protects erectile function in diabetic rats. Andrologia 2013; 46:997-1003. [PMID: 24428436 DOI: 10.1111/and.12187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2013] [Indexed: 11/28/2022] Open
Abstract
We aimed to evaluate the effect of acetylsalicylic acid (ASA) treatment on diabetes-induced erectile dysfunction. Adult male Sprague-Dawley rats were divided into four groups as follows: (i) control (C), (ii) diabetic (D), (iii) ASA-treated control (C+ASA) and (iv) ASA-treated diabetic (D+ASA) groups. In groups 2 and 4, diabetes was induced by injection of 35 mg kg(-1) streptozotocin. ASA (100 mg kg(-1) day(-1) , orally) was administrated to rats in groups 3 and 4 for 8 weeks. Both intracavernosal pressure (ICP) and mean arterial blood pressure (MAP) were measured in in vivo studies. In organ bath, the relaxation responses to acetylcholine (ACh), electrical field stimulation (EFS) and sodium nitroprusside were tested in corpus cavernosum (CC) strips. The mRNA expression for neuronal nitric oxide synthase (nNOS) was calculated using reverse transcription polymerase chain reaction technique. In in vivo experiments, diabetic rats displayed reduced ICP/MAP values, which were normalised with ASA treatment. The relaxant response to high-dose ACh and EFS at low frequencies (1-8 Hz) in CC strips from the D+ASA group were significantly higher when compared to the D group. Treatment with ASA normalised the raised mRNA expressions of nNOS in diabetic penile tissues. ASA may be involved in mRNA of protein synthesis of NO released from nonadrenergic and noncholinergic cavernosal nerve in diabetes.
Collapse
Affiliation(s)
- G Hafez
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
35
|
Rossi NF, Chen H, Maliszewska-Scislo M. Paraventricular nucleus control of blood pressure in two-kidney, one-clip rats: effects of exercise training and resting blood pressure. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1390-400. [PMID: 24089375 DOI: 10.1152/ajpregu.00546.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exercise-induced changes in γ-aminobutyric acid (GABA) or nitric oxide signaling within the paraventricular nucleus (PVN) have not been studied in renovascular hypertension. We tested whether exercise training decreases mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) in two-kidney, one-clip (2K-1C) hypertensive rats due to enhanced nitric oxide or GABA signaling within PVN. Conscious, unrestrained male Sprague-Dawley rats with either sham (Sham) or right renal artery clipping (2K-1C) were assigned to sedentary (SED) or voluntary wheel running (ExT) for 6 or 12 wk. MAP and angiotensin II (ANG II) were elevated in 2K-1C SED rats. The 2K-1C ExT rats displayed lower MAP at 6 wk that did not decline further by 12 wk. Plasma ANG II was lower in 2K-1C ExT rats. Increases in MAP, heart rate, and RSNA to blockade of PVN nitric oxide in 2K-1C SED rats were attenuated compared with either Sham group. Exercise training restored the responses in 2K-1C ExT rats. The increase in MAP in response to bicuculline was inversely correlated with baseline MAP. The rise in MAP was lower in 2K-1C SED vs. either Sham group and was normalized in the 2K-1C ExT rats. Paradoxically, heart rate and RSNA responses were not diminished in 2K-1C SED rats but were significantly lower in the 2K-1C ExT rats. Thus the decrease in arterial pressure in 2K-1C hypertension associated with exercise training is likely due to diminished excitatory inputs to PVN because of lower ANG II and higher nitritergic tone rather than enhanced GABA inhibition of sympathetic output.
