1
|
Brennan S, Chen S, Makwana S, Esposito S, McGuinness LR, Alnaimi AIM, Sims MW, Patel M, Aziz Q, Ojake L, Roberts JA, Sharma P, Lodwick D, Tinker A, Barrett-Jolley R, Dart C, Rainbow RD. Identification and characterisation of functional K ir6.1-containing ATP-sensitive potassium channels in the cardiac ventricular sarcolemmal membrane. Br J Pharmacol 2024; 181:3380-3400. [PMID: 38763521 DOI: 10.1111/bph.16390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND AND PURPOSE The canonical Kir6.2/SUR2A ventricular KATP channel is highly ATP-sensitive and remains closed under normal physiological conditions. These channels activate only when prolonged metabolic compromise causes significant ATP depletion and then shortens the action potential to reduce contractile activity. Pharmacological activation of KATP channels is cardioprotective, but physiologically, it is difficult to understand how these channels protect the heart if they only open under extreme metabolic stress. The presence of a second KATP channel population could help explain this. Here, we characterise the biophysical and pharmacological behaviours of a constitutively active Kir6.1-containing KATP channel in ventricular cardiomyocytes. EXPERIMENTAL APPROACH Patch-clamp recordings from rat ventricular myocytes in combination with well-defined pharmacological modulators was used to characterise these newly identified K+ channels. Action potential recording, calcium (Fluo-4) fluorescence measurements and video edge detection of contractile function were used to assess functional consequences of channel modulation. KEY RESULTS Our data show a ventricular K+ conductance whose biophysical characteristics and response to pharmacological modulation were consistent with Kir6.1-containing channels. These Kir6.1-containing channels lack the ATP-sensitivity of the canonical channels and are constitutively active. CONCLUSION AND IMPLICATIONS We conclude there are two functionally distinct populations of ventricular KATP channels: constitutively active Kir6.1-containing channels that play an important role in fine-tuning the action potential and Kir6.2/SUR2A channels that activate with prolonged ischaemia to impart late-stage protection against catastrophic ATP depletion. Further research is required to determine whether Kir6.1 is an overlooked target in Comprehensive in vitro Proarrhythmia Assay (CiPA) cardiac safety screens.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Shen Chen
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Samir Makwana
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Simona Esposito
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Lauren R McGuinness
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Abrar I M Alnaimi
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- Department of Cardiac Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mark W Sims
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Manish Patel
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Qadeer Aziz
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Leona Ojake
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - James A Roberts
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - David Lodwick
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Andrew Tinker
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, UK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, University of Liverpool, Liverpool, UK
| | - Richard D Rainbow
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Specterman MJ, Aziz Q, Li Y, Anderson NA, Ojake L, Ng KE, Thomas AM, Finlay MC, Schilling RJ, Lambiase PD, Tinker A. Hypoxia Promotes Atrial Tachyarrhythmias via Opening of ATP-Sensitive Potassium Channels. Circ Arrhythm Electrophysiol 2023; 16:e011870. [PMID: 37646176 PMCID: PMC10510820 DOI: 10.1161/circep.123.011870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Hypoxia-ischemia predisposes to atrial arrhythmia. Atrial ATP-sensitive potassium channel (KATP) modulation during hypoxia has not been explored. We investigated the effects of hypoxia on atrial electrophysiology in mice with global deletion of KATP pore-forming subunits. METHODS Whole heart KATP RNA expression was probed. Whole-cell KATP current and action potentials were recorded in isolated wild-type (WT), Kir6.1 global knockout (6.1-gKO), and Kir6.2 global knockout (6.2-gKO) murine atrial myocytes. Langendorff-perfused hearts were assessed for atrial effective refractory period (ERP), conduction velocity, wavefront path length (WFPL), and arrhymogenicity under normoxia/hypoxia using a microelectrode array and programmed electrical stimulation. Heart histology was assessed. RESULTS Expression patterns were essentially identical for all KATP subunit RNA across human heart, whereas in mouse, Kir6.1 and SUR2 (sulphonylurea receptor subunit) were higher in ventricle than atrium, and Kir6.2 and SUR1 were higher in atrium. Compared with WT, 6.2-gKO atrial myocytes had reduced tolbutamide-sensitive current and action potentials were more depolarized with slower upstroke and reduced peak amplitude. Action potential duration was prolonged in 6.1-gKO atrial myocytes, absent of changes in other ion channel gene expression or atrial myocyte hypertrophy. In Langendorff-perfused hearts, baseline atrial ERP was prolonged and conduction velocity reduced in both KATP knockout mice compared with WT, without histological fibrosis. Compared with baseline, hypoxia led to conduction velocity slowing, stable ERP, and WFPL shortening in WT and 6.1-gKO hearts, whereas WFPL was stable in 6.2-gKO hearts due to ERP prolongation with conduction velocity slowing. Tolbutamide reversed hypoxia-induced WFPL shortening in WT and 6.1-gKO hearts through ERP prolongation. Atrial tachyarrhythmias inducible with programmed electrical stimulation during hypoxia in WT and 6.1-gKO mice correlated with WFPL shortening. Spontaneous arrhythmia was not seen. CONCLUSIONS KATP block/absence leads to cellular and tissue level atrial electrophysiological modification. Kir6.2 global knockout prevents hypoxia-induced atrial WFPL shortening and atrial arrhythmogenicity to programmed electrical stimulation. This mechanism could be explored translationally to treat ischemically driven atrial arrhythmia.
