1
|
Markina YV, Kirichenko TV, Tolstik TV, Bogatyreva AI, Zotova US, Cherednichenko VR, Postnov AY, Markin AM. Target and Cell Therapy for Atherosclerosis and CVD. Int J Mol Sci 2023; 24:10308. [PMID: 37373454 DOI: 10.3390/ijms241210308] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiovascular diseases (CVD) and, in particular, atherosclerosis, remain the main cause of death in the world today. Unfortunately, in most cases, CVD therapy begins after the onset of clinical symptoms and is aimed at eliminating them. In this regard, early pathogenetic therapy for CVD remains an urgent problem in modern science and healthcare. Cell therapy, aimed at eliminating tissue damage underlying the pathogenesis of some pathologies, including CVD, by replacing it with various cells, is of the greatest interest. Currently, cell therapy is the most actively developed and potentially the most effective treatment strategy for CVD associated with atherosclerosis. However, this type of therapy has some limitations. In this review, we have tried to summarize the main targets of cell therapy for CVD and atherosclerosis in particular based on the analysis using the PubMed and Scopus databases up to May 2023.
Collapse
Affiliation(s)
- Yuliya V Markina
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Taisiya V Tolstik
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Ulyana S Zotova
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Anton Yu Postnov
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | - Alexander M Markin
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
- Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow 117198, Russia
| |
Collapse
|
2
|
Peñín-Grandes S, Martín-Hernández J, Valenzuela PL, López-Ortiz S, Pinto-Fraga J, Solá LDR, Emanuele E, Lista S, Lucia A, Santos-Lozano A. Exercise and the hallmarks of peripheral arterial disease. Atherosclerosis 2022; 350:41-50. [DOI: 10.1016/j.atherosclerosis.2022.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023]
|
3
|
Wu YF, Lapp S, Dvoretskiy S, Garcia G, Kim M, Tannehill A, Daniels L, Boppart MD. Optimization of a Pericyte Therapy to Improve Muscle Recovery After Limb Immobilization. J Appl Physiol (1985) 2022; 132:1020-1030. [PMID: 35175105 PMCID: PMC8993526 DOI: 10.1152/japplphysiol.00700.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extended bed rest or limb immobilization can significantly reduce skeletal muscle mass and function. Recovery may be incomplete, particularly in older adults. Our laboratory recently reported that vascular mural cell (pericyte) quantity is compromised after immobilization and appropriate replacement immediately prior to remobilization can effectively recover myofiber size in mice. Identification of a single cell surface marker for isolation of the most therapeutic pericyte would streamline efforts to optimize muscle recovery. The purpose of this study was to compare the capacity for neural/glial antigen 2 (Cspg4/NG2+) and melanoma cell adhesion molecule (Mcam/CD146+) positive pericytes to uniquely recover skeletal muscle post-disuse. A single hindlimb from adult C57BL/6J mice was immobilized in full dorsiflexion via a surgical staple inserted through the center of the foot and body of the gastrocnemius. Fourteen days after immobilization, the staple was removed and pericytes, either NG2+CD45-CD31-[Lin-], CD146+NG2-Lin-, or CD146+Lin- pericytes, were injected into the atrophied tibialis anterior muscle. TA muscles were excised 14 days after transplantation and remobilization. Pericyte transplantation did not significantly improve muscle mass or myofiber CSA after 14 days of remobilization. However, injection of CD146+ pericytes significantly increased Type IIa quantity, capillarization and collagen remodeling compared to NG2+ pericytes (p<0.05). Our results suggest that selection of pericytes based on CD146 rather than NG2 results in the isolation of therapeutic mural cells with high capacity to positively remodel skeletal muscle after a period of immobilization.
Collapse
Affiliation(s)
- Yu-Fu Wu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Samuel Lapp
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gabriela Garcia
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Michael Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Amanda Tannehill
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Laureen Daniels
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Genovese P, Patel A, Ziemkiewicz N, Paoli A, Bruns J, Case N, Zustiak SP, Garg K. Co-delivery of fibrin-laminin hydrogel with mesenchymal stem cell spheroids supports skeletal muscle regeneration following trauma. J Tissue Eng Regen Med 2021; 15:1131-1143. [PMID: 34551191 DOI: 10.1002/term.3243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss (VML) is traumatic or surgical loss of skeletal muscle with resultant functional impairment. Skeletal muscle's innate capacity for regeneration is lost with VML due to a critical loss of stem cells, extracellular matrix, and neuromuscular junctions. Consequences of VML include permanent disability or delayed amputations of the affected limb. Currently, a successful clinical therapy has not been identified. Mesenchymal stem cells (MSCs) possess regenerative and immunomodulatory properties and their three-dimensional aggregation can further enhance therapeutic efficacy. In this study, MSC aggregation into spheroids was optimized in vitro based on cellular viability, spheroid size, and trophic factor secretion. The regenerative potential of the optimized MSC spheroid therapy was then investigated in a murine model of VML injury. Experimental groups included an untreated VML injury control, intramuscular injection of MSC spheroids, and MSC spheroids encapsulated in a fibrin-laminin hydrogel. Compared to the untreated VML group, the spheroid encapsulating hydrogel group enhanced myogenic marker (i.e., MyoD and myogenin) protein expression, improved muscle mass, increased presence of centrally nucleated myofibers as well as small fibers (<500 μm2 ), modulated pro- and anti-inflammatory macrophage marker expression (i.e., iNOS and Arginase), and increased the presence of CD146+ pericytes and CD31+ endothelial cells in the VML injured muscles. Future studies will evaluate the extent of functional recovery with the spheroid encapsulating hydrogel therapy.
