1
|
Yoo TK, Han KD, Rhee EJ, Lee WY. Impact of mental disorders on the risk of heart failure among Korean patients with diabetes: a cohort study. Cardiovasc Diabetol 2023; 22:115. [PMID: 37208672 DOI: 10.1186/s12933-023-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/19/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Few studies have assessed the correlation between coexisting mental disorders in participants with diabetes mellitus (DM) and the risk of heart failure (HF). Herein, we conducted a cohort study to determine the association between the accumulation of mental disorders in participants with DM and the risk of HF. METHODS The Korean National Health Insurance Service records were assessed. 2,447,386 adults with DM who underwent health screening between 2009 and 2012 were analyzed. Participants with major depressive disorder, bipolar disorder, schizophrenia, insomnia, or anxiety disorders were included. In addition, participants were categorized based on the number of coexisting mental disorders. Each participant was followed until December 2018 or until the onset of HF. Cox proportional hazard modelling with confounding factors adjustment was conducted. In addition, a competing risk analysis was conducted. Subgroup analysis assessed the impact of clinical variables on the association between the accumulation of mental disorders and the risk of HF. RESULTS The median follow-up duration was 7.09 years. The accumulation of mental disorders was associated with a risk of HF (zero mental disorder (0), reference; 1 mental disorder, adjusted hazard ratio (aHR): 1.222, 95% confidence intervals (CI): 1.207-1.237; 2 mental disorders, aHR: 1.426, CI: 1.403-1.448; ≥3 mental disorders, aHR: 1.667, CI: 1.632-1.70. In the subgroup analysis, the strength of association was the strongest in the younger age group (< 40 years, 1 mental disorder, aHR 1.301, CI 1.143-1.481; ≥2 mental disorders, aHR 2.683, CI 2.257-3.190; 40-64 years, 1 mental disorder, aHR 1.289, CI 1.265-1.314; ≥2 mental disorders, aHR 1.762, CI 1.724-1.801; ≥65 years, 1 mental disorder, aHR 1.164, CI 1.145-1.183; ≥2 mental disorders, aHR 1.353, CI 1.330-1.377; Pinter<0.001). In addition, income, BMI, hypertension, chronic kidney disease, history of cardiovascular disease, insulin use, and duration of DM showed significant interactions. CONCLUSIONS Comorbid mental disorders in participants with DM are associated with an increased risk of HF. In addition, the association was stronger in a younger age group. Participants with DM and mental disorders should be monitored with increased frequency for signs of HF; for which they have a higher risk than the general population.
Collapse
Affiliation(s)
- Tae Kyung Yoo
- Department of Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Navia-Pelaez JM, Silva Dias MT, Ariza Orellano LA, Campos GP, Alvarez-Leite J, Campos PP, Aggum Capettini LS. Dual effect of amitriptyline in the control of vascular tone: Direct blockade of calcium channel in smooth muscle cells and reduction of TLR4-dependent NO production in endothelial cells. Eur J Pharmacol 2022; 934:175255. [PMID: 36088982 DOI: 10.1016/j.ejphar.2022.175255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND PURPOSE Amitriptyline (AM) is a classical and typical tricyclic antidepressant drug. Despite its well-known effects on the nervous system, it has been described to work as a TLR4 antagonist and several clinical works suggested some unexpected cardiovascular effects. The role of amitriptyline on vascular tone is not clear, thus we hypothesized that amitriptyline has a double effect on vascular tone by both endothelial TLR4-dependent nitric oxide down-regulation and calcium channel blockade in smooth muscle cells. EXPERIMENTAL APPROACH Changes in isometric tension were recorded on a wire myograph. NO production was evaluated by fluorescence microscopy and flow cytometry in the mouse aorta and EAhy926 cells using DAF fluorescence intensity. Calcium influx was evaluated in A7r5 cells by flow cytometry. Western blot was used to analyze eNOS and nNOS phosphorylation. KEY RESULTS AM reduced PE-induced contraction by calcium influx diminution in smooth muscle cells (F/F0 = 225.6 ± 15.9 and 118.6 ± 17.6 to CT and AM, respectively). AM impaired Ach-dependent vasodilation (Emax = 95.8 ± 1.4; 78.1 ± 1.8; 60.4 ± 2.9 and -7.4 ± 1.0 for CT, 0.01, 0,1 and 1 μmol/L AM, respectively) through reduction of calcium influx and NO availability and TLR4 antagonism in a concentration-dependent manner. AM or TLR4 gene deletion significantly reduced NO production (Fluorescence = 9503 ± 871.7, 2561 ± 282, 4771 ± 728 and 1029 ± 103 to CT, AM, TLR4-/- and AM + TLR4-/-, respectively) by an increase in nNOSser852 and reduction in eNOSser1177 phosphorylation in endothelial cells. CONCLUSIONS AND IMPLICATIONS Our data show that amitriptyline impaired vascular function through two different mechanisms: blockade of TLR4 in endothelial cells and consequent decrease in NO production and calcium influx reduction in smooth muscle and endothelial cells. We also suggest, for the first time, nNOS activity reduction by AM in non-neuronal cells.