Collapse
Affiliation(s)
- Mark J. Specterman
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Qadeer Aziz
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Yiwen Li
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Naomi A. Anderson
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Leona Ojake
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Keat-Eng Ng
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Alison M. Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Malcolm C. Finlay
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Richard J. Schilling
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, United Kingdom (P.D.L.)
| | - Andrew Tinker
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| |
Collapse
|
3
|
Gando I, Becerra Flores M, Chen IS, Yang HQ, Nakamura TY, Cardozo TJ, Coetzee WA. CL-705G: a novel chemical Kir6.2-specific K ATP channel opener. Front Pharmacol 2023; 14:1197257. [PMID: 37408765 PMCID: PMC10319115 DOI: 10.3389/fphar.2023.1197257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Background: KATP channels have diverse roles, including regulation of insulin secretion and blood flow, and protection against biological stress responses and are excellent therapeutic targets. Different subclasses of KATP channels exist in various tissue types due to the unique assemblies of specific pore-forming (Kir6.x) and accessory (SURx) subunits. The majority of pharmacological openers and blockers act by binding to SURx and are poorly selective against the various KATP channel subclasses. Methods and Results: We used 3D models of the Kir6.2/SUR homotetramers based on existing cryo-EM structures of channels in both the open and closed states to identify a potential agonist binding pocket in a functionally critical area of the channel. Computational docking screens of this pocket with the Chembridge Core chemical library of 492,000 drug-like compounds yielded 15 top-ranked "hits", which were tested for activity against KATP channels using patch clamping and thallium (Tl+) flux assays with a Kir6.2/SUR2A HEK-293 stable cell line. Several of the compounds increased Tl+ fluxes. One of them (CL-705G) opened Kir6.2/SUR2A channels with a similar potency as pinacidil (EC50 of 9 µM and 11 μM, respectively). Remarkably, compound CL-705G had no or minimal effects on other Kir channels, including Kir6.1/SUR2B, Kir2.1, or Kir3.1/Kir3.4 channels, or Na+ currents of TE671 medulloblastoma cells. CL-705G activated Kir6.2Δ36 in the presence of SUR2A, but not when expressed by itself. CL-705G activated Kir6.2/SUR2A channels even after PIP2 depletion. The compound has cardioprotective effects in a cellular model of pharmacological preconditioning. It also partially rescued activity of the gating-defective Kir6.2-R301C mutant that is associated with congenital hyperinsulinism. Conclusion: CL-705G is a new Kir6.2 opener with little cross-reactivity with other channels tested, including the structurally similar Kir6.1. This, to our knowledge, is the first Kir-specific channel opener.