Collapse
Affiliation(s)
- Noreen F Rossi
- John D. Dingell Veterans Affairs Medical Center, Departments of Internal Medicine and Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | |
Collapse
|
36
|
Souza HCD, Tezini GCSV. Autonomic Cardiovascular Damage during Post-menopause: the Role of Physical Training. Aging Dis 2013; 4:320-8. [PMID: 24307965 DOI: 10.14336/ad.2013.0400320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 12/23/2022] Open
Abstract
Menopause is part of the aging process and is characterized by the natural cessation of menstruation; during this time, the production of ovarian hormones, especially estrogen, is sharply reduced. This reduction can cause symptoms and disorders that affect most women and can interfere with their quality of life. Women are also more susceptible to cardiovascular diseases during this period, considering that these ovarian hormones would be associated with a protective effect on the cardiovascular system, by acting at various levels, contributing to the body homeostasis. Among several effects on the cardiovascular system, the ovarian hormones seem to play an important role in the autonomic control of heart rate and blood pressure. A reduction in ovarian hormones causes an autonomic imbalance and increases the risk of cardiovascular diseases. In fact, this increased risk is justified by the key role the autonomic nervous system plays in all cardiac regulatory mechanisms, exerting a tonic and reflexive influence on the main variables of the cardiovascular system. The autonomic system controls various cardiovascular parameters, such as the modulation of heart rate and blood pressure, myocardial contractility and venous capacitance, directly participating in the regulation of cardiac output. Over the years, the standard treatment for menopause symptoms and disorders has been hormone replacement therapy (HRT). However, many studies have indicated the risks of HRT, which justify the need for new non-pharmacological therapies. To this end, physical training, mainly aerobic, has been applied with excellent results on the cardiovascular autonomic nervous system, as it reduces the risk of cardiac diseases and improves the survival rate with direct beneficial effects on the quality of life of these women during the aging process.
Collapse
Affiliation(s)
- Hugo C D Souza
- Exercise Physiology Laboratory of the Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
37
|
Oliveira NL, Ribeiro F, Alves AJ, Teixeira M, Miranda F, Oliveira J. Heart rate variability in myocardial infarction patients: Effects of exercise training. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2013. [DOI: 10.1016/j.repce.2013.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Oliveira NL, Ribeiro F, Alves AJ, Teixeira M, Miranda F, Oliveira J. Heart rate variability in myocardial infarction patients: effects of exercise training. Rev Port Cardiol 2013; 32:687-700. [PMID: 23993292 DOI: 10.1016/j.repc.2013.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/04/2013] [Indexed: 12/18/2022] Open
Abstract
Heart rate variability (HRV) is a simple and noninvasive measure that estimates cardiac autonomic modulation, mainly the parasympathetic contribution. Increased sympathetic and/or decreased parasympathetic nervous activity is seen in post-myocardial infarction (MI) patients. Consequently, these patients present reduced HRV, which has been associated with increased risk of adverse events and mortality. Exercise training, recommended as a complementary therapy for patients with cardiovascular disease, has shown numerous beneficial effects. The main aim of the present manuscript was to provide a critical review of studies investigating the effects of exercise training on cardiac autonomic modulation, through HRV, in MI patients and the possible mechanisms involved. Despite conflicting evidence, exercise training appears to be a useful therapeutic intervention to improve the unbalanced autonomic function of MI patients. Finally, the mechanisms involved are not yet well understood, but nitric oxide bioavailability and angiotensin II levels seem to play an important role.
Collapse
Affiliation(s)
- Nórton Luís Oliveira
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
39
|