Collapse
Affiliation(s)
- Juliana Maria Navia-Pelaez
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil; Department of Medicine. University of California San Diego, Biomedical Sciences Building, Room 1081 9500 Gilman Drive, La Jolla, CA, 92093-0682, USA.
| | - Melissa Tainan Silva Dias
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| | - Gianne Paul Campos
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Paula Peixoto Campos
- Department of General Pathology, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| | - Luciano Santos Aggum Capettini
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Boikov SI, Sibarov DA, Karelina TV, Shestakova NN, Antonov SM. The Role of Ryanodine and IP3-receptors
in Calcium Responses to Tricyclic Antidepressants in Rat Neocortical
Neurons. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Abstract
Amitriptyline was the second tricyclic antidepressant to appear on the market for major depressive disorder under the brand name Elavil in 1961. Since its emergence, amitriptyline has been an effective therapeutic in various disease states and disorders but has also been a concerning source of cardiotoxicity. Amitriptyline inhibits serotonin and norepinephrine reuptake as well as produces off-target activity at histaminergic, muscarinic, and various other receptors. Its role as a modulator of monoamines helped further establish the monoamine theory to understand various mood disorders, paving the way for the now more common selective serotonin/norepinephrine reuptake inhibitors. In this review, we will discuss amitriptyline's synthesis, manufacturing information, drug metabolism, pharmacology, adverse effects, and its history and importance in therapy to present amitriptyline as a true classic in chemical neuroscience.
Collapse
Affiliation(s)
- Elliot W. McClure
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - R. Nathan Daniels
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
5
|
Ramos-Franco J, Fill M. Approaching ryanodine receptor therapeutics from the calcin angle. J Gen Physiol 2018; 147:369-73. [PMID: 27114611 PMCID: PMC4845691 DOI: 10.1085/jgp.201611599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 11/23/2022] Open
Affiliation(s)
- Josefina Ramos-Franco
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612
| | - Michael Fill
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
6
|
Lu T, Chou CT, Liang WZ, Kuo CC, Chen IL, Wang JL, Jan CR. Amitriptyline modulated Ca2+ signaling and induced Ca2+-independent cell viability in human osteosarcoma cells. Hum Exp Toxicol 2017; 37:125-134. [DOI: 10.1177/0960327117693070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amitriptyline is a widely used tricyclic antidepressant, which acts primarily as a serotonin–norepinephrine reuptake inhibitor. This study examined the effect of amitriptyline on Ca2+ homeostasis and its related mechanism in MG63 human osteosarcoma cells. Amitriptyline evoked cytosolic-free Ca2+ concentrations ([Ca2+]i) rises concentration dependently. Amitriptyline-evoked Ca2+ entry was confirmed by Mn2+-induced quench of fura-2 fluorescence. This entry was inhibited by Ca2+ entry modulators nifedipine, econazole, SKF96365, the protein kinase C (PKC) activator phorbol 12-myristate 13 acetate but was not affected by the PKC inhibitor GF109203X. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) inhibited amitriptyline-evoked [Ca2+]i rises by 95%. Conversely, treatment with amitriptyline abolished TG-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 inhibited amitriptyline-evoked [Ca2+]i rises by 70%. Amitriptyline killed cells at 200–500 μM in a concentration-dependent fashion. Chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid/AM did not reverse amitriptyline-induced cytotoxicity. Collectively, our data suggest that in MG63 cells, amitriptyline induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-regulated store-operated Ca2+ entry. Amitriptyline also induced Ca2+-disassociated cell death.