Collapse
Affiliation(s)
- Ivan Gando
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - Manuel Becerra Flores
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - I.-Shan Chen
- Phamacology, Wakayama Medical University, Wakayama, Japan
| | - Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | | | - Timothy J. Cardozo
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - William A. Coetzee
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Tuncay E, Gando I, Huo JY, Yepuri G, Samper N, Turan B, Yang HQ, Ramasamy R, Coetzee WA. The cardioprotective role of sirtuins is mediated in part by regulating K ATP channel surface expression. Am J Physiol Cell Physiol 2023; 324:C1017-C1027. [PMID: 36878847 PMCID: PMC10110703 DOI: 10.1152/ajpcell.00459.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Sirtuins are NAD+-dependent deacetylases with beneficial roles in conditions relevant to human health, including metabolic disease, type II diabetes, obesity, cancer, aging, neurodegenerative diseases, and cardiac ischemia. Since ATP-sensitive K+ (KATP) channels have cardioprotective roles, we investigated whether they are regulated by sirtuins. Nicotinamide mononucleotide (NMN) was used to increase cytosolic NAD+ levels and to activate sirtuins in cell lines, isolated rat and mouse cardiomyocytes or insulin-secreting INS-1 cells. KATP channels were studied with patch clamping, biochemistry techniques, and antibody uptake experiments. NMN led to an increase in intracellular NAD+ levels and an increase in the KATP channel current, without significant changes in the unitary current amplitude or open probability. An increased surface expression was confirmed using surface biotinylation approaches. The rate of KATP channel internalization was diminished by NMN, which may be a partial explanation for the increased surface expression. We show that NMN acts via sirtuins since the increased KATP channel surface expression was prevented by blockers of SIRT1 and SIRT2 (Ex527 and AGK2) and mimicked by SIRT1 activation (SRT1720). The pathophysiological relevance of this finding was studied using a cardioprotection assay with isolated ventricular myocytes, in which NMN protected against simulated ischemia or hypoxia in a KATP channel-dependent manner. Overall, our data draw a link between intracellular NAD+, sirtuin activation, KATP channel surface expression, and cardiac protection against ischemic damage.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ivan Gando
- Department of Pathology, New York University Grossman Medical Center, New York, New York, United States
| | - Jian-Yi Huo
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | - Gautham Yepuri
- Department of Medicine, New York University Grossman Medical Center, New York, New York, United States
| | - Natalie Samper
- Department of Pathology, New York University Grossman Medical Center, New York, New York, United States
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | - Ravichandran Ramasamy
- Department of Medicine, New York University Grossman Medical Center, New York, New York, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman Medical Center, New York, New York, United States
| | - William A Coetzee
- Department of Pathology, New York University Grossman Medical Center, New York, New York, United States
- Department of Physiology & Neuroscience, New York University Grossman Medical Center, New York, New York, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman Medical Center, New York, New York, United States
| |
Collapse
|
5
|
Le Ribeuz H, Masson B, Dutheil M, Boët A, Beauvais A, Sabourin J, De Montpreville VT, Capuano V, Mercier O, Humbert M, Montani D, Antigny F. Involvement of SUR2/Kir6.1 channel in the physiopathology of pulmonary arterial hypertension. Front Cardiovasc Med 2023; 9:1066047. [PMID: 36704469 PMCID: PMC9871631 DOI: 10.3389/fcvm.2022.1066047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Aims We hypothesized that the ATP-sensitive K+ channels (KATP) regulatory subunit (ABCC9) contributes to PAH pathogenesis. ABCC9 gene encodes for two regulatory subunits of KATP channels: the SUR2A and SUR2B proteins. In the KATP channel, the SUR2 subunits are associated with the K+ channel Kir6.1. We investigated how the SUR2/Kir6.1 channel contributes to PAH pathogenesis and its potential as a therapeutic target in PAH. Methods and results Using in vitro, ex vivo, and in vivo approaches, we analyzed the localization and expression of SUR2A, SUR2B, and Kir6.1 in the pulmonary vasculature of controls and patients with PAH as in experimental pulmonary hypertension (PH) rat models and its contribution to PAH physiopathology. Finally, we deciphered the consequences of in vivo activation of SUR2/Kir6.1 in the monocrotaline (MCT)-induced PH model. We found that SUR2A, SUR2B, and Kir6.1 were expressed in the lungs of controls and patients with PAH and MCT-induced PH rat models. Organ bath studies showed that SUR2 activation by pinacidil induced relaxation of pulmonary arterial in rats and humans. In vitro experiments on human pulmonary arterial smooth muscle cells and endothelial cells (hPASMCs and hPAECs) in controls and PAH patients showed decreased cell proliferation and migration after SUR2 activation. We demonstrated that SUR2 activation in rat right ventricular (RV) cardiomyocytes reduced RV action potential duration by patch-clamp. Chronic pinacidil administration in control rats increased heart rate without changes in hemodynamic parameters. Finally, in vivo pharmacological activation of SUR2 on MCT and Chronic-hypoxia (CH)-induced-PH rats showed improved PH. Conclusion We showed that SUR2A, SUR2B, and Kir6.1 are presented in hPASMCs and hPAECs of controls and PAH patients. In vivo SUR2 activation reduced the MCT-induced and CH-induced PH phenotype, suggesting that SUR2 activation should be considered for treating PAH.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Bastien Masson