Sharma NM, Llewellyn TL, Zheng H, Patel KP. Angiotensin II-mediated posttranslational modification of nNOS in the PVN of rats with CHF: role for PIN. Am J Physiol Heart Circ Physiol 2013; 305:H843-55. [PMID: 23832698 DOI: 10.1152/ajpheart.00170.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increased sympathetic drive is an adverse characteristic in chronic heart failure (CHF). The protein expression of neuronal nitric oxide synthase (nNOS)- and hence nitric oxide (NO)-mediated sympathoinhibition is reduced in the paraventricular nucleus (PVN) of rats with CHF. However, the molecular mechanism(s) of nNOS downregulation remain(s) unclear. The aim of the study was to reveal the underlying molecular mechanism for the downregulation of nNOS in the PVN of CHF rats. Sprague-Dawley rats with CHF (6-8 wk after coronary artery ligation) demonstrated decreased nNOS dimer/monomer ratio (42%), with a concomitant increase in the expression of PIN (a protein inhibitor of nNOS known to dissociate nNOS dimers into monomers) by 47% in the PVN. Similarly, PIN expression is increased in a neuronal cell line (NG108) treated with angiotensin II (ANG II). Furthermore, there is an increased accumulation of high-molecular-weight nNOS-ubiquitin (nNOS-Ub) conjugates in the PVN of CHF rats (29%). ANG II treatment in NG108 cells in the presence of a proteasome inhibitor, lactacystin, also leads to a 69% increase in accumulation of nNOS-Ub conjugates immunoprecipitated by an antiubiquitin antibody. There is an ANG II-driven, PIN-mediated decrease in the dimeric catalytically active nNOS in the PVN, due to ubiquitin-dependent proteolytic degradation in CHF. Our results show a novel intermediary mechanism that leads to decreased levels of active nNOS in the PVN, involved in subsequent reduction in sympathoinhibition during CHF, offering a new target for the treatment of CHF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | |
Collapse
|
40
|
Stern JE, Potapenko ES. Enhanced NMDA receptor-mediated intracellular calcium signaling in magnocellular neurosecretory neurons in heart failure rats. Am J Physiol Regul Integr Comp Physiol 2013; 305:R414-22. [PMID: 23785079 DOI: 10.1152/ajpregu.00160.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An enhanced glutamate excitatory function within the hypothalamic supraoptic and paraventricluar nuclei is known to contribute to increased neurosecretory and presympathetic neuronal activity, and hence, neurohumoral activation, during heart failure (HF). Still, the precise mechanisms underlying enhanced glutamate-driven neuronal activity in HF remain to be elucidated. Here, we performed simultaneous electrophysiology and fast confocal Ca²⁺ imaging to determine whether altered N-methyl-d-aspartate (NMDA) receptor-mediated changes in intracellular Ca²⁺ levels (NMDA-ΔCa²⁺) occurred in hypothalamic magnocellular neurosecretory cells (MNCs) in HF rats. We found that activation of NMDA receptors resulted in a larger ΔCa²⁺ in MNCs from HF when compared with sham rats. The enhanced NMDA-ΔCa²⁺ was neither dependent on the magnitude of the NMDA-mediated current (voltage clamp) nor on the degree of membrane depolarization or firing activity evoked by NMDA (current clamp). Differently from NMDA receptor activation, firing activity evoked by direct membrane depolarization resulted in similar changes in intracellular Ca²⁺ in sham and HF rats. Taken together, our results support a relatively selective alteration of intracellular Ca²⁺ homeostasis and signaling following activation of NMDA receptors in MNCs during HF. The downstream functional consequences of such altered ΔCa²⁺ signaling during HF are discussed.
Collapse
Affiliation(s)
- Javier E Stern
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | | |
Collapse
|
41
|
Patel KP, Salgado HC, Liu X, Zheng H. Exercise training normalizes the blunted central component of the baroreflex in rats with heart failure: role of the PVN. Am J Physiol Heart Circ Physiol 2013; 305:H173-81. [PMID: 23686710 DOI: 10.1152/ajpheart.00009.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise training (ExT) normalizes the increased sympathetic outflow in chronic heart failure (HF). The underlying mechanisms are not clearly understood. We hypothesized that ExT normalized the blunted central component of the baroreflex control of renal sympathetic nerve activity (RSNA) in HF. Four groups of rats [sham operated (sham)-sedentary (Sed), sham-ExT, HF-Sed, and HF-ExT] were used. HF was induced by left coronary artery ligation, and ExT consisted of 3 wk of treadmill running. In anesthetized rats, the decrease in RSNA in response to aortic depressor nerve stimulation (5-40 Hz) in the HF-Sed group was significantly lower than that in the sham-Sed group (-37 ± 7% vs. -63 ± 8% at 40 Hz, P < 0.05). In the HF-ExT group, responses in RSNA, mean arterial pressure (MAP), and heart rate (HR) were not significantly different from those in the sham-Sed or sham-ExT groups. ExT normalized blunted RSNA, MAP, and HR responses to bicuculline microinjections into the paraventricular nucleus (PVN) in rats with HF. Activation of the PVN by blockade of GABA receptors with bicuculline in normal control rats blunted the centrally component of the baroreflex arc. GABAA-α1 and -β1 receptor protein expression were significantly lower (by 48% and 30%) in the HF-Sed group, but ExT normalized this difference between the HF and sham groups. These data suggest that one mechanism by which ExT alleviates elevated sympathetic outflow in HF may be through normalization of central integrative mechanisms, perhaps via improving the inhibitory GABAergic mechanism within the PVN, on the baroreflex arc.