Collapse
Affiliation(s)
- T Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-T Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - W-Z Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-C Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - I-L Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - J-L Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - C-R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Nebivolol suppresses cardiac ryanodine receptor-mediated spontaneous Ca2+ release and catecholaminergic polymorphic ventricular tachycardia. Biochem J 2016; 473:4159-4172. [PMID: 27623776 DOI: 10.1042/bcj20160620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
Abstract
β-Blockers are a standard treatment for heart failure and cardiac arrhythmias. There are ∼30 commonly used β-blockers, representing a diverse class of drugs with different receptor affinities and pleiotropic properties. We reported that among 14 β-blockers tested previously, only carvedilol effectively suppressed cardiac ryanodine receptor (RyR2)-mediated spontaneous Ca2+ waves during store Ca2+ overload, also known as store overload-induced Ca2+ release (SOICR). Given the critical role of SOICR in arrhythmogenesis, it is of importance to determine whether there are other β-blockers that suppress SOICR. Here, we assessed the effect of other commonly used β-blockers on RyR2-mediated SOICR in HEK293 cells, using single-cell Ca2+ imaging. Of the 13 β-blockers tested, only nebivolol, a β-1-selective β-blocker with nitric oxide synthase (NOS)-stimulating action, effectively suppressed SOICR. The NOS inhibitor (N-nitro-l-arginine methyl ester) had no effect on nebivolol's SOICR inhibition, and the NOS activator (histamine or prostaglandin E2) alone did not inhibit SOICR. Hence, nebivolol's SOICR inhibition was independent of NOS stimulation. Like carvedilol, nebivolol reduced the opening of single RyR2 channels and suppressed spontaneous Ca2+ waves in intact hearts and catecholaminergic polymorphic ventricular tachycardia (CPVT) in the mice harboring a RyR2 mutation (R4496C). Interestingly, a non-β-blocking nebivolol enantiomer, (l)-nebivolol, also suppressed SOICR and CPVT without lowering heart rate. These data indicate that nebivolol, like carvedilol, possesses a RyR2-targeted action that suppresses SOICR and SOICR-evoked VTs. Thus, nebivolol represents a promising agent for Ca2+-triggered arrhythmias.
Collapse
|
8
|
Bovo E, Martin JL, Tyryfter J, de Tombe PP, Zima AV. R-CEPIA1er as a new tool to directly measure sarcoplasmic reticulum [Ca] in ventricular myocytes. Am J Physiol Heart Circ Physiol 2016; 311:H268-75. [PMID: 27233762 PMCID: PMC4967208 DOI: 10.1152/ajpheart.00175.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
In cardiomyocytes, [Ca] within the sarcoplasmic reticulum (SR; [Ca]SR) partially determines the amplitude of cytosolic Ca transient that, in turn, governs myocardial contraction. Therefore, it is critical to understand the molecular mechanisms that regulate [Ca]SR handling. Until recently, the best approach available to directly measure [Ca]SR was to use low-affinity Ca indicators (e.g., Fluo-5N). However, this approach presents several limitations, including nonspecific cellular localization, dye extrusion, and species limitation. Recently a new genetically encoded family of Ca indicators has been generated, named Ca-measuring organelle-entrapped protein indicators (CEPIA). Here, we tested the red fluorescence SR-targeted Ca sensor (R-CEPIA1er) as a tool to directly measure [Ca]SR dynamics in ventricular myocytes. Infection of rabbit and rat ventricular myocytes with an adenovirus expressing the R-CEPIA1er gene displayed prominent localization in the SR and nuclear envelope. Calibration of R-CEPIA1er in myocytes resulted in a Kd of 609 μM, suggesting that this sensor is sensitive in the whole physiological range of [Ca]SR [Ca]SR dynamics measured with R-CEPIA1er were compared with [Ca]SR measured with Fluo5-N. We found that both the time course of the [Ca]SR depletion and fractional SR Ca release induced by an action potential were similar between these two Ca sensors. R-CEPIA1er fluorescence did not decline during experiments, indicating lack of dye extrusion or photobleaching. Furthermore, measurement of [Ca]SR with R-CEPIA1er can be combined with cytosolic [Ca] measurements (with Fluo-4) to obtain more detailed information regarding Ca handling in cardiac myocytes. In conclusion, R-CEPIA1er is a promising tool that can be used to measure [Ca]SR dynamics in myocytes from different animal species.
