1
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
2
|
Gergs U, Wackerhagen S, Fuhrmann T, Schäfer I, Neumann J. Further investigations on the influence of protein phosphatases on the signaling of muscarinic receptors in the atria of mouse hearts. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5731-5743. [PMID: 38308688 PMCID: PMC11329414 DOI: 10.1007/s00210-024-02973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The vagal regulation of cardiac function involves acetylcholine (ACh) receptor activation followed by negative chronotropic and negative as well as positive inotropic effects. The resulting signaling pathways may include Gi/o protein-coupled reduction in adenylyl cyclase (AC) activity, direct Gi/o protein-coupled activation of ACh-activated potassium current (IKACh), inhibition of L-type calcium ion channels, and/or the activation of protein phosphatases. Here, we studied the role of the protein phosphatases 1 (PP1) and 2A (PP2A) for muscarinic receptor signaling in isolated atrial preparations of transgenic mice with cardiomyocyte-specific overexpression of either the catalytic subunit of PP2A (PP2A-TG) or the inhibitor-2 (I2) of PP1 (I2-TG) or in double transgenic mice overexpressing both PP2A and I2 (DT). In mouse left atrial preparations, carbachol (CCh), cumulatively applied (1 nM-10 µM), exerted at low concentrations a negative inotropic effect followed by a positive inotropic effect at higher concentrations. This biphasic effect was noted with CCh alone as well as when CCh was added after β-adrenergic pre-stimulation with isoprenaline (1 µM). Whereas the response to stimulation of β-adrenoceptors or adenosine receptors (used as controls) was changed in PP2A-TG, the response to CCh was unaffected in atrial preparations from all transgenic models studied here. Therefore, the present data tentatively indicate that neither PP2A nor PP1, but possibly other protein phosphatases, is involved in the muscarinic receptor-induced inotropic and chronotropic effects in the mouse heart.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany.
| | - Silke Wackerhagen
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Tobias Fuhrmann
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Inka Schäfer
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Joachim Neumann
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| |
Collapse
|
3
|
Devarajan A, Wang K, Lokhandwala ZA, Emamimeybodi M, Shannon K, Tompkins JD, Hevener AL, Lusis AJ, Abel ED, Vaseghi M. Myocardial infarction causes sex-dependent dysfunction in vagal sensory glutamatergic neurotransmission that is mitigated by 17β-estradiol. JCI Insight 2024; 9:e181042. [PMID: 38885308 PMCID: PMC11383359 DOI: 10.1172/jci.insight.181042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Parasympathetic dysfunction after chronic myocardial infarction (MI) is known to predispose ventricular tachyarrhythmias (ventricular tachycardia/ventricular fibrillation [VT/VF]). VT/VF after MI is more common in males than females. The mechanisms underlying the decreased vagal tone and the associated sex difference in the occurrence of VT/VF after MI remain elusive. In this study, using optogenetic approaches, we found that responses of glutamatergic vagal afferent neurons were impaired following chronic MI in male mice, leading to reduced reflex efferent parasympathetic function. Molecular analyses of vagal ganglia demonstrated reduced glutamate levels, accompanied by decreased mitochondrial function and impaired redox status in infarcted males versus sham animals. Interestingly, infarcted females demonstrated reduced vagal sensory impairment, associated with greater vagal ganglia glutamate levels and decreased vagal mitochondrial dysfunction and oxidative stress compared with infarcted males. Treatment with 17β-estradiol mitigated this pathological remodeling and improved vagal neurotransmission in infarcted male mice. These data suggest that a decrease in efferent vagal tone following MI results from reduced glutamatergic afferent vagal signaling that may be due to impaired redox homeostasis in the vagal ganglia, which subsequently leads to pathological remodeling in a sex-dependent manner. Importantly, estrogen prevents pathological remodeling and improves parasympathetic function following MI.
Collapse
Affiliation(s)
| | - Kerry Wang
- Division of Cardiology
- Department of Medicine
| | | | | | | | | | - Andrea L Hevener
- Department of Medicine
- Division of Endocrinology, Diabetes, and Hypertension
| | - Aldons J Lusis
- Division of Cardiology
- Department of Medicine
- Department of Microbiology, Immunology, and Molecular Genetics, and
| | | | - Marmar Vaseghi
- Division of Cardiology
- Department of Medicine
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, California, USA
| |
Collapse
|
4
|
Pizzo E, Berrettoni S, Kaul R, Cervantes DO, Di Stefano V, Jain S, Jacobson JT, Rota M. Heart Rate Variability Reveals Altered Autonomic Regulation in Response to Myocardial Infarction in Experimental Animals. Front Cardiovasc Med 2022; 9:843144. [PMID: 35586660 PMCID: PMC9108187 DOI: 10.3389/fcvm.2022.843144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The analysis of beating rate provides information on the modulatory action of the autonomic nervous system on the heart, which mediates adjustments of cardiac function to meet hemodynamic requirements. In patients with myocardial infarction, alterations of heart rate variability (HRV) have been correlated to the occurrence of arrhythmic events and all-cause mortality. In the current study, we tested whether experimental rodent models of myocardial infarction recapitulate dynamics of heart rate variability observed in humans, and constitute valid platforms for understanding mechanisms linking autonomic function to the development and manifestation of cardiovascular conditions. For this purpose, HRV was evaluated in two engineered mouse lines using electrocardiograms collected in the conscious, restrained state, using a tunnel device. Measurements were obtained in naïve mice and animals at 3-∼28 days following myocardial infarction, induced by permanent coronary artery ligation. Two mouse lines with inbred and hybrid genetic background and, respectively, homozygous (Homo) and heterozygous (Het) for the MerCreMer transgene, were employed. In the naïve state, Het female and male mice presented prolonged RR interval duration (∼9%) and a ∼4-fold increased short- and long-term RR interval variability, with respect to sex-matched Homo mice. These differences were abrogated by pharmacological interventions inhibiting the sympathetic and parasympathetic axes. At 3-∼14 days after myocardial infarction, RR interval duration increased in Homo mice, but was not affected in Het animals. In contrast, Homo mice had minor modifications in HRV parameters, whereas substantial (> 50%) reduction of short- and long-term RR interval variation occurred in Het mice. Interestingly, ex vivo studies in isolated organs documented that intrinsic RR interval duration increased in infarcted vs. non-infarcted Homo and Het hearts, whereas RR interval variation was not affected. In conclusion, our study documents that, as observed in humans, myocardial infarction in rodents is associated with alterations in heart rhythm dynamics consistent with sympathoexcitation and parasympathetic withdrawal. Moreover, we report that mouse strain is an important variable when evaluating autonomic function via the analysis of HRV.