Collapse
Affiliation(s)
- Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| | | | | | | |
Collapse
|
42
|
Camargo LHA, Alves FHF, Biojone C, Correa FMA, Resstel LBM, Crestani CC. Involvement of N-methyl-D-aspartate glutamate receptor and nitric oxide in cardiovascular responses to dynamic exercise in rats. Eur J Pharmacol 2013; 713:16-24. [PMID: 23680118 DOI: 10.1016/j.ejphar.2013.04.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
Dynamic exercise evokes sustained cardiovascular responses, which are characterized by arterial pressure and heart rate increases. Although it is well accepted that there is central nervous system mediation of cardiovascular adjustments during exercise, information on the role of neural pathways and signaling mechanisms is limited. It has been reported that glutamate, by acting on NMDA receptors, evokes the release of nitric oxide through activation of neuronal nitric oxide synthase (nNOS) in the brain. In the present study, we tested the hypothesis that NMDA receptors and nNOS are involved in cardiovascular responses evoked by an acute bout of exercise on a rodent treadmill. Moreover, we investigated possible central sites mediating control of responses to exercise through the NMDA receptor-nitric oxide pathway. Intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK-801) reduced both the arterial pressure and heart rate increase evoked by dynamic exercise. Intraperitoneal treatment with the preferential nNOS inhibitor 7-nitroindazole reduced exercise-evoked tachycardiac response without affecting the pressor response. Moreover, treadmill running increased NO formation in the medial prefrontal cortex (MPFC), bed nucleus of the stria teminalis (BNST) and periaqueductal gray (PAG), and this effect was inhibited by systemic pretreatment with MK-801. Our findings demonstrate that NMDA receptors and nNOS mediate the tachycardiac response to dynamic exercise, possibly through an NMDA receptor-NO signaling mechanism. However, NMDA receptors, but not nNOS, mediate the exercise-evoked pressor response. The present results also provide evidence that MPFC, BNST and PAG may modulate physiological adjustments during dynamic exercise through NMDA receptor-NO signaling.
Collapse
Affiliation(s)
- Laura H A Camargo
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP, 14801-902, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Ito D, Ito O, Cao P, Mori N, Suda C, Muroya Y, Takashima K, Ito S, Kohzuki M. Effects of exercise training on nitric oxide synthase in the kidney of spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2013; 40:74-82. [DOI: 10.1111/1440-1681.12040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 11/30/2013] [Accepted: 12/03/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Daisuke Ito
- Department of Internal Medicine and Rehabilitation Science; Tohoku University Graduate School of Medicine; Sendai; Japan
| | | | - Pengyu Cao
- Department of Internal Medicine and Rehabilitation Science; Tohoku University Graduate School of Medicine; Sendai; Japan
| | | | - Chihiro Suda
- Department of Internal Medicine and Rehabilitation Science; Tohoku University Graduate School of Medicine; Sendai; Japan
| | - Yoshikazu Muroya
- Department of Internal Medicine and Rehabilitation Science; Tohoku University Graduate School of Medicine; Sendai; Japan
| | - Kenta Takashima
- Department of Internal Medicine and Rehabilitation Science; Tohoku University Graduate School of Medicine; Sendai; Japan
| | - Sadayoshi Ito
- Center for Advanced Integrated Renal Science; Tohoku University Graduate School of Medicine; Sendai; Japan
| | | |
Collapse
|
44
|
Abstract
Decreased exercise capacity negatively affects the individuals' ability to adequately perform activities required for normal daily life and, therefore, the independence and quality of life. Regular exercise training is associated with improved quality of life and survival in healthy individuals and in cardiovascular disease patients. Also in patients with stable heart failure, exercise training can relieve symptoms, improve exercise capacity and reduce disability, hospitalisation and probably mortality. Physical inactivity can thus be considered a major cardiovascular risk factor, and current treatment guidelines recommend exercise training in patients with heart failure in NYHA functional classes II and III. Exercise training is associated with numerous pulmonary, cardiovascular, and skeletal muscle metabolic adaptations that are beneficial to patients with heart failure. This review discusses current knowledge of mechanisms by which exercise training is beneficial in these patients.