Collapse
Affiliation(s)
- Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Jollyn Tyryfter
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| |
Collapse
|
9
|
Monroe DJ, Meehan JT, Schandl CA. Sudden Cardiac Death in a Young Man with Migraine-associated Arrhythmia. J Forensic Sci 2015; 60:1633-6. [DOI: 10.1111/1556-4029.12836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/03/2014] [Accepted: 10/23/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Darren J. Monroe
- Department of Pathology and Laboratory Medicine; Medical University of South Carolina; 171 Ashley Avenue, MSC-908 Charleston SC 29425
| | - John T. Meehan
- Division of Cardiology; Medical University of South Carolina; 171 Ashley Avenue, MSC-908 Charleston SC 29425
| | - Cynthia A. Schandl
- Department of Pathology and Laboratory Medicine; Medical University of South Carolina; 171 Ashley Avenue, MSC-908 Charleston SC 29425
| |
Collapse
|
10
|
Lee S, Hutchinson M, Staikopoulos V, Saint D. Amitriptyline pharmacologically preconditions rat hearts against cardiac ischemic–reperfusion injury. Int J Cardiol 2015; 190:353-9. [DOI: 10.1016/j.ijcard.2015.04.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/16/2015] [Accepted: 04/03/2015] [Indexed: 11/16/2022]
|
11
|
Dwyer DS, Aamodt E, Cohen B, Buttner EA. Drug elucidation: invertebrate genetics sheds new light on the molecular targets of CNS drugs. Front Pharmacol 2014; 5:177. [PMID: 25120487 PMCID: PMC4112795 DOI: 10.3389/fphar.2014.00177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/09/2014] [Indexed: 02/02/2023] Open
Abstract
Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents, and gap junctions. The general approach reviewed in this article has advanced our knowledge about important drugs for CNS disorders and can guide future drug discovery efforts.
Collapse
Affiliation(s)
- Donard S. Dwyer
- Department of Psychiatry–Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-ShreveportShreveport, LA, USA
| | - Eric Aamodt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-ShreveportShreveport, LA, USA
| | - Bruce Cohen
- Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA
- Mailman Research Center, McLean HospitalBelmont, MA, USA
| | - Edgar A. Buttner
- Mailman Research Center, McLean HospitalBelmont, MA, USA
- Department of Neurology–Department of Psychiatry, McLean Hospital, Harvard Medical SchoolBelmont, MA, USA
| |
Collapse
|
12
|
Shareef MA, Anwer LA, Poizat C. Cardiac SERCA2A/B: Therapeutic targets for heart failure. Eur J Pharmacol 2014; 724:1-8. [DOI: 10.1016/j.ejphar.2013.12.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023]
|
13
|
Potential role of cardiac calsequestrin in the lethal arrhythmic effects of cocaine. Drug Alcohol Depend 2013; 133:344-51. [PMID: 23876860 PMCID: PMC4097383 DOI: 10.1016/j.drugalcdep.2013.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cocaine-related deaths are continuously rising and its overdose is often associated with lethal cardiotoxic effects. METHODS AND RESULTS Our approach, employing isothermal titration calorimetry (ITC) and light scattering in parallel, has confirmed the significant affinity of human cardiac calsequestrin (CASQ2) for cocaine. Calsequestrin (CASQ) is a major Ca(2+)-storage protein within the sarcoplasmic reticulum (SR) of both cardiac and skeletal muscles. CASQ acts as a Ca(2+) buffer and Ca(2+)-channel regulator through its unique Ca(2+)-dependent oligomerization. Equilibrium dialysis and atomic absorption spectroscopy experiments illustrated the perturbational effect of cocaine on CASQ2 polymerization, resulting in substantial reduction of its Ca(2+)-binding capacity. We also confirmed the accumulation of cocaine in rat heart tissue and the substantial effects cocaine has on cultured C2C12 cells. The same experiments were performed with methamphetamine as a control, which displayed neither affinity for CASQ2 nor any significant effects on its function. Since cocaine did not have