Collapse
Affiliation(s)
- Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Silvia Berrettoni
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Ridhima Kaul
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Daniel O. Cervantes
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Valeria Di Stefano
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Jason T. Jacobson
- Department of Physiology, New York Medical College, Valhalla, NY, United States
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, United States
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
5
|
Navickaite I, Pauziene N, Pauza DH. Anatomical evidence of non-parasympathetic cardiac nitrergic nerve fibres in rat. J Anat 2021; 238:20-35. [PMID: 32790077 PMCID: PMC7755078 DOI: 10.1111/joa.13291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
Abstract
Neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) plays a major role in the neural control of circulation and in many cardiovascular diseases. However, the exact mechanism of how NO regulates these processes is still not fully understood. This study was designed to determine the possible sources of nitrergic nerve fibres supplying the heart attempting to imply their role in the cardiac neural control. Sections of medulla oblongata, vagal nerve, its rootlets and nodose ganglia, vagal cardiac branches, Th1 -Th5 spinal cord segments, dorsal root ganglia of C8 -Th5 spinal nerves, and stellate ganglia from 28 Wistar rats were examined applying double immunohistochemical staining for nNOS combined with choline acetyltransferase (ChAT), peripherin, substance P, calcitonin gene-related peptide, tyrosine hydroxylase or myelin basic protein. Our findings show that the most abundant population of purely nNOS-immunoreactive (IR) neuronal somata (NS) was observed in the nodose ganglia (37.4 ± 1.3%). A high number of nitrergic NFs spread along the vagal nerve and entered its cardiac branches. All nitrergic neuronal somata (NS) in the nucleus ambiguus were simultaneously immunoreactive (IR) to ChAT and composed only a small subset of neurons (6%). In the dorsal nucleus of vagal nerve, biphenotypic nNOS-IR/ChAT-IR neurons composed 7.0 ± 1.0%, while small purely nNOS-IR neurons were scarce. Nitrergic NS were plentifully distributed within the nuclei of solitary tract. In the examined dorsal root and stellate ganglia, a few nitrergic NS were sporadically present. The majority of sympathetic NS in the intermediolateral nucleus were simultaneously immunoreactive for nNOS and ChAT. In conclusion, an abundant population of nitrergic NS in the nodose ganglion implies that neuronal NO is involved in afferent cardiac innervation. Nevertheless, nNOS-IR neurons identified within vagal nuclei may play a role in the transmission of preganglionic parasympathetic nerve impulses.
Collapse
Affiliation(s)
- Ieva Navickaite
- Faculty of MedicineInstitute of AnatomyLithuanian University of Health SciencesKaunasLithuania
| | - Neringa Pauziene
- Faculty of MedicineInstitute of AnatomyLithuanian University of Health SciencesKaunasLithuania
| | - Dainius H. Pauza
- Faculty of MedicineInstitute of AnatomyLithuanian University of Health SciencesKaunasLithuania
| |
Collapse
|
6
|
Bardsley EN, Paterson DJ. Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J Physiol 2020; 598:2957-2976. [PMID: 30307615 PMCID: PMC7496613 DOI: 10.1113/jp276962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiac sympathetic overactivity is a well-established contributor to the progression of neurogenic hypertension and heart failure, yet the underlying pathophysiology remains unclear. Recent studies have highlighted the importance of acutely regulated cyclic nucleotides and their effectors in the control of intracellular calcium and exocytosis. Emerging evidence now suggests that a significant component of sympathetic overactivity and enhanced transmission may arise from impaired cyclic nucleotide signalling, resulting from compromised phosphodiesterase activity, as well as alterations in receptor-coupled G-protein activation. In this review, we address some of the key cellular and molecular pathways that contribute to sympathetic overactivity in hypertension and discuss their potential for therapeutic targeting.
Collapse
Affiliation(s)
- E. N. Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| | - D. J. Paterson
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| |
Collapse
|
7
|
Luo R, Zheng C, Yang H, Chen X, Jiang P, Wu X, Yang Z, Shen X, Li X. Identification of potential candidate genes and pathways in atrioventricular nodal reentry tachycardia by whole-exome sequencing. Clin Transl Med 2020; 10:238-257. [PMID: 32508047 PMCID: PMC7240861 DOI: 10.1002/ctm2.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Background Atrioventricular nodal reentry tachycardia (AVNRT) is the most common manifestation of paroxysmal supraventricular tachycardia (PSVT). Increasing data have indicated familial clustering and participation of genetic factors in AVNRT, and no pathogenic genes related to AVNRT have been reported. Methods Whole‐exome sequencing (WES) was performed in 82 patients with AVNRT and 100 controls. Reference genes, genome‐wide association analysis, gene‐based collapsing, and pathway enrichment analysis were performed. A protein‐protein interaction (PPI) network was then established; WES database in the UK Biobank and one only genetic study of AVNRT in Denmark were used for external data validation. Results Among 95 reference genes, 126 rare variants in 48 genes were identified in the cases (minor allele frequency < 0.001). Gene‐based collapsing analysis and pathway enrichment analysis revealed six functional pathways related to AVNRT as with neuronal system/neurotransmitter release cycles and ion channel/cardiac conduction among the top 30 enriched pathways, and then 36 candidate pathogenic genes were selected. By combining with PPI analysis, 10 candidate genes were identified, including RYR2, NOS1, SCN1A, CFTR, EPHB4, ROBO1, PRKAG2, MMP2, ASPH, and ABCC8. From the UK Biobank database, 18 genes from candidate genes including SCN1A, PRKAG2, NOS1, and CFTR had rare variants in arrhythmias, and the rare variants in PIK3CB, GAD2, and HIP1R were in patients with PSVT. Moreover, one rare variant of RYR2 (c.4652A > G, p.Asn1551Ser) in our study was also detected in the Danish study. Considering the gene functional roles and external data validation, the most likely candidate genes were SCN1A, PRKAG2, RYR2, CFTR, NOS1, PIK3CB, GAD2, and HIP1R. Conclusion The preliminary results first revealed potential candidate genes such as SCN1A, PRKAG2, RYR2, CFTR, NOS1, PIK3CB, GAD2, and HIP1R, and the pathways mediated by these genes, including neuronal system/neurotransmitter release cycles or ion channels/cardiac conduction, might be involved in AVNRT.