Collapse
Affiliation(s)
- M F Piepoli
- Heart Failure Unit, Cardiology, Guglielmo da Saliceto Hospital, Piacenza, Italy,
| |
Collapse
|
45
|
Hydrogen sulfide in paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in chronic heart failure rats. PLoS One 2012; 7:e50102. [PMID: 23166827 PMCID: PMC3499499 DOI: 10.1371/journal.pone.0050102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intracerebroventricular infusion of NaHS, a hydrogen sulfide (H(2)S) donor, increased mean arterial pressure (MAP). This study was designed to determine the roles of H(2)S in the paraventricular nucleus (PVN) in modulating sympathetic activity and cardiac sympathetic afferent reflex (CSAR) in chronic heart failure (CHF). METHODOLOGY/PRINCIPAL FINDINGS CHF was induced by left descending coronary artery ligation in rats. Renal sympathetic nerve activity (RSNA) and MAP were recorded under anesthesia. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of low doses of a H(2)S donor, GYY4137 (0.01 and 0.1 nmol), had no significant effects on RSNA, MAP and CSAR. High doses of GYY4137 (1, 2 and 4 nmol) increased baseline RSNA, MAP and heart rate (HR), and enhanced CSAR. The effects were greater in CHF rats than sham-operated rats. A cystathionine-β-synthase (CBS) inhibitor, hydroxylamine (HA) in PVN had no significant effect on the RSNA, MAP and CSAR. CBS activity and H(2)S level in the PVN were decreased in CHF rats. No significant difference in CBS level in PVN was found between sham-operated rats and CHF rats. Stimulation of cardiac sympathetic afferents with capsaicin decreased CBS activity and H(2)S level in the PVN in both sham-operated rats and CHF rats. CONCLUSIONS Exogenous H(2)S in PVN increases RSNA, MAP and HR, and enhances CSAR. The effects are greater in CHF rats than those in sham-operated rats. Endogenous H(2)S in PVN is not responsible for the sympathetic activation and enhanced CSAR in CHF rats.
Collapse
|
46
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
Zheng H, Sharma NM, Liu X, Patel KP. Exercise training normalizes enhanced sympathetic activation from the paraventricular nucleus in chronic heart failure: role of angiotensin II. Am J Physiol Regul Integr Comp Physiol 2012; 303:R387-94. [PMID: 22718804 DOI: 10.1152/ajpregu.00046.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exercise training (ExT) normalizes the increased sympathetic outflow in heart failure (HF), but the underlying mechanisms are not known. We hypothesized ExT would normalize the augmented activation of the paraventricular nucleus (PVN) via an angiotensinergic mechanism during HF. Four groups of rats used were the following: 1) sham-sedentary (Sed); 2) sham-ExT; 3) HF-Sed, and 4) HF-ExT. HF was induced by left coronary artery ligation. Four weeks after surgery, 3 wk of treadmill running was performed in ExT groups. The number of FosB-positive cells in the PVN was significantly increased in HF-Sed group compared with the sham-Sed group. ExT normalized (negated) this increase in the rats with HF. In anesthetized condition, the increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) in response to microinjection of angiotensin (ANG) II (50∼200 pmol) in the PVN of HF-Sed group were significantly greater than of the sham-Sed group. In the HF-ExT group the responses to microinjection of ANG II were not different from sham-Sed or sham-ExT groups. Blockade of ANG II type 1 (AT(1)) receptors with losartan in the PVN produced a significantly greater decrease in RSNA, MAP, and HR in HF-Sed group compared with sham-Sed group. ExT prevented the difference between HF and sham groups. AT(1) receptor protein expression was increased 50% in HF-Sed group compared with sham-Sed group. In the HF-ExT group, AT(1) receptor protein expression was not significantly different from sham-Sed or sham-ExT groups. In conclusion, one mechanism by which ExT alleviates elevated sympathetic outflow in HF may be through normalization of angiotensinergic mechanisms within the PVN.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, 68198-5850, USA
| | | | | | | |
Collapse
|
48
|