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mary Dutheil
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Angèle Boët
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Antoine Beauvais
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Orsay, France
| | | | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Olaf Mercier
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique–Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique–Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
6
|
Arrell DK, Park S, Yamada S, Alekseev AE, Garmany A, Jeon R, Vuckovic I, Lindor JZ, Terzic A. K ATP channel dependent heart multiome atlas. Sci Rep 2022; 12:7314. [PMID: 35513538 PMCID: PMC9072320 DOI: 10.1038/s41598-022-11323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Plasmalemmal ATP sensitive potassium (KATP) channels are recognized metabolic sensors, yet their cellular reach is less well understood. Here, transgenic Kir6.2 null hearts devoid of the KATP channel pore underwent multiomics surveillance and systems interrogation versus wildtype counterparts. Despite maintained organ performance, the knockout proteome deviated beyond a discrete loss of constitutive KATP channel subunits. Multidimensional nano-flow liquid chromatography tandem mass spectrometry resolved 111 differentially expressed proteins and their expanded network neighborhood, dominated by metabolic process engagement. Independent multimodal chemometric gas and liquid chromatography mass spectrometry unveiled differential expression of over one quarter of measured metabolites discriminating the Kir6.2 deficient heart metabolome. Supervised class analogy ranking and unsupervised enrichment analysis prioritized nicotinamide adenine dinucleotide (NAD+), affirmed by extensive overrepresentation of NAD+ associated circuitry. The remodeled metabolome and proteome revealed functional convergence and an integrated signature of disease susceptibility. Deciphered cardiac patterns were traceable in the corresponding plasma metabolome, with tissue concordant plasma changes offering surrogate metabolite markers of myocardial latent vulnerability. Thus, Kir6.2 deficit precipitates multiome reorganization, mapping a comprehensive atlas of the KATP channel dependent landscape.
Collapse
Affiliation(s)
- D Kent Arrell
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Sungjo Park
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Satsuki Yamada
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Division of Geriatric Medicine & Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexey E Alekseev
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow Region, Russia
| | - Armin Garmany
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ryounghoon Jeon
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ivan Vuckovic
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Metabolomics Core, Mayo Clinic, Rochester, MN, USA
| | - Jelena Zlatkovic Lindor
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA. .,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA. .,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Tektemur A, Etem Önalan E, Kaya Tektemur N, Dayan Cinkara S, Kılınçlı Çetin A, Tekedereli İ, Kuloğlu T, Türk G. Carbamazepine-induced sperm disorders can be associated with the altered expressions of testicular KCNJ11/miR-let-7a and spermatozoal CFTR/miR-27a. Andrologia 2020; 53:e13954. [PMID: 33372325 DOI: 10.1111/and.13954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
Male infertility is a global health problem, and the underlying molecular mechanisms are not clearly known. Ion channels and microRNAs (miRNAs), known to function in many vital functions in cells, have been shown to play a significant role in male infertility through changes in their expressions. The study aimed to evaluate the alterations of testicular and/or spermatozoal potassium voltage-gated channel subfamily J member 11 (KCNJ11), Cystic fibrosis transmembrane conductance regulator (CFTR), miR-let-7a and miR-27a expressions in carbamazepine-related male infertility. Here, we showed that carbamazepine reduced sperm motility, increased abnormal sperm morphology, and impaired hormonal balance as well as increased relative testis weight and decreased relative seminal vesicle weight. On the other hand, downregulated KCNJ11 and upregulated miR-let-7a expressions were determined in testis (p < .05). Also, downregulated KCNJ11 and upregulated CFTR and miR-27a expressions were found in spermatozoa (p < .05). Interestingly, altered testicular KCNJ11 and miR-let-7a expressions were correlated with decreased sperm motility and elevated sperm tail defect. Besides, spermatozoal CFTR and miR-27a expressions positively correlated with sperm tail defects. The results indicated a significant relationship between ion channel and/or miRNA expression alterations and impaired sperm parameters due to carbamazepine usage.