Collapse
Affiliation(s)
- Rong Luo
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, People's Republic of China
| | - Chenqing Zheng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- Department of Cardiology, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xuepin Chen
- Department of Cardiology, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Panpan Jiang
- Shenzhen RealOmics (Biotech) Co., Ltd., Shenzhen, China
| | - Xiushan Wu
- The Center of Heart Development, College of Life Sciences, Hunan Norma University, Changsha, China
| | - Zhenglin Yang
- Department of Cardiology, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xia Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoping Li
- Department of Cardiology, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
8
|
The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 2019; 16:707-726. [DOI: 10.1038/s41569-019-0221-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
|
9
|
Dusi V, De Ferrari GM, Pugliese L, Schwartz PJ. Cardiac Sympathetic Denervation in Channelopathies. Front Cardiovasc Med 2019; 6:27. [PMID: 30972341 PMCID: PMC6443634 DOI: 10.3389/fcvm.2019.00027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/01/2019] [Indexed: 12/24/2022] Open
Abstract
Left cardiac sympathetic denervation (LCSD) is a surgical antiadrenergic intervention with a strong antiarrhythmic effect, supported by preclinical as well as clinical data. The mechanism of action of LCSD in structurally normal hearts with increased arrhythmic susceptibility (such as those of patients with channelopathies) is not limited to the antagonism of acute catecholamines release in the heart. LCSD also conveys a strong anti-fibrillatory action that was first demonstrated over 40 years ago and provides the rationale for its use in almost any cardiac condition at increased risk of ventricular fibrillation. The molecular mechanisms involved in the final antiarrhythmic effect of LCSD turned out to be much broader than anticipated. Beside the vagotonic effect at different levels of the neuraxis, other new mechanisms have been recently proposed, such as the antagonism of neuronal remodeling, the antagonism of neuropeptide Y effects, and the correction of neuronal nitric oxide synthase (nNOS) imbalance. The beneficial effects of LCSD have never been associated with a detectable deterioration of cardiac performance. Finally, patients express a high degree of satisfaction with the procedure. In this review, we focus on the rationale, results and our personal approach to LCSD in patients with channelopathies such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia.
Collapse
Affiliation(s)
- Veronica Dusi
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy
- Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Maria De Ferrari
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy
- Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luigi Pugliese
- Unit of General Surgery 2, Department of Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
10
|
Benke K, Mátyás C, Sayour AA, Oláh A, Németh BT, Ruppert M, Szabó G, Kökény G, Horváth EM, Hartyánszky I, Szabolcs Z, Merkely B, Radovits T. Pharmacological preconditioning with gemfibrozil preserves cardiac function after heart transplantation. Sci Rep 2017; 7:14232. [PMID: 29079777 PMCID: PMC5660179 DOI: 10.1038/s41598-017-14587-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/12/2017] [Indexed: 02/06/2023] Open
Abstract
While heart transplantation (HTX) is the definitive therapy of heart failure, donor shortage is emerging. Pharmacological activation of soluble guanylate cyclase (sGC) and increased cGMP-signalling have been reported to have cardioprotective properties. Gemfibrozil has recently been shown to exert sGC activating effects in vitro. We aimed to investigate whether pharmacological preconditioning of donor hearts with gemfibrozil could protect against ischemia/reperfusion injury and preserve myocardial function in a heterotopic rat HTX model. Donor Lewis rats received p.o. gemfibrozil (150 mg/kg body weight) or vehicle for 2 days. The hearts were explanted, stored for 1 h in cold preservation solution, and heterotopically transplanted. 1 h after starting reperfusion, left ventricular (LV) pressure-volume relations and coronary blood flow (CBF) were assessed to evaluate early post-transplant graft function. After 1 h reperfusion, LV contractility, active relaxation and CBF were significantly (p < 0.05) improved in the gemfibrozil pretreated hearts compared to that of controls. Additionally, gemfibrozil treatment reduced nitro-oxidative stress and apoptosis, and improved cGMP-signalling in HTX. Pharmacological preconditioning with gemfibrozil reduces ischemia/reperfusion injury and preserves graft function in a rat HTX model, which could be the consequence of enhanced myocardial cGMP-signalling. Gemfibrozil might represent a useful tool for cardioprotection in the clinical setting of HTX surgery soon.
Collapse
Affiliation(s)
- Kálmán Benke
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Kökény
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | - Zoltán Szabolcs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Kalla M, Herring N, Paterson DJ. Cardiac sympatho-vagal balance and ventricular arrhythmia. Auton Neurosci 2016; 199:29-37. [PMID: 27590099 PMCID: PMC5334443 DOI: 10.1016/j.autneu.2016.08.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
A hallmark of cardiovascular disease is cardiac autonomic dysregulation. The phenotype of impaired parasympathetic responsiveness and sympathetic hyperactivity in experimental animal models is also well documented in large scale human studies in the setting of heart failure and myocardial infarction, and is predictive of morbidity and mortality. Despite advances in emergency revascularisation strategies for myocardial infarction, device therapy for heart failure and secondary prevention pharmacotherapies, mortality from malignant ventricular arrhythmia remains high. Patients at highest risk or those with haemodynamically significant ventricular arrhythmia can be treated with catheter ablation and implantable cardioverter defibrillators, but the morbidity and reduction in quality of life due to the burden of ventricular arrhythmia and shock therapy persists. Therefore, future therapies must aim to target the underlying pathophysiology that contributes to the generation of ventricular arrhythmia. This review explores recent advances in mechanistic research in both limbs of the autonomic nervous system and potential avenues for translation into clinical therapy. In addition, we also discuss the relationship of these findings in the context of the reported efficacy of current neuromodulatory strategies in the management of ventricular arrhythmia. We review advances in mechanistic research in the cardiac autonomic nervous system. This is discussed in relation to neuromodulatory therapy for ventricular arrhythmia. Neuromodulation therapies can influence both neurotransmitters and co-transmitters. This may therefore improve on conventional medical treatment.
Collapse
Affiliation(s)
| | - Neil Herring
- Corresponding author at: Burdon Sanderson Cardiac Science Centre, Dept. of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, OX13PT, UK.Burdon Sanderson Cardiac Science CentreDept. of Physiology, Anatomy and GeneticsUniversity of OxfordParks RoadOX13PTUK
| | | |
Collapse
|
12
|
Habecker BA, Anderson ME, Birren SJ, Fukuda K, Herring N, Hoover DB, Kanazawa H, Paterson DJ, Ripplinger CM. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease. J Physiol 2016; 594:3853-75. [PMID: 27060296 DOI: 10.1113/jp271840] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/15/2016] [Indexed: 12/12/2022] Open
Abstract
The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural-cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Physiology and Pharmacology, Department of Medicine Division of Cardiovascular Medicine and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Mark E Anderson
- Johns Hopkins Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Donald B Hoover
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | |
Collapse
|
13
|
Li D, Paterson DJ. Cyclic nucleotide regulation of cardiac sympatho-vagal responsiveness. J Physiol 2016; 594:3993-4008. [PMID: 26915722 DOI: 10.1113/jp271827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are now recognized as important intracellular signalling molecules that modulate cardiac sympatho-vagal balance in the progression of heart disease. Recent studies have identified that a significant component of autonomic dysfunction associated with several cardiovascular pathologies resides at the end organ, and is coupled to impairment of cyclic nucleotide targeted pathways linked to abnormal intracellular calcium handling and cardiac neurotransmission. Emerging evidence also suggests that cyclic nucleotide coupled phosphodiesterases (PDEs) play a key role limiting the hydrolysis of cAMP and cGMP in disease, and as a consequence this influences the action of the nucleotide on its downstream biological target. In this review, we illustrate the action of nitric oxide-CAPON signalling and brain natriuretic peptide on cGMP and cAMP regulation of cardiac sympatho-vagal transmission in hypertension and ischaemic heart disease. Moreover, we address how PDE2A is now emerging as a major target that affects the efficacy of soluble/particulate guanylate cyclase coupling to cGMP in cardiac dysautonomia.