Martinez DG, Nicolau JC, Lage RL, Toschi-Dias E, de Matos LD, Alves MJN, Trombetta IC, Dias da Silva VJ, Middlekauff HR, Negrão CE, Rondon MU. Effects of Long-Term Exercise Training on Autonomic Control in Myocardial Infarction Patients. Hypertension 2011; 58:1049-56. [DOI: 10.1161/hypertensionaha.111.176644] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autonomic dysfunction, including baroreceptor attenuation and sympathetic activation, has been reported in patients with myocardial infarction (MI) and has been associated with increased mortality. We tested the hypotheses that exercise training (ET) in post-MI patients would normalize arterial baroreflex sensitivity (BRS) and muscle sympathetic nerve activity (MSNA), and long-term ET would maintain the benefits in BRS and MSNA. Twenty-eight patients after 1 month of uncomplicated MI were randomly assigned to 2 groups, ET (MI-ET) and untrained. A normal control group was also studied. ET consisted of three 60-minute exercise sessions per week for 6 months. We evaluated MSNA (microneurography), blood pressure (automatic oscillometric method), heart rate (ECG), and spectral analysis of RR interval, systolic arterial pressure (SAP), and MSNA. Baroreflex gain of SAP-RR interval and SAP-MSNA were calculated using the α-index. At 3 to 5 days and 1 month after MI, MSNA and low-frequency SAP were significantly higher and BRS significantly lower in MI patients when compared with the normal control group. ET significantly decreased MSNA (bursts per 100 heartbeats) and the low-frequency component of SAP and significantly increased the low-frequency component of MSNA and BRS of the RR interval and MSNA. These changes were so marked that the differences between patients with MI and the normal control group were no longer observed after ET. MSNA and BRS in the MI-untrained group did not change from baseline over the same time period. ET normalizes BRS, low-frequency SAP, and MSNA in patients with MI. These improvements in autonomic control are maintained by long-term ET. These findings highlight the clinical importance of this nonpharmacological therapy based on ET in the long-term treatment of patients with MI.
Collapse
Affiliation(s)
- Daniel G. Martinez
- From the Heart Institute (InCor) (D.G.M., J.C.N., R.L.L., E.T.-D., L.D.N.J.d.M., M.J.N.N.A., I.C.T., C.E.N., M.U.P.B.R.), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Medicine (V.J.D.d.S.), Federal University of the Triangulo Mineiro, Minas Gerais, Brazil; Division of Cardiology (H.R.M.), David Geffen School of Medicine, University of California, Los Angeles, CA; School of Physical Education and Sports (C.E.N., M.U.P.B.R.), University of Sao Paulo, Sao Paulo, Brazil
| | - José C. Nicolau
- From the Heart Institute (InCor) (D.G.M., J.C.N., R.L.L., E.T.-D., L.D.N.J.d.M., M.J.N.N.A., I.C.T., C.E.N., M.U.P.B.R.), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Medicine (V.J.D.d.S.), Federal University of the Triangulo Mineiro, Minas Gerais, Brazil; Division of Cardiology (H.R.M.), David Geffen School of Medicine, University of California, Los Angeles, CA; School of Physical Education and Sports (C.E.N., M.U.P.B.R.), University of Sao Paulo, Sao Paulo, Brazil
| | - Rony L. Lage
- From the Heart Institute (InCor) (D.G.M., J.C.N., R.L.L., E.T.-D., L.D.N.J.d.M., M.J.N.N.A., I.C.T., C.E.N., M.U.P.B.R.), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Medicine (V.J.D.d.S.), Federal University of the Triangulo Mineiro, Minas Gerais, Brazil; Division of Cardiology (H.R.M.), David Geffen School of Medicine, University of California, Los Angeles, CA; School of Physical Education and Sports (C.E.N., M.U.P.B.R.), University of Sao Paulo, Sao Paulo, Brazil
| | - Edgar Toschi-Dias
- From the Heart Institute (InCor) (D.G.M., J.C.N., R.L.L., E.T.-D., L.D.N.J.d.M., M.J.N.N.A., I.C.T., C.E.N., M.U.P.B.R.), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Medicine (V.J.D.d.S.), Federal University of the Triangulo Mineiro, Minas Gerais, Brazil; Division of Cardiology (H.R.M.), David Geffen School of Medicine, University of California, Los Angeles, CA; School of Physical Education and Sports (C.E.N., M.U.P.B.R.), University of Sao Paulo, Sao Paulo, Brazil
| | - Luciana D.N.J. de Matos