Collapse
Affiliation(s)
- Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ebru Etem Önalan
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Nalan Kaya Tektemur
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Serap Dayan Cinkara
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Ayten Kılınçlı Çetin
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - İbrahim Tekedereli
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gaffari Türk
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
8
|
Glucagon-Like Peptide-1 Analog Liraglutide Attenuates Pressure-Overload Induced Cardiac Hypertrophy and Apoptosis through Activating ATP Sensitive Potassium Channels. Cardiovasc Drugs Ther 2020; 35:87-101. [PMID: 33057968 DOI: 10.1007/s10557-020-07088-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE This study aimed to investigate whether inhibition of glucagon-like peptide-1 (GLP-1) on pressure overload induced cardiac hypertrophy and apoptosis is related to activation of ATP sensitive potassium (KATP) channels. METHODS Male SD rats were randomly divided into five groups: sham, control (abdominal aortic constriction), GLP-1 analog liraglutide (0.3 mg/kg/twice day), KATP channel blocker glibenclamide (5 mg/kg/day), and liraglutide plus glibenclamide. RESULTS Relative to the control on week 16, liraglutide upregulated protein and mRNA levels of KATP channel subunits Kir6.2/SUR2 and their expression in the myocardium, vascular smooth muscle, aortic endothelium, and cardiac microvasculature. Consistent with a reduction in aortic wall thickness (61.4 ± 7.6 vs. 75.0 ± 7.6 μm, p < 0.05), liraglutide enhanced maximal aortic endothelium-dependent relaxation in response to acetylcholine (71.9 ± 8.7 vs. 38.6 ± 4.8%, p < 0.05). Along with a reduction in heart to body weight ratio (2.6 ± 0.1 vs. 3.4 ± 0.4, mg/g, p < 0.05) by liraglutide, hypertrophied cardiomyocytes (371.0 ± 34.4 vs. 933.6 ± 156.6 μm2, p < 0.05) and apoptotic cells (17.5 ± 8.2 vs. 44.7 ± 7.9%, p < 0.05) were reduced. Expression of anti-apoptotic protein BCL-2 and contents of myocardial ATP were augmented, and expression of cleaved-caspase 3 and levels of serum Tn-I/-T were reduced. Echocardiography and hemodynamic measurement showed that cardiac systolic function was enhanced as evidenced by increased ejection fraction (88.4 ± 4.8 vs. 73.8 ± 5.1%, p < 0.05) and left ventricular systolic pressure (105.2 ± 10.8 vs. 82.7 ± 7.9 mmHg, p < 0.05), and diastolic function was preserved as shown by a reduction of ventricular end-diastolic pressure (-3.1 ± 2.9 vs. 6.7 ± 2.8 mmHg, p < 0.05). Furthermore, left ventricular internal diameter at end-diastole (5.8 ± 0.5 vs. 7.7 ± 0.6 mm, p < 0.05) and left ventricular internal diameter at end-systole (3.0 ± 0.6 vs. 4.7 ± 0.4 mm, p < 0.05) were improved. Dietary administration of glibenclamide alone did not alter all the parameters measured but significantly blocked liraglutide-exerted cardioprotection. CONCLUSION Liraglutide ameliorates cardiac hypertrophy and apoptosis, potentially via activating KATP channel-mediated signaling pathway. These data suggest that liraglutide might be considered as an adjuvant therapy to treat patients with heart failure.
Collapse
|
9
|
Akopova O, Kolchinskaya L, Nosar V, Mankovska I, Sagach V. Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale. BMC Mol Cell Biol 2020; 21:31. [PMID: 32306897 PMCID: PMC7168813 DOI: 10.1186/s12860-020-00275-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cytoprotection afforded by mitochondrial ATP-sensitive K+-channel (mKATP-channel) opener diazoxide (DZ) largely depends on the activation of potassium cycle with eventual modulation of mitochondrial functions and ROS production. However, generally these effects were studied in the presence of Mg∙ATP known to block K+ transport. Thus, the purpose of our work was the estimation of DZ effects on K+ transport, K+ cycle and ROS production in rat liver mitochondria in the absence of Mg∙ATP. Results Without Mg·ATP, full activation of native mKATP-channel, accompanied by the increase in ATP-insensitive K+ uptake, activation of K+-cycle and respiratory uncoupling, was reached at ≤0.5 μM of DZ,. Higher diazoxide concentrations augmented ATP-insensitive K+ uptake, but not mKATP-channel activity. mKATP-channel was blocked by Mg·ATP, reactivated by DZ, and repeatedly blocked by mKATP-channel blockers glibenclamide and 5-hydroxydecanoate, whereas ATP-insensitive potassium transport was blocked by Mg2+ and was not restored by DZ. High sensitivity of potassium transport to DZ in native mitochondria resulted in suppression of mitochondrial ROS production caused by the activation of K+-cycle on sub-micromolar scale. Based on the oxygen consumption study, the share of mKATP-channel in respiratory uncoupling by DZ was found. Conclusions The study of mKATP-channel activation by diazoxide in the absence of MgATP discloses novel, not described earlier, aspects of mKATP-channel interaction with this drug. High sensitivity of mKATP-channel to DZ results in the modulation of mitochondrial functions and ROS production by DZ on sub-micromolar concentration scale. Our experiments led us to the hypothesis that under the conditions marked by ATP deficiency affinity of mKATP-channel to DZ can increase, which might contribute to the high effectiveness of this drug in cardio- and neuroprotection.