Collapse
Affiliation(s)
- Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
14
|
Kalla M, Chotalia M, Coughlan C, Hao G, Crabtree MJ, Tomek J, Bub G, Paterson DJ, Herring N. Protection against ventricular fibrillation via cholinergic receptor stimulation and the generation of nitric oxide. J Physiol 2016; 594:3981-92. [PMID: 26752781 PMCID: PMC4794549 DOI: 10.1113/jp271588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Animal studies suggest an anti-fibrillatory action of the vagus nerve on the ventricle, although the exact mechanism is controversial. Using a Langendorff perfused rat heart, we show that the acetylcholine analogue carbamylcholine raises ventricular fibrillation threshold (VFT) and flattens the electrical restitution curve. The anti-fibrillatory action of carbamylcholine was prevented by the nicotinic receptor antagonist mecamylamine, inhibitors of neuronal nitric oxide synthase (nNOS) and soluble guanylyl cyclase (sGC), and can be mimicked by the nitric oxide (NO) donor sodium nitroprusside. Carbamylcholine increased NO metabolite content in the coronary effluent and this was prevented by mecamylamine. The anti-fibrillatory action of both carbamylcholine and sodium nitroprusside was ultimately dependent on muscarinic receptor stimulation as all effects were blocked by atropine. These data demonstrate a protective effect of carbamylcholine on VFT that depends upon both muscarinic and nicotinic receptor stimulation, where the generation of NO is likely to be via a neuronal nNOS-sGC dependent pathway. ABSTRACT Implantable cardiac vagal nerve stimulators are a promising treatment for ventricular arrhythmia in patients with heart failure. Animal studies suggest the anti-fibrillatory effect may be nitric oxide (NO) dependent, although the exact site of action is controversial. We investigated whether a stable analogue of acetylcholine could raise ventricular fibrillation threshold (VFT), and whether this was dependent on NO generation and/or muscarinic/nicotinic receptor stimulation. VFT was determined in Langendorff perfused rat hearts by burst pacing until sustained VF was induced. Carbamylcholine (CCh, 200 nmol l(-1) , n = 9) significantly (P < 0.05) reduced heart rate from 292 ± 8 to 224 ± 6 b.p.m. Independent of this heart rate change, CCh caused a significant increase in VFT (control 1.5 ± 0.3 mA, CCh 2.4 ± 0.4 mA, wash 1.1 ± 0.2 mA) and flattened the restitution curve (n = 6) derived from optically mapped action potentials. The effect of CCh on VFT was abolished by a muscarinic (atropine, 0.1 μmol l(-1) , n = 6) or a nicotinic receptor antagonist (mecamylamine, 10 μmol l(-1) , n = 6). CCh significantly increased NOx content in coronary effluent (n = 8), but not in the presence of mecamylamine (n = 8). The neuronal nitric oxide synthase inhibitor AAAN (N-(4S)-4-amino-5-[aminoethyl]aminopentyl-N'-nitroguanidine; 10 μmol l(-1) , n = 6) or soluble guanylate cyclase (sGC) inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; 10 μmol l(-1) , n = 6) prevented the rise in VFT with CCh. The NO donor sodium nitrprusside (10 μmol l(-1) , n = 8) mimicked the action of CCh on VFT, an effect that was also blocked by atropine (n = 10). These data demonstrate a protective effect of CCh on VFT that depends upon both muscarinic and nicotinic receptor stimulation, where the generation of NO is likely to be via a neuronal nNOS/sGC-dependent pathway.
Collapse
Affiliation(s)
- Manish Kalla
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Minesh Chotalia
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Charles Coughlan
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Guoliang Hao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Mark J Crabtree
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Jakub Tomek
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Gil Bub
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Beaumont E, Southerland EM, Hardwick JC, Wright GL, Ryan S, Li Y, KenKnight BH, Armour JA, Ardell JL. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction. Am J Physiol Heart Circ Physiol 2015; 309:H1198-206. [PMID: 26276818 PMCID: PMC4666924 DOI: 10.1152/ajpheart.00393.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022]
Abstract
This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions.
Collapse
Affiliation(s)
- Eric Beaumont
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Elizabeth M Southerland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | - Gary L Wright
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Shannon Ryan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Ying Li
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | - J Andrew Armour
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Medicine, University of California Los Angeles Health System, Los Angeles, California
| | - Jeffrey L Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Medicine, University of California Los Angeles Health System, Los Angeles, California
| |
Collapse
|
16
|
Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac innervation and sudden cardiac death. Circ Res 2015; 116:2005-19. [PMID: 26044253 PMCID: PMC4465108 DOI: 10.1161/circresaha.116.304679] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022]
Abstract
Afferent and efferent cardiac neurotransmission via the cardiac nerves intricately modulates nearly all physiological functions of the heart (chronotropy, dromotropy, lusitropy, and inotropy). Afferent information from the heart is transmitted to higher levels of the nervous system for processing (intrinsic cardiac nervous system, extracardiac-intrathoracic ganglia, spinal cord, brain stem, and higher centers), which ultimately results in efferent cardiomotor neural impulses (via the sympathetic and parasympathetic nerves). This system forms interacting feedback loops that provide physiological stability for maintaining normal rhythm and life-sustaining circulation. This system also ensures that there is fine-tuned regulation of sympathetic-parasympathetic balance in the heart under normal and stressed states in the short (beat to beat), intermediate (minutes to hours), and long term (days to years). This important neurovisceral/autonomic nervous system also plays a major role in the pathophysiology and progression of heart disease, including heart failure and arrhythmias leading to sudden cardiac death. Transdifferentiation of neurons in heart failure, functional denervation, cardiac and extracardiac neural remodeling has also been identified and characterized during the progression of disease. Recent advances in understanding the cellular and molecular processes governing innervation and the functional control of the myocardium in health and disease provide a rational mechanistic basis for the development of neuraxial therapies for preventing sudden cardiac death and other arrhythmias. Advances in cellular, molecular, and bioengineering realms have underscored the emergence of this area as an important avenue of scientific inquiry and therapeutic intervention.