- From the Heart Institute (InCor) (D.G.M., J.C.N., R.L.L., E.T.-D., L.D.N.J.d.M., M.J.N.N.A., I.C.T., C.E.N., M.U.P.B.R.), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Medicine (V.J.D.d.S.), Federal University of the Triangulo Mineiro, Minas Gerais, Brazil; Division of Cardiology (H.R.M.), David Geffen School of Medicine, University of California, Los Angeles, CA; School of Physical Education and Sports (C.E.N., M.U.P.B.R.), University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Janieire N.N. Alves
- From the Heart Institute (InCor) (D.G.M., J.C.N., R.L.L., E.T.-D., L.D.N.J.d.M., M.J.N.N.A., I.C.T., C.E.N., M.U.P.B.R.), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Medicine (V.J.D.d.S.), Federal University of the Triangulo Mineiro, Minas Gerais, Brazil; Division of Cardiology (H.R.M.), David Geffen School of Medicine, University of California, Los Angeles, CA; School of Physical Education and Sports (C.E.N., M.U.P.B.R.), University of Sao Paulo, Sao Paulo, Brazil
| | - Ivani C. Trombetta
- From the Heart Institute (InCor) (D.G.M., J.C.N., R.L.L., E.T.-D., L.D.N.J.d.M., M.J.N.N.A., I.C.T., C.E.N., M.U.P.B.R.), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Medicine (V.J.D.d.S.), Federal University of the Triangulo Mineiro, Minas Gerais, Brazil; Division of Cardiology (H.R.M.), David Geffen School of Medicine, University of California, Los Angeles, CA; School of Physical Education and Sports (C.E.N., M.U.P.B.R.), University of Sao Paulo, Sao Paulo, Brazil
| | - Valdo J. Dias da Silva
- From the Heart Institute (InCor) (D.G.M., J.C.N., R.L.L., E.T.-D., L.D.N.J.d.M., M.J.N.N.A., I.C.T., C.E.N., M.U.P.B.R.), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Medicine (V.J.D.d.S.), Federal University of the Triangulo Mineiro, Minas Gerais, Brazil; Division of Cardiology (H.R.M.), David Geffen School of Medicine, University of California, Los Angeles, CA; School of Physical Education and Sports (C.E.N., M.U.P.B.R.), University of Sao Paulo, Sao Paulo, Brazil
| | - Holly R. Middlekauff
- From the Heart Institute (InCor) (D.G.M., J.C.N., R.L.L., E.T.-D., L.D.N.J.d.M., M.J.N.N.A., I.C.T., C.E.N., M.U.P.B.R.), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Medicine (V.J.D.d.S.), Federal University of the Triangulo Mineiro, Minas Gerais, Brazil; Division of Cardiology (H.R.M.), David Geffen School of Medicine, University of California, Los Angeles, CA; School of Physical Education and Sports (C.E.N., M.U.P.B.R.), University of Sao Paulo, Sao Paulo, Brazil
| | - Carlos E. Negrão
- From the Heart Institute (InCor) (D.G.M., J.C.N., R.L.L., E.T.-D., L.D.N.J.d.M., M.J.N.N.A., I.C.T., C.E.N., M.U.P.B.R.), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Medicine (V.J.D.d.S.), Federal University of the Triangulo Mineiro, Minas Gerais, Brazil; Division of Cardiology (H.R.M.), David Geffen School of Medicine, University of California, Los Angeles, CA; School of Physical Education and Sports (C.E.N., M.U.P.B.R.), University of Sao Paulo, Sao Paulo, Brazil
| | - Maria U.P.B. Rondon
- From the Heart Institute (InCor) (D.G.M., J.C.N., R.L.L., E.T.-D., L.D.N.J.d.M., M.J.N.N.A., I.C.T., C.E.N., M.U.P.B.R.), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Medicine (V.J.D.d.S.), Federal University of the Triangulo Mineiro, Minas Gerais, Brazil; Division of Cardiology (H.R.M.), David Geffen School of Medicine, University of California, Los Angeles, CA; School of Physical Education and Sports (C.E.N., M.U.P.B.R.), University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
49
|