any direct effect on the Ca(2+)-release channel judging from our single channel recordings, these studies provide new insights into how cocaine may interfere with the normal E-C coupling mechanism with lethal arrhythmogenic consequences. CONCLUSION We propose that cocaine accumulates in SR through its affinity for CASQ2 and affects both SR Ca(2+) storage and release by altering the normal CASQ2 Ca(2+)-dependent polymerization. By this mechanism, cocaine use could produce serious cardiac problems, especially in people who have genetically-impaired CASQ2, defects in other E-C coupling components, or compromised cocaine metabolism and clearance.
Collapse
|
14
|
Fauconnier J, Roberge S, Saint N, Lacampagne A. Type 2 ryanodine receptor: A novel therapeutic target in myocardial ischemia/reperfusion. Pharmacol Ther 2013; 138:323-32. [DOI: 10.1016/j.pharmthera.2013.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
15
|
Abstract
Calsequestrin is the most abundant Ca-binding protein of the specialized endoplasmic reticulum found in muscle, the sarcoplasmic reticulum (SR). Calsequestrin binds Ca with high capacity and low affinity and importantly contributes to the mobilization of Ca during each contraction both in skeletal and cardiac muscle. Surprisingly, mutations in the gene encoding the cardiac isoform of calsequestrin (Casq2) have been associated with an inherited form of ventricular arrhythmia triggered by emotional or physical stress termed catecholaminergic polymorphic ventricular tachycardia (CPVT). Despite normal cardiac contractility and normal resting ECG, CPVT patients present with a high risk of sudden death at a young age. Here, we review recent new insights regarding the role of calsequestrin in genetic and acquired arrhythmia disorders. Mouse models of CPVT have shed light on the pathophysiological mechanism underlying CPVT. Casq2 is not only a Ca-storing protein as initially hypothesized, but it has a far more complex function in Ca handling and regulating SR Ca release channels. The functional importance of Casq2 interactions with other SR proteins and the importance of alterations in Casq2 trafficking are also being investigated. Reports of altered Casq2 trafficking in animal models of acquired heart diseases such as heart failure suggest that Casq2 may contribute to arrhythmia risk beyond genetic forms of Casq2 dysfunction.
Collapse
Affiliation(s)
- Michela Faggioni
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0575, USA
| | | |
Collapse
|
16
|
Porta M, Zima AV, Nani A, Diaz-Sylvester PL, Copello JA, Ramos-Franco J, Blatter LA, Fill M. Single ryanodine receptor channel basis of caffeine's action on Ca2+ sparks. Biophys J 2011; 100:931-8. [PMID: 21320437 DOI: 10.1016/j.bpj.2011.01.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 01/03/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022] Open
Abstract
Caffeine (1, 3, 7-trimethylxanthine) is a widely used pharmacological agonist of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel. It is also a well-known stimulant that can produce adverse side effects, including arrhythmias. Here, the action of caffeine on single RyR2 channels in bilayers and Ca(2+) sparks in permeabilized ventricular cardiomyocytes is defined. Single RyR2 caffeine activation depended on the free Ca(2+) level on both sides of the channel. Cytosolic Ca(2+) enhanced RyR2 caffeine affinity, whereas luminal Ca(2+) essentially scaled maximal caffeine activation. Caffeine activated single RyR2 channels in diastolic quasi-cell-like solutions (cytosolic MgATP, pCa 7) with an EC(50) of 9.0 ± 0.4 mM. Low-dose caffeine (0.15 mM) increased Ca(2+) spark frequency ∼75% and single RyR2 opening frequency ∼150%. This implies that not all spontaneous RyR2 openings during diastole are associated with Ca(2+) sparks. Assuming that only the longest openings evoke sparks, our data suggest that a spark may result only when a spontaneous single RyR2 opening lasts >6 ms.