Collapse
Affiliation(s)
- Keiichi Fukuda
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.).
| | - Hideaki Kanazawa
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.)
| | - Yoshiyasu Aizawa
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.)
| | - Jeffrey L Ardell
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.)
| | - Kalyanam Shivkumar
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.).
| |
Collapse
|
17
|
Na S, Kim OS, Ryoo S, Kweon TD, Choi YS, Shim HS, Oh YJ. Cervical Ganglion Block Attenuates the Progression of Pulmonary Hypertension via Nitric Oxide and Arginase Pathways. Hypertension 2014; 63:309-15. [DOI: 10.1161/hypertensionaha.113.01979] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been recognized that the sympathetic nervous system is activated in pulmonary arterial hypertension (PAH), and abnormal sympathetic hyperactivity leads to worsening of PAH via endothelial dysfunction. The purpose of this study was to examine whether sympathetic ganglion block (SGB) can treat PAH by increasing the availability of nitric oxide (NO). PAH was induced in rats by 50 mg/kg of subcutaneous monocrotaline. After 2 weeks, daily injections of ropivacaine into the left superior cervical ganglion were repeated for 14 days (monocrotaline-SGB group). Monocrotaline group received sham SGB with saline, whereas control group received saline instead of monocrotaline. PAH was evident in monocrotaline group, with right ventricular systolic pressures (47±4 mm Hg) that were higher than those of controls (17±2 mm Hg), whereas SGB significantly attenuated monocrotaline-induced PAH (35±4 mm Hg). The right/left ventricular mass ratios exhibited similar changes to those seen with right ventricular pressures. Heart rate variability showed significantly higher sympathetic activity in the monocrotaline group. Microscopy revealed a higher proportion of muscular arteries with thicker medial walls in the monocrotaline group, which was attenuated by SGB. Monocrotaline induced arginase hyperactivity, which was in turn decreased by SGB-induced endothelial NO synthase activation. SGB restored monocrotaline-induced hypoactivity of superoxide dismutase. In conclusion, SGB could suppress PAH and the remodeling of pulmonary arteries via inactivation of arginase and reciprocal elevation of NO bioavailability, thus attenuating disproportionate hyperactivation of the sympathetic nervous system.
Collapse
Affiliation(s)
- Sungwon Na
- From the Department of Anesthesiology and Pain Medicine (S.N., T.D.K., Y.S.C., Y.J.O.), Anesthesia and Pain Research Institute (S.N., T.D.K., Y.S.C., Y.J.O.), Severance Biomedical Science Institute (O.S.K.), and Department of Pathology (H.S.S.), Yonsei University College of Medicine, Seoul, Republic of Korea; and Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea (S.R.)
| | - Ok Soo Kim
- From the Department of Anesthesiology and Pain Medicine (S.N., T.D.K., Y.S.C., Y.J.O.), Anesthesia and Pain Research Institute (S.N., T.D.K., Y.S.C., Y.J.O.), Severance Biomedical Science Institute (O.S.K.), and Department of Pathology (H.S.S.), Yonsei University College of Medicine, Seoul, Republic of Korea; and Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea (S.R.)
| | - Sungwoo Ryoo
- From the Department of Anesthesiology and Pain Medicine (S.N., T.D.K., Y.S.C., Y.J.O.), Anesthesia and Pain Research Institute (S.N., T.D.K., Y.S.C., Y.J.O.), Severance Biomedical Science Institute (O.S.K.), and Department of Pathology (H.S.S.), Yonsei University College of Medicine, Seoul, Republic of Korea; and Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea (S.R.)
| | - Tae Dong Kweon
- From the Department of Anesthesiology and Pain Medicine (S.N., T.D.K., Y.S.C., Y.J.O.), Anesthesia and Pain Research Institute (S.N., T.D.K., Y.S.C., Y.J.O.), Severance Biomedical Science Institute (O.S.K.), and Department of Pathology (H.S.S.), Yonsei University College of Medicine, Seoul, Republic of Korea; and Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea (S.R.)
| | - Yong Seon Choi
- From the Department of Anesthesiology and Pain Medicine (S.N., T.D.K., Y.S.C., Y.J.O.), Anesthesia and Pain Research Institute (S.N., T.D.K., Y.S.C., Y.J.O.), Severance Biomedical Science Institute (O.S.K.), and Department of Pathology (H.S.S.), Yonsei University College of Medicine, Seoul, Republic of Korea; and Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea (S.R.)
| | - Hyo Sup Shim
- From the Department of Anesthesiology and Pain Medicine (S.N., T.D.K., Y.S.C., Y.J.O.), Anesthesia and Pain Research Institute (S.N., T.D.K., Y.S.C., Y.J.O.), Severance Biomedical Science Institute (O.S.K.), and Department of Pathology (H.S.S.), Yonsei University College of Medicine, Seoul, Republic of Korea; and Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea (S.R.)
| | - Young Jun Oh
- From the Department of Anesthesiology and Pain Medicine (S.N., T.D.K., Y.S.C., Y.J.O.), Anesthesia and Pain Research Institute (S.N., T.D.K., Y.S.C., Y.J.O.), Severance Biomedical Science Institute (O.S.K.), and Department of Pathology (H.S.S.), Yonsei University College of Medicine, Seoul, Republic of Korea; and Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea (S.R.)
| |
Collapse
|
18
|
Shanks J, Herring N. Peripheral cardiac sympathetic hyperactivity in cardiovascular disease: role of neuropeptides. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1411-20. [PMID: 24005254 PMCID: PMC3882692 DOI: 10.1152/ajpregu.00118.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/20/2013] [Indexed: 02/08/2023]
Abstract
High levels of sympathetic drive in several cardiovascular diseases including postmyocardial infarction, chronic congestive heart failure and hypertension are reinforced through dysregulation of afferent input and central integration of autonomic balance. However, recent evidence suggests that a significant component of sympathetic hyperactivity may also reside peripherally at the level of the postganglionic neuron. This has been studied in depth using the spontaneously hypertensive rat, an animal model of genetic essential hypertension, where larger neuronal calcium transients, increased release and impaired reuptake of norepinephrine in neurons of the stellate ganglia lead to a significant tachycardia even before hypertension has developed. The release of additional sympathetic cotransmitters during high levels of sympathetic drive can also have deleterious consequences for peripheral cardiac parasympathetic neurotransmission even in the presence of β-adrenergic blockade. Stimulation of the cardiac vagus reduces heart rate, lowers myocardial oxygen demand, improves coronary blood flow, and independently raises ventricular fibrillation threshold. Recent data demonstrates a direct action of the sympathetic cotransmitters neuropeptide Y (NPY) and galanin on the ability of the vagus to release acetylcholine and control heart rate. Moreover, there is as a strong correlation between plasma NPY levels and coronary microvascular function in patients with ST-elevation myocardial infarction being treated with primary percutaneous coronary intervention. Antagonists of the NPY receptors Y1 and Y2 may be therapeutically beneficial both acutely during myocardial infarction and also during chronic heart failure and hypertension. Such medications would be expected to act synergistically with β-blockers and implantable vagus nerve stimulators to improve patient outcome.