Patel KP, Zheng H. Central neural control of sympathetic nerve activity in heart failure following exercise training. Am J Physiol Heart Circ Physiol 2011; 302:H527-37. [PMID: 22101524 DOI: 10.1152/ajpheart.00676.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Typical characteristics of chronic congestive heart failure (HF) are increased sympathetic drive, altered autonomic reflexes, and altered body fluid regulation. These abnormalities lead to an increased risk of mortality, particularly in the late stage of chronic HF. Recent evidence suggests that central nervous system (CNS) mechanisms may be important in these abnormalities during HF. Exercise training (ExT) has emerged as a nonpharmacological therapeutic strategy substitute with significant benefit to patients with HF. Regular ExT improves functional capacity as well as quality of life and perhaps prognosis in chronic HF patients. The mechanism(s) by which ExT improves the clinical status of HF patients is not fully known. Recent studies have provided convincing evidence that ExT significantly alleviates the increased sympathetic drive, altered autonomic reflexes, and altered body fluid regulation in HF. This review describes and highlights the studies that examine various central pathways involved in autonomic outflow that are altered in HF and are improved following ExT. The increased sympathoexcitation is due to an imbalance between inhibitory and excitatory mechanisms within specific areas in the CNS such as the paraventricular nucleus (PVN) of the hypothalamus. Studies summarized here have revealed that ExT improves the altered inhibitory pathway utilizing nitric oxide and GABA mechanisms within the PVN in HF. ExT alleviates elevated sympathetic outflow in HF through normalization of excitatory glutamatergic and angiotensinergic mechanisms within the PVN. ExT also improves volume reflex function and thus fluid balance in HF. Preliminary observations also suggest that ExT induces structural neuroplasticity in the brain of rats with HF. We conclude that improvement of the enhanced CNS-mediated increase in sympathetic outflow, specifically to the kidneys related to fluid balance, contributes to the beneficial effects of ExT in HF.
Collapse
Affiliation(s)
- Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| | | |
Collapse
|
50
|
Zheng H, Mayhan WG, Patel KP. Exercise training improves the defective centrally mediated erectile responses in rats with type I diabetes. J Sex Med 2011; 8:3086-97. [PMID: 21883945 PMCID: PMC3204168 DOI: 10.1111/j.1743-6109.2011.02442.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Erectile dysfunction is a serious and common complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for the penile erection. AIM The goal of the present study was to determine the impact of exercise training (ExT) on the centrally mediated erectile dysfunction in streptozotocin (STZ)-induced type I diabetic (T1D) rats. METHODS Male Sprague-Dawley rats were injected with STZ to induce diabetes mellitus. Three weeks after STZ or vehicle injections, rats were assigned to either ExT (treadmill running for 3-4 weeks) or sedentary groups to produce four experimental groups: control + sedentary, T1D + sedentary, control + ExT, and T1D + ExT. MAIN OUTCOME MEASURE After 3-4 weeks ExT, central N-methyl-D-aspartic acid (NMDA) or sodium nitroprusside (SNP)-induced penile erectile responses were measured. Neuronal nitric oxide synthase (nNOS) expression in the paraventricular nucleus (PVN) of the hypothalamus was measured by using histochemistry, real time polymerase chain reaction (PCR) and Western blot approaches. RESULTS In rats with T1D, ExT significantly improved the blunted erectile response, and the intracavernous pressure changes to NMDA (50 ng) microinjection within the PVN (T1D + ExT: 3.0 ± 0.6 penile erection/rat; T1D + sedentary: 0.5 ± 0.3 penile erection/rat within 20 minutes, P < 0.05). ExT improved erectile dysfunction induced by central administration of exogenous nitric oxide (NO) donor, SNP in T1D rats. Other behavior responses including yawning and stretching, induced by central NMDA and SNP microinjection were also significantly increased in T1D rats after ExT. Furthermore, we found that ExT restored the nNOS mRNA and protein expression in the PVN in T1D rats. CONCLUSIONS These results suggest that ExT may have beneficial effects on the erectile dysfunction in diabetes through improvement of NO bioavailability within the PVN. Thus, ExT may be used as therapeutic modality to up-regulate nNOS within the PVN and improve the central component of the erectile dysfunction in diabetes mellitus.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - William G. Mayhan
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|