Collapse
Affiliation(s)
- Olga Akopova
- Circulation department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz str. 4, Kiev, 01601, Ukraine.
| | - Liudmila Kolchinskaya
- Circulation department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz str. 4, Kiev, 01601, Ukraine
| | - Valentina Nosar
- Hypoxic States Research Department, Bogomoletz Institute of Physiology, NAS of Ukraine, Kiev, Ukraine
| | - Iryna Mankovska
- Hypoxic States Research Department, Bogomoletz Institute of Physiology, NAS of Ukraine, Kiev, Ukraine
| | - Vadim Sagach
- Circulation department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz str. 4, Kiev, 01601, Ukraine
| |
Collapse
|
10
|
Myocardial death and dysfunction after ischemia-reperfusion injury require CaMKIIδ oxidation. Sci Rep 2019; 9:9291. [PMID: 31243295 PMCID: PMC6595001 DOI: 10.1038/s41598-019-45743-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species (ROS) contribute to myocardial death during ischemia-reperfusion (I/R) injury, but detailed knowledge of molecular pathways connecting ROS to cardiac injury is lacking. Activation of the Ca2+/calmodulin-dependent protein kinase II (CaMKIIδ) is implicated in myocardial death, and CaMKII can be activated by ROS (ox-CaMKII) through oxidation of regulatory domain methionines (Met281/282). We examined I/R injury in mice where CaMKIIδ was made resistant to ROS activation by knock-in replacement of regulatory domain methionines with valines (MMVV). We found reduced myocardial death, and improved left ventricular function 24 hours after I/R injury in MMVV in vivo and in vitro compared to WT controls. Loss of ATP sensitive K+ channel (KATP) current contributes to I/R injury, and CaMKII promotes sequestration of KATP from myocardial cell membranes. KATP current density was significantly reduced by H2O2 in WT ventricular myocytes, but not in MMVV, showing ox-CaMKII decreases KATP availability. Taken together, these findings support a view that ox-CaMKII and KATP are components of a signaling axis promoting I/R injury by ROS.
Collapse
|
11
|
Tan XH, Zheng XM, Yu LX, He J, Zhu HM, Ge XP, Ren XL, Ye FQ, Bellusci S, Xiao J, Li XK, Zhang JS. Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating mitochondrial damage and proinflammatory signalling. J Cell Mol Med 2017; 21:2909-2925. [PMID: 28544332 PMCID: PMC5661260 DOI: 10.1111/jcmm.13203] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/23/2017] [Indexed: 12/13/2022] Open
Abstract
Ischaemia‐reperfusion injury (I/RI) is a common cause of acute kidney injury (AKI). The molecular basis underlying I/RI‐induced renal pathogenesis and measures to prevent or reverse this pathologic process remains to be resolved. Basic fibroblast growth factor (FGF2) is reported to have protective roles of myocardial infarction as well as in several other I/R related disorders. Herein we present evidence that FGF2 exhibits robust protective effect against renal histological and functional damages in a rat I/RI model. FGF2 treatment greatly alleviated I/R‐induced acute renal dysfunction and largely blunted I/R‐induced elevation in serum creatinine and blood urea nitrogen, and also the number of TUNEL‐positive tubular cells in the kidney. Mechanistically, FGF2 substantially ameliorated renal I/RI by mitigating several mitochondria damaging parameters including pro‐apoptotic alteration of Bcl2/Bax expression, caspase‐3 activation, loss of mitochondrial membrane potential and KATP channel integrity. Of note, the protective effect of FGF2 was significantly compromised by the KATP channel blocker 5‐HD. Interestingly, I/RI alone resulted in mild activation of FGFR, whereas FGF2 treatment led to more robust receptor activation. More significantly, post‐I/RI administration of FGF2 also exhibited robust protection against I/RI by reducing cell apoptosis, inhibiting the release of damage‐associated molecular pattern molecule HMBG1 and activation of its downstream inflammatory cytokines such as IL‐1α, IL‐6 and TNF α. Taken together, our data suggest that FGF2 offers effective protection against I/RI and improves animal survival by attenuating mitochondrial damage and HMGB1‐mediated inflammatory response. Therefore, FGF2 has the potential to be used for the prevention and treatment of I/RI‐induced AKI.