Collapse
Affiliation(s)
- Julia Shanks
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
19
|
Hardwick JC, Ryan SE, Beaumont E, Ardell JL, Southerland EM. Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction. Auton Neurosci 2013; 181:4-12. [PMID: 24220238 DOI: 10.1016/j.autneu.2013.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022]
Abstract
Myocardial infarction (MI) is associated with remodeling of the heart and neurohumoral control systems. The objective of this study was to define time-dependent changes in intrinsic cardiac (IC) neuronal excitability, synaptic efficacy, and neurochemical modulation following MI. MI was produced in guinea pigs by ligation of the coronary artery and associated vein on the dorsal surface of the heart. Animals were recovered for 4, 7, 14, or 50 days. Intracellular voltage recordings were obtained in whole mounts of the cardiac neuronal plexus to determine passive and active neuronal properties of IC neurons. Immunohistochemical analysis demonstrated an immediate and persistent increase in the percentage of IC neurons immunoreactive for neuronal nitric oxide synthase. Examination of individual neuronal properties demonstrated that after hyperpolarizing potentials were significantly decreased in both amplitude and time course of recovery at 7 days post-MI. These parameters returned to control values by 50 days post-MI. Synaptic efficacy, as determined by the stimulation of axonal inputs, was enhanced at 7 days post-MI only. Neuronal excitability in absence of agonist challenge was unchanged following MI. Norepinephrine increased IC excitability to intracellular current injections, a response that was augmented post-MI. Angiotensin II potentiation of norepinephrine and bethanechol-induced excitability, evident in controls, was abolished post-MI. This study demonstrates that MI induces both persistent and transient changes in IC neuronal functions immediately following injury. Alterations in the IC neuronal network, which persist for weeks after the initial insult, may lead to alterations in autonomic signaling and cardiac control.
Collapse
Affiliation(s)
- Jean C Hardwick
- Department of Biology, Ithaca College, Ithaca, NY 14850, United States.
| | - Shannon E Ryan
- Department of Biology, Ithaca College, Ithaca, NY 14850, United States
| | - Eric Beaumont
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Jeffrey L Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - E Marie Southerland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| |
Collapse
|
20
|
Abstract
There is continuing belief that cardiac parasympathetic postganglionic fibres are sparse or absent from the ventricles. This review of the literature shows that the supposition is a myth. Early studies considered that fine silver-stained fibres coursing amongst ventricle myocardial cells were most likely cardiac parasympathetic postganglionic fibres. The conclusions were later supported by acetyl cholinesterase staining using a method that appeared not to be associated with noradrenaline nerve fibres. The conclusion is critically examined in the light of several recent histological studies using the acetyl cholinesterase method and also a more definitive technique (CHAT), that suggest a widespread location of parasympathetic ganglia and a relatively dense parasympathetic innervation of ventricular muscle in a range of mammals including man. The many studies demonstrating acetylcholine release in the ventricle on vagal nerve stimulation and a high density of acetylcholine M2 receptors is in accord with this as are tests of ventricular performance from many physiological studies. Selective control of cardiac functions by anatomically segregated parasympathetic ganglia is discussed. It is argued that the influence of vagal stimulation on ventricular myocardial action potential refractory period, duration, force and rhythm is evidence that vagal fibres have close apposition to myocardial fibres. This is supported by clear evidence of accentuated antagonism between sympathetic activity and vagal activity in the ventricle and also by direct effects of vagal activity independent of sympathetic activity. The idea of differential control of atrial and ventricular physiology by vagal C and vagal B preganglionic fibres is examined as well as differences in chemical phenotypes and their function. The latter is reflected in medullary and supramedullary control. Reference is made to the importance of this knowledge to understanding the normal physiology of cardiac autonomic control and significance to pathology.
Collapse
Affiliation(s)
- J H Coote
- J. H. Coote: School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
21
|
The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability. J Mol Cell Cardiol 2011; 52:667-76. [PMID: 22172449 PMCID: PMC3314977 DOI: 10.1016/j.yjmcc.2011.11.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/06/2011] [Accepted: 11/28/2011] [Indexed: 02/06/2023]
Abstract
The autonomic phenotype of congestive cardiac failure is characterised by high sympathetic drive and impaired vagal tone, which are independent predictors of mortality. We hypothesize that impaired bradycardia to peripheral vagal stimulation following high-level sympathetic drive is due to sympatho-vagal crosstalk by the adrenergic co-transmitters galanin and neuropeptide-Y (NPY). Moreover we hypothesize that galanin acts similarly to NPY by reducing vagal acetylcholine release via a receptor mediated, protein kinase-dependent pathway. Prolonged right stellate ganglion stimulation (10 Hz, 2 min, in the presence of 10 μM metoprolol) in an isolated guinea pig atrial preparation with dual autonomic innervation leads to a significant (p < 0.05) reduction in the magnitude of vagal bradycardia (5 Hz) maintained over the subsequent 20 min (n = 6). Immunohistochemistry demonstrated the presence of galanin in a small number of tyrosine hydroxylase positive neurons from freshly dissected stellate ganglion tissue sections. Following 3 days of tissue culture however, most stellate neurons expressed galanin. Stellate stimulation caused the release of low levels of galanin and significantly higher levels of NPY into the surrounding perfusate (n = 6, using ELISA). The reduction in vagal bradycardia post sympathetic stimulation was partially reversed by the galanin receptor antagonist M40 after 10 min (1 μM, n = 5), and completely reversed with the NPY Y2 receptor antagonist BIIE 0246 at all time points (1 μM, n = 6). Exogenous galanin (n = 6, 50–500 nM) also reduced the heart rate response to vagal stimulation but had no effect on the response to carbamylcholine that produced similar degrees of bradycardia (n = 6). Galanin (500 nM) also significantly attenuated the release of 3H-acetylcholine from isolated atria during field stimulation (5 Hz, n = 5). The effect of galanin on vagal bradycardia could be abolished by the galanin receptor antagonist M40 (n = 5). Importantly the GalR1 receptor was immunofluorescently co-localised with choline acetyl-transferase containing neurons at the sinoatrial node. The protein kinase C inhibitor calphostin (100 nM, n = 6) abolished the effect of galanin on vagal bradycardia whilst the protein kinase A inhibitor H89 (500 nM, n = 6) had no effect. These results demonstrate that prolonged sympathetic activation releases the slowly diffusing adrenergic co-transmitter galanin in addition to NPY, and that this contributes to the attenuation in vagal bradycardia via a reduction in acetylcholine release. This effect is mediated by GalR1 receptors on vagal neurons coupled to protein kinase C dependent signalling pathways. The role of galanin may become more important following an acute injury response where galanin expression is increased.