Collapse
Affiliation(s)
- Maura Porta
- Department of Physiology, Midwestern University, Downers Grove, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pre-clinical study of 21 approved drugs in the mdx mouse. Neuromuscul Disord 2011; 21:313-27. [PMID: 21392993 DOI: 10.1016/j.nmd.2011.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
Abstract
Duchenne muscular dystrophy, a genetic disease caused by the absence of functional dystrophin, remains without adequate treatment. Although great hopes are attached to gene and cell therapies, identification of active small molecules remains a valid option for new treatments. We have studied the effect of 20 approved pharmaceutical compounds on the muscles of dystrophin-deficient mdx5Cv mice. These compounds were selected as the result of a prior screen of 800 approved molecules on a dystrophin mutant of the invertebrate animal model Cænorhabditis elegans. Drugs were administered to the mice through maternal feeding since 2weeks of life and mixed in their food after the 3rd week of life. The effects of the drugs on mice were evaluated both at 6weeks and 16weeks. Each drug was tested at two concentrations. Prednisone was added to the molecule list as a positive control. To investigate treatment efficiency, more than 30 histological, biochemical and functional parameters were recorded. This extensive study reveals that tricyclics (Imipramine and Amitriptyline) are beneficial to the fast muscles of mdx mice. It also highlights a great variability of responses according to time, muscles and assays.
Collapse
|
18
|
Potential adverse interaction of human cardiac calsequestrin. Eur J Pharmacol 2010; 646:12-21. [PMID: 20713040 DOI: 10.1016/j.ejphar.2010.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/20/2010] [Accepted: 08/04/2010] [Indexed: 11/21/2022]
Abstract
Calsequestrin (CASQ) is a major Ca(2+) storage protein within the sarcoplasmic reticulum (SR) of both cardiac and skeletal muscles. CASQ reportedly acts as a Ca(2+) buffer and Ca(2+)-channel regulator through its unique Ca(2+)-dependent oligomerization, maintaining the free Ca(2+) concentration at a low level (0.5-1mM) and the stability of SR Ca(2+) releases. Our approach, employing isothermal titration calorimetry and light scattering in parallel, has provided valuable information about the affinity of human cardiac CASQ (hCASQ2) for a variety of drugs, which have been associated with heart- or muscle-related side effects. Those strongly binding drugs included phenothiazines, anthracyclines and Ca(2+) channel blockers, such as trifluoperazine, thioridazine, doxorubicin, daunorubicin, amlodipine and verapamil, having an average affinity of ~18 μM. They exhibit an inhibitory effect on in vitro Ca(2+)-dependent polymerization of hCASQ2 in a manner proportional to their binding affinity. Therefore accumulation of such drugs in the SR could significantly hinder the Ca(2+)-buffering capacity of the SR and/or the regulation of the Ca(2+) channel, RyR2. These effects could result in serious cardiac problems in people who have genetically impaired hCASQ2, defects in other E-C coupling components or problems with metabolism and clearance of those drugs.
Collapse
|
19
|
Howell BA, Chauhan A. A Physiologically Based Pharmacokinetic (PBPK) Model for Predicting the Efficacy of Drug Overdose Treatment With Liposomes in Man. J Pharm Sci 2010; 99:3601-19. [DOI: 10.1002/jps.22115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Abstract
Toxicity resulting from prescription drugs such as tricyclic antidepressants and cardioactive steroids, as well as drugs of abuse and exposure to environmental chemicals, represents a major need for detoxification treatments. Particles and colloids, antibody fragments (Fab), and indirect treatment methods such as macroemulsions, are currently being developed or employed as detoxification therapies. Colloids, particles, and protein fragments typically mitigate toxicity by binding to the toxin and reducing its concentration in vital organs. Indirect methods such as macroemulsions and sodium bicarbonate act directly on the affected organs, rather than the toxin. In this review, key design parameters (i.e. binding affinity, biocompatibility, pharmacokinetics) are discussed for each type of detoxification treatment. In addition, some of the latest research in each area is reviewed.