Collapse
Affiliation(s)
- Xiao-Hua Tan
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Meng Zheng
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Xia Yu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian He
- Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Hong-Mei Zhu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu-Ping Ge
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Li Ren
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fa-Qing Ye
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Saverio Bellusci
- Institute of Life Sciences, Wenzhou University, Wenzhou, China.,Excellence Cluster Cardio-Pulmonary System, Justus-Liebig University, Giessen, Germany
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Kun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin-San Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
12
|
Feng Y, Liu J, Wang M, Liu M, Shi L, Yuan W, Ye J, Hu D, Wan J. The E23K variant of the Kir6.2 subunit of the ATP-sensitive potassium channel increases susceptibility to ventricular arrhythmia in response to ischemia in rats. Int J Cardiol 2017; 232:192-198. [DOI: 10.1016/j.ijcard.2017.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022]
|
13
|
Scott K, Benkhalti M, Calvert ND, Paquette M, Zhen L, Harper ME, Al-Dirbashi OY, Renaud JM. KATP channel deficiency in mouse FDB causes an impairment of energy metabolism during fatigue. Am J Physiol Cell Physiol 2016; 311:C559-C571. [PMID: 27488667 DOI: 10.1152/ajpcell.00137.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/27/2016] [Indexed: 12/25/2022]
Abstract
The skeletal muscle ATP-sensitive K+ (KATP) channel is crucial in preventing fiber damage and contractile dysfunction, possibly by preventing damaging ATP depletion. The objective of this study was to investigate changes in energy metabolism during fatigue in wild-type and inwardly rectifying K+ channel (Kir6.2)-deficient (Kir6.2-/-) flexor digitorum brevis (FDB), a muscle that lacks functional KATP channels. Fatigue was elicited with one tetanic contraction every second. Decreases in ATP and total adenylate levels were significantly greater in wild-type than Kir6.2-/- FDB during the last 2 min of the fatigue period. Glycogen depletion was greater in Kir6.2-/- FDB for the first 60 s, but not by the end of the fatigue period, while there was no difference in glucose uptake. The total amount of glucosyl units entering glycolysis was the same in wild-type and Kir6.2-/- FDB. During the first 60 s, Kir6.2-/- FDB generated less lactate and more CO2; in the last 120 s, Kir6.2-/- FDB stopped generating CO2 and produced more lactate. The ATP generated during fatigue from phosphocreatine, glycolysis (lactate), and oxidative phosphorylation (CO2) was 3.3-fold greater in Kir6.2-/- than wild-type FDB. Because ATP and total adenylate were significantly less in Kir6.2-/- FDB, it is suggested that Kir6.2-/- FDB has a greater energy deficit, despite a greater ATP production, which is further supported by greater glucose uptake and lactate and CO2 production in Kir6.2-/- FDB during the recovery period. It is thus concluded that a lack of functional KATP channels results in an impairment of energy metabolism.
Collapse
Affiliation(s)
- Kyle Scott
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Benkhalti
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas D Calvert
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mathieu Paquette
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Li Zhen
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Osama Y Al-Dirbashi
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; and Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada;
| |
Collapse
|
14
|
Yang HQ, Foster MN, Jana K, Ho J, Rindler MJ, Coetzee WA. Plasticity of sarcolemmal KATP channel surface expression: relevance during ischemia and ischemic preconditioning. Am J Physiol Heart Circ Physiol 2016; 310:H1558-66. [PMID: 27037371 DOI: 10.1152/ajpheart.00158.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/30/2016] [Indexed: 11/22/2022]
Abstract
Myocardial ischemia remains the primary cause of morbidity and mortality in the United States. Ischemic preconditioning (IPC) is a powerful form of endogenous protection against myocardial infarction. We studied alterations in KATP channels surface density as a potential mechanism of the protection of IPC. Using cardiac-specific knockout of Kir6.2 subunits, we demonstrated an essential role for sarcolemmal KATP channels in the infarct-limiting effect of IPC in the mouse heart. With biochemical membrane fractionation, we demonstrated that sarcolemmal KATP channel subunits are distributed both to the sarcolemma and intracellular endosomal compartments. Global ischemia causes a loss of sarcolemmal KATP channel subunit distribution and internalization to endosomal compartments. Ischemia-induced internalization of KATP channels was prevented by CaMKII inhibition. KATP channel subcellular redistribution was also observed with immunohistochemistry. Ischemic preconditioning before the index ischemia reduced not only the infarct size but also prevented KATP channel internalization. Furthermore, not only did adenosine mimic IPC by preventing infarct size, but it also prevented ischemia-induced KATP channel internalization via a PKC-mediated pathway. We show that preventing endocytosis with dynasore reduced both KATP channel internalization and strongly mitigated infarct development. Our data demonstrate that plasticity of KATP channel surface expression must be considered as a potentially important mechanism of the protective effects of IPC and adenosine.