Collapse
|
22
|
Sun L, Lu J, Yu XJ, Li DL, Xu XL, Wang B, Ren KY, Liu JK, Zang WJ. Adenine Sulfate Improves Cardiac Function and the Cardiac Cholinergic System After Myocardial Infarction in Rats. J Pharmacol Sci 2011; 115:205-213. [PMID: 21343668 DOI: 10.1254/jphs.10231fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022] Open
|
23
|
Herring N, Lee CW, Sunderland N, Wright K, Paterson DJ. Pravastatin normalises peripheral cardiac sympathetic hyperactivity in the spontaneously hypertensive rat. J Mol Cell Cardiol 2010; 50:99-106. [PMID: 20933519 PMCID: PMC3020274 DOI: 10.1016/j.yjmcc.2010.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/25/2010] [Accepted: 09/29/2010] [Indexed: 12/20/2022]
Abstract
Hypertension is associated with heightened cardiac sympathetic drive whilst statins reduce angiotensin II (ATII) signalling, superoxide anion production and increase nitric oxide bioavailability, events that can potentially reduce peripheral cardiac sympathetic neurotransmission. We therefore investigated whether pravastatin alters peripheral cardiac sympathetic control in the spontaneously hypertensive rat (SHR). SHRs (16–18 weeks) had significantly (p < 0.05) enhanced atrial 3H-norepinephrine (3H-NE) release to field stimulation compared to normotensive WKYs. 2-week pravastatin supplementation significantly reduced 3H-NE release to levels observed in the WKY. In-vivo, pravastatin lowered resting heart rate (HR) in the SHR despite not affecting arterial blood pressure or serum cholesterol. In SHR atria/right stellate ganglion preparations, the HR response to stellate stimulation (1, 3, and 5 Hz) was also significantly reduced by pravastatin whilst the HR response to exogenous NE (0.025–5 μmol) remained similar. The nitric oxide synthase (NOS) inhibitor l-NAME (1 mmol/l) increased 3H-NE release by similar amounts in atria from supplemented and non-supplemented SHRs, whilst Western blotting showed no difference in protein levels of nNOS, eNOS, guanylyl cyclase, or the NADPH oxidase subunits Gp91 and P40phox. Pravastatin significantly reduced cardiac ATII levels and angiotensin converting enzyme 1 and 2 expressions whilst protein levels of the ATII receptor (ATR1) remained unchanged in the SHR. Immunohistochemistry co-localised ATR1 with tyrosine hydroxylase positive neurons in the stellate ganglion. The ATR1 antagonist Losartan (5 μmol) equalised release of 3H-NE to comparable levels in supplemented and non-supplemented SHRs. These results suggest 2-week pravastatin treatment reduces cardiac ATII, and prevents its facilitatory effect on NE release thus normalising cardiac sympathetic hyper-responsiveness in SHRs.
Collapse
|
24
|
Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev 2010; 90:513-57. [PMID: 20393193 DOI: 10.1152/physrev.00007.2009] [Citation(s) in RCA: 431] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review examines how the sympathetic nervous system plays a major role in the regulation of cardiovascular function over multiple time scales. This is achieved through differential regulation of sympathetic outflow to a variety of organs. This differential control is a product of the topographical organization of the central nervous system and a myriad of afferent inputs. Together this organization produces sympathetic responses tailored to match stimuli. The long-term control of sympathetic nerve activity (SNA) is an area of considerable interest and involves a variety of mediators acting in a quite distinct fashion. These mediators include arterial baroreflexes, angiotensin II, blood volume and osmolarity, and a host of humoral factors. A key feature of many cardiovascular diseases is increased SNA. However, rather than there being a generalized increase in SNA, it is organ specific, in particular to the heart and kidneys. These increases in regional SNA are associated with increased mortality. Understanding the regulation of organ-specific SNA is likely to offer new targets for drug therapy. There is a need for the research community to develop better animal models and technologies that reflect the disease progression seen in humans. A particular focus is required on models in which SNA is chronically elevated.
Collapse
Affiliation(s)
- Simon C Malpas
- Department of Physiology and the Auckland Bioengineering Institute, University of Auckland and Telemetry Research Ltd., Auckland, New Zealand.
| |
Collapse
|
25
|
Long M, Yang L, Huang G, Liu L, Dong Y, Du Z, Tang A, Hu C, Gu R, Gao X, Tang L. Thrombin and its receptor enhance ST-segment elevation in acute myocardial infarction by activating the KATP channel. Mol Med 2010; 16:322-32. [PMID: 20386871 DOI: 10.2119/molmed.2010.00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/08/2010] [Indexed: 11/06/2022] Open
Abstract
ST-segment elevation is the major clinical criterion for committing patients with chest pain to have emergent coronary revascularizations; however, the mechanism responsible for ST-segment elevation is unknown. In a guinea pig model of ST-segment elevation acute myocardial infarction (AMI), local application of hirudin, a thrombin antagonist, significantly decreased AMI-induced ST-segment elevation in a dose-dependent manner. Hirudin-induced (5 antithrombin units [ATU]) decrease in ST elevation was reversed by 250 nmol/L thrombin receptor activator peptide (TRAP). TRAP (250 nmol/L [100 microL]) significantly induced ST-segment elevation in hearts without AMI. The TRAP effect was blocked by 4 mg/kg glibenclamide and 4 mg/kg HMR1098 and partially blocked by 3 mg/kg 5HD. Pinacidil (0.45 mg/kg) simulated the effect of TRAP (250 nmol/L [100 microL]) on hearts without AMI. Moreover, single-channel recordings showed that TRAP induced ATP-sensitive K+ channel (KATP channel) activity, and this effect was blocked by HMR1098 but not 5HD. Finally, TRAP significantly shortened the monophasic action potential (MAP) at 90% repolarization (MAP90) and epicardial MAP (EpiMAP) duration. These effects of TRAP were completely reversed by HMR1098 and partially reversed by 5HD. Thrombin and its receptor activation enhanced ST-segment elevation in an AMI model by activating the sarcolemmal KATP channel.
Collapse
Affiliation(s)
- Ming Long
- Division of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
O'Connor DM, O'Brien T. Nitric oxide synthase gene therapy: progress and prospects. Expert Opin Biol Ther 2009; 9:867-78. [PMID: 19463074 DOI: 10.1517/14712590903002047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
NOS gene therapy has been the focus of extensive research as dysfunction of this enzyme has been implicated in several cardiovascular diseases. Research has concentrated on comparing the effect of gene delivery of NOS isoforms (eNOS, iNOS and nNOS) in healthy and diseased animal models on intimal hyperplasia, restenosis, vascular tone and ischemia-reperfusion injury. Most results demonstrate therapeutic benefits following vascular gene delivery of all NOS in pre-clinical models of cardiovascular disease. eNOS has been shown to have particular promise as it promotes re-endothelialisation and inhibits intimal hyperplasia in injured blood vessels. The ultimate goal is to translate the benefit of NOS gene therapy in animal models into clinical practise. To develop NOS gene therapy for clinical use further work needs to be undertaken to improve delivery systems and vectors to minimise detrimental side-effects and enhance positive treatment outcomes. This review focuses on current research on NOS gene therapy in cardiovascular disease and identifies the next steps that would be necessary to lead to clinical trials.