Collapse
Affiliation(s)
| | - Anuj Chauhan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-352-392-2592; Fax: +1-352-392-9513
| |
Collapse
|
21
|
Berlot G, Vergolini A, Calderan C. Early and prolonged ECG alterations resembling a myocardial injury after severe amitriptyline poisoning. HSR PROCEEDINGS IN INTENSIVE CARE & CARDIOVASCULAR ANESTHESIA 2010; 2:221-4. [PMID: 23441005 PMCID: PMC3484585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence of cardiovascular toxicity is present in the majority of tricyclic antidepressant overdoses. We report the case of a 63-year-old woman admitted to our department with a severe amitriptyline poisoning. The ECG at admission showed a pattern mimicking an acute anteroseptal subepicardial infarction. This pattern persisted for 11 days. Myocardial enzymes and echocardiographic findings never confirmed an ischemic event. At discharge, the ECG returned normal without cardiac or neurologic sequelae. Our experience suggest that after severe tricyclic antidepressant ingestion, ECG alterations resembling myocardial injury may occur early and last for a longer period than previously reported.
Collapse
|
22
|
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited disease characterized by physical or emotional stress-induced ventricular arrhythmias in the absence of any structural heart disease or QT prolongation. Thus far, mutations in genes encoding the sarcoplasmic reticulum Ca(2+) release channel (RYR2) and the sarcoplasmic reticulum Ca(2+) binding protein cardiac calsequestrin (CASQ2) have been identified in CPVT patients. Here, we review the role of cardiac calsequestrin in health and disease, with a particular focus on how calsequestrin deficiency can cause arrhythmia susceptibility. Clinical implications and a promising new drug therapy for CPVT are discussed.
Collapse
Affiliation(s)
- Nagesh Chopra
- Department of Medicine, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0575, USA
| | | |
Collapse
|
23
|
Qin J, Zima AV, Porta M, Blatter LA, Fill M. Trifluoperazine: a rynodine receptor agonist. Pflugers Arch 2009; 458:643-51. [PMID: 19277699 DOI: 10.1007/s00424-009-0658-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 02/24/2009] [Indexed: 11/28/2022]
Abstract
Trifluoperazine (TFP), a phenothiazine, is a commonly used antipsychotic drug whose therapeutic effects are attributed to its central anti-adrenergic and anti-dopaminergic actions. However, TFP is also a calmodulin (CaM) antagonist and alters the Ca(2+) binding properties of calsequestrin (CSQ). The CaM and CSQ proteins are known modulators of sarcoplasmic reticulum (SR) Ca(2+) release in ventricular myocytes. We explored TFP actions on cardiac SR Ca(2+) release in cells and single type-2 ryanodine receptor (RyR2) channel activity in bilayers. In intact and permeabilized ventricular myocytes, TFP produced an initial activation of RyR2-mediated SR Ca(2+) release and over time depleted SR Ca(2+) content. At the single channel level, TFP or nortryptiline (NRT; a tricyclic antidepressant also known to modify CSQ Ca(2+) binding) increased the open probability (Po) of CSQ-free channels with an EC(50) of 5.2 microM or 8.9 microM (respectively). This Po increase was due to elevated open event frequency at low drug concentrations while longer mean open events sustained Po at higher drug concentrations. Activation of RyR2 by TFP occurred in the presence or absence of CaM. TFP may also inhibit SR Ca uptake as well as increase RyR2 opening. Our results suggest TFP and NRT can alter RyR2 function by interacting with the channel protein directly, independent of its actions on CSQ or CaM. This direct action may contribute to the clinical adverse cardiac side effects associated with these drugs.
Collapse
Affiliation(s)
- Jia Qin
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison Ave, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|