Collapse
Affiliation(s)
| | | | | | | | | | - William A Coetzee
- Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| |
Collapse
|
15
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
16
|
Brennan S, Jackson R, Patel M, Sims MW, Hudman D, Norman RI, Lodwick D, Rainbow RD. Early opening of sarcolemmal ATP-sensitive potassium channels is not a key step in PKC-mediated cardioprotection. J Mol Cell Cardiol 2014; 79:42-53. [PMID: 25450614 DOI: 10.1016/j.yjmcc.2014.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/29/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022]
Abstract
ATP-sensitive potassium (KATP) channels are abundantly expressed in the myocardium. Although a definitive role for the channel remains elusive they have been implicated in the phenomenon of cardioprotection, but the precise mechanism is unclear. We set out to test the hypothesis that the channel protects by opening early during ischemia to shorten action potential duration and reduce electrical excitability thus sparing intracellular ATP. This could reduce reperfusion injury by improving calcium homeostasis. Using a combination of contractile function analysis, calcium fluorescence imaging and patch clamp electrophysiology in cardiomyocytes isolated from adult male Wistar rats, we demonstrated that the opening of sarcolemmal KATP channels was markedly delayed after cardioprotective treatments: ischemic preconditioning, adenosine and PMA. This was due to the preservation of intracellular ATP for longer during simulated ischemia therefore maintaining sarcolemmal KATP channels in the closed state for longer. As the simulated ischemia progressed, KATP channels opened to cause contractile, calcium transient and action potential failure; however there was no indication of any channel activity early during simulated ischemia to impart an energy sparing hyperpolarization or action potential shortening. We present compelling evidence to demonstrate that an early opening of sarcolemmal KATP channels during simulated ischemia is not part of the protective mechanism imparted by ischemic preconditioning or other PKC-dependent cardioprotective stimuli. On the contrary, channel opening was actually delayed. We conclude that sarcolemmal KATP channel opening is a consequence of ATP depletion, not a primary mechanism of ATP preservation in these cells.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK
| | - Robert Jackson
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK
| | - Manish Patel
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK
| | - Mark W Sims
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK
| | - Diane Hudman
- Department of Medical and Social Care Education, Maurice Shock Medical Sciences Building, University of Leicester, Leicester, LE1 9HN, UK
| | - Robert I Norman
- Department of Medical and Social Care Education, Maurice Shock Medical Sciences Building, University of Leicester, Leicester, LE1 9HN, UK
| | - David Lodwick
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK
| | - Richard D Rainbow
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK.
| |
Collapse
|
17
|
Albaqumi M, Alhabib FA, Shamseldin HE, Mohammed F, Alkuraya FS. A syndrome of congenital hyperinsulinism and rhabdomyolysis is caused by KCNJ11 mutation. J Med Genet 2014; 51:271-4. [PMID: 24421282 DOI: 10.1136/jmedgenet-2013-102085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Congenital hyperinsulinism is a genetically heterogeneous disorder, but mutations in the components of the ATP-sensitive potassium channel K(ATP) account for more than a third of all isolated congenital hyperinsulinism cases. The association between congenital hyperinsulinism and rhabdomyolysis has not been reported. OBJECTIVE To describe significant skeletal muscle manifestations in a family with a novel mutation in KCNJ11 (encoding the Kir6.2 component of K(ATP)). METHODS Cross-sectional analysis of members of a large multiplex consanguineous family with congenital hyperinsulinism and rhabdomyolysis using autozygosity mapping and exome sequencing. RESULTS Five affected members of an extended consanguineous Saudi family were recruited along with relevant unaffected relatives. We were able to map an apparently novel syndrome of congenital hyperinsulinism and severe rhabdomyolysis leading to acute renal failure to a single locus that harbours KCNJ11 in which we identified a novel homozygous mutation. CONCLUSIONS This study expands the phenotype associated with KCNJ11 loss of function in humans and calls for increased awareness of rhabdomyolysis as a potential late-onset life-threatening complication of KCNJ11-related congenital hyperinsulinism.
Collapse
Affiliation(s)
- Mamdouh Albaqumi
- Division of Nephrology, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|