Collapse
Affiliation(s)
- Deirdre M O'Connor
- REMEDI, NCBES, National University of Ireland, University Road, Galway, Ireland
| | | |
Collapse
|
27
|
Hardwick JC, Baran CN, Southerland EM, Ardell JL. Remodeling of the guinea pig intrinsic cardiac plexus with chronic pressure overload. Am J Physiol Regul Integr Comp Physiol 2009; 297:R859-66. [PMID: 19605763 DOI: 10.1152/ajpregu.00245.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic pressure overload (PO) is associated with cardiac hypertrophy and altered autonomic control of cardiac function, in which the latter may involve adaptations in central and/or peripheral cardiac neural control mechanisms. To evaluate the specific remodeling of the intrinsic cardiac nervous system following pressure overload, the descending thoracic aorta artery of the guinea pig was constricted approximately 20%, and the animals recovered for 9 wk. Thereafter, atrial neurons of the intrinsic cardiac plexus were isolated for electrophysiological and immunohistochemical analyses. Intracellular voltage recordings from intrinsic cardiac neurons demonstrated no significant changes in passive membrane properties or action potential depolarization compared with age-matched controls and sham-operated animals, but afterhyperpolarization duration was increased in PO animals. Neuronal excitability, as determined by the number of action potentials produced with depolarizing stimuli, was differentially increased in phasic neurons derived from PO animals in response to exogenously applied histamine compared with sham and age-matched controls. Conversely, pituitary adenylate cyclase-activating polypeptide-induced increases in intrinsic cardiac neuron evoked AP frequency were similar between control and PO animals. Immunohistochemical analysis demonstrated a twofold increase in the percentage of neurons immunoreactive for neuronal nitric oxide synthase in PO animals compared with control. The density of mast cells within the intrinsic cardiac plexus from PO animals was also increased twofold compared with preparations from control animals. These results indicate that congestive heart failure associated with chronic pressure overload induces a differential remodeling of intrinsic cardiac neurons and upregulation of neuronal responsiveness to specific neuromodulators.
Collapse
Affiliation(s)
- Jean C Hardwick
- Biology Dept., Ithaca College, 953 Danby Road, Ithaca, NY 14850, USA.
| | | | | | | |
Collapse
|
28
|
Wang L, Li D, Dawson TA, Paterson DJ. Long-term effect of neuronal nitric oxide synthase over-expression on cardiac neurotransmission mediated by a lentiviral vector. J Physiol 2009; 587:3629-37. [PMID: 19491240 DOI: 10.1113/jphysiol.2009.172866] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Short-term over-expression of neuronal nitric oxide synthase (nNOS) with adenoviral gene transfer into peripheral cardiac autonomic neurons can facilitate cholinergic neurotransmission, and inhibit sympathetic transmission, by regulating cyclic nucleotide-dependent pathways coupled to neuronal calcium entry. We tested the idea whether cardiac neuromodulation by nNOS could be sustained by long-term over-expression of the enzyme following lentiviral gene transfer. We developed a lentiviral vector with an elongation factor 1 (EF1alpha) promoter to drive nNOS or enhanced green fluorescent protein (eGFP) expression. Lenti.EF1alpha-nNOS or Lenti.EF1alpha-eGFP was transferred to the right atrium of Spague-Dawley (SD) rats and acetylcholine (ACh) or noradrenaline (NA) release to field stimulation was measured 4 months after gene transfer. Atria transduced with Lenti.EF1alpha-nNOS had higher nNOS expression compared to the atria treated with Lenti.EF1alpha-eGFP (P < 0.05). We also detected significant increases (P < 0.05) in atrial cGMP and cAMP levels in the same tissue. Immunohistochemistry revealed co-localisation of eGFP in intrinsic cholinergic neurons (choline acetyltransferase positive) and intrinsic adrenergic neurons (tyrosine hydroxylase positive) following gene transfer. nNOS-transduced animals displayed enhanced ACh release (P < 0.05) and reduced NA release (P < 0.05) compared to the eGFP-treated group. nNOS-specific inhibition reversed the enhanced ACh release. Persistent nNOS over-expression mediated by a lentiviral vector can modulate sympatho-vagal control of cardiac excitability. This approach may provide a new tool to target impaired cardiac autonomic phenotypes that are disrupted by several cardiovascular pathologies.
Collapse
Affiliation(s)
- Lijun Wang
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford Parks Road, Oxford, UK
| | | | | | | |
Collapse
|
29
|
Danson EJ, Li D, Wang L, Dawson TA, Paterson DJ. Targeting cardiac sympatho-vagal imbalance using gene transfer of nitric oxide synthase. J Mol Cell Cardiol 2009; 46:482-9. [PMID: 19166856 DOI: 10.1016/j.yjmcc.2008.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/14/2008] [Accepted: 12/21/2008] [Indexed: 11/27/2022]
Abstract
Heightened sympathetic excitation and diminished parasympathetic suppression of heart rate, cardiac contractility and vascular tone are all associated with cardiovascular diseases such as hypertension and ischemic heart disease. This phenotype often exists before these disease states have been established and is a strong correlate of mortality in the population. However, the causal role of the autonomic phenotype in the development and maintenance of hypertension and myocardial ischemia remains a subject of debate, as are the mechanisms responsible for regulating sympathovagal balance. Emerging evidence suggests oxidative stress and reactive oxygen species (such as nitric oxide (NO) and superoxide) play important roles in the modulation of autonomic balance, but so far the most important sites of action of these ubiquitous signaling molecules are unclear. In many cases, these mediators have opposing effects in separate tissues rendering conventional pharmacological approaches non-efficacious. Novel techniques have recently been used to augment these signaling pathways experimentally in a targeted fashion to central autonomic nuclei, cardiac neurons, and myocytes using gene transfer of NO synthase. This review article discusses these recent advances in the understanding of the roles of NO and its oxidative metabolites on autonomic imbalance in models of cardiovascular disease.
Collapse
Affiliation(s)
- E J Danson
- Department of Physiology, Burdon-Sanderson Cardiac Science Centre, Anatomy and Genetics University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
30
|
Abstract
The traditional model of efferent cardiac noradrenaline and acetylcholine release being driven solely via brainstem integration of circulatory reflex afferent input needs to be modified in the light of the discovery of numerous local cardiac factors that impact on peripheral neuronal neurotransmitter release. These neuromodulators can be intrinsic to sympathetic ganglia or vagal neurons (such as neuronal nitric oxide synthase), act as cotransmitters between these neuronal populations (such as neuropeptide Y) or are released from the myocardium itself to act on neurons in a paracrine manner (such as natriuretic peptides). Both myocardial infarction and congestive heart failure are characterized by enhanced regulation of these neuromodulators. This review will focus on recent evidence that nitric oxide, natriuretic peptides and neuropeptide Y act by converging on neuronal cyclic nucleotide-dependent pathways to alter the autonomic phenotype in both health and disease.
Collapse
Affiliation(s)
- Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|