Collapse
Affiliation(s)
- Peter Genovese
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Anjali Patel
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Natalia Ziemkiewicz
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Allison Paoli
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Joseph Bruns
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Natasha Case
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Silviya P Zustiak
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Koyal Garg
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Gardner JC, Dvoretskiy SV, Yang Y, Venkataraman S, Lange DA, Li S, Boppart AL, Kim N, Rendeiro C, Boppart MD, Rhodes JS. Electrically stimulated hind limb muscle contractions increase adult hippocampal astrogliogenesis but not neurogenesis or behavioral performance in male C57BL/6J mice. Sci Rep 2020; 10:19319. [PMID: 33168868 PMCID: PMC7652861 DOI: 10.1038/s41598-020-76356-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regular exercise is crucial for maintaining cognitive health throughout life. Recent evidence suggests muscle contractions during exercise release factors into the blood which cross into the brain and stimulate adult hippocampal neurogenesis. However, no study has tested whether muscle contractions alone are sufficient to increase adult hippocampal neurogenesis and improve behavioral performance. Adult male, C57BL/6J mice were anesthetized and exposed to bilateral hind limb muscle contractions (both concentric and eccentric) via electrical stimulation (e-stim) of the sciatic nerve twice a week for 8 weeks. Each session lasted approximately 20 min and consisted of a total of 40 muscle contractions. The control group was treated similarly except without e-stim (sham). Acute neuronal activation of the dentate gyrus (DG) using cFos immunohistochemistry was measured as a negative control to confirm that the muscle contractions did not activate the hippocampus, and in agreement, no DG activation was observed. Relative to sham, e-stim training increased DG volume by approximately 10% and astrogliogenesis by 75%, but no difference in neurogenesis was detected and no improvement in behavioral performance was observed. E-stim also increased astrogliogenesis in CA1/CA2 hippocampal subfields but not in the cortex. Results demonstrate that muscle contractions alone, in absence of DG activation, are sufficient to increase adult hippocampal astrogliogenesis, but not neurogenesis or behavioral performance in mice.
Collapse
Affiliation(s)
- Jennie C Gardner
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Svyatoslav V Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Yanyu Yang
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Sanjana Venkataraman
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Dominica A Lange
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Shiping Li
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Alexandria L Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Noah Kim
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Catarina Rendeiro
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Justin S Rhodes
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Hoier B, Olsen K, Hanskov DJA, Jorgensen M, Norup LR, Hellsten Y. Early time course of change in angiogenic proteins in human skeletal muscle and vascular cells with endurance training. Scand J Med Sci Sports 2020; 30:1117-1131. [PMID: 32246511 DOI: 10.1111/sms.13665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 11/27/2022]
Abstract
Angiogenic, mitochondrial, and related transcriptional proteins were assessed in human skeletal muscle and isolated vascular cells during the early phase of endurance training. Thigh muscle biopsies were obtained in healthy young subjects, after one acute bout (n = 9) and after 3, 5, 7, and 14 days (n = 9) of cycle ergometer training. Whole muscle homogenates were analyzed for angiogenic, mitochondrial, and regulatory mRNA and protein levels. Angiogenic proteins were determined in muscle-derived endothelial cells and pericytes sorted by fluorescence-activated cell sorting. Acute exercise induced an increase in whole muscle mRNA of peroxisome proliferator-activated receptor gamma coactivator 1α (4.5-fold; P = .002) and vascular endothelial growth factor (VEGF) (2.4-fold; P = .001) at 2 hours post. After 14 days of training, there was an increase in CD31 protein (63%; P = .010) in whole muscle indicating capillary growth. There was also an increase in muscle VEGF receptor 2 (VEGFR2) (1.5-fold; P = .013), in OXPHOS proteins (complex I, II, IV, V; 1.4- to 1.9-fold; P < .05) after 14 days of training and an increase in estrogen-related receptorα protein (1.5-fold; P = .039) at 14 days compared to 5 days of training. Both endothelial cells and pericytes expressed VEGF and other angiogenic factors at the protein level but with a distinctively lower expression of VEGFR2 and thrombospondin-1 (TSP-1) in pericytes. The findings illustrate that initiation of capillary and mitochondrial adaptations occurs within 14 days of training and suggest that sustained changes in angiogenic proteins including VEGF and TSP-1 are moderate in whole muscle and vascular cells.
Collapse
Affiliation(s)
- Birgitte Hoier
- Integrative Physiology Section, Cardiovascular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Karina Olsen
- Integrative Physiology Section, Cardiovascular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Dorte J A Hanskov
- Integrative Physiology Section, Cardiovascular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Maria Jorgensen
- Integrative Physiology Section, Cardiovascular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Liselotte R Norup
- Core Facility for Flow Cytometry, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Integrative Physiology Section, Cardiovascular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Collao N, Farup J, De Lisio M. Role of Metabolic Stress and Exercise in Regulating Fibro/Adipogenic Progenitors. Front Cell Dev Biol 2020; 8:9. [PMID: 32047748 PMCID: PMC6997132 DOI: 10.3389/fcell.2020.00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity is a major public health concern and is associated with decreased muscle quality (i.e., strength, metabolism). Muscle from obese adults is characterized by increases in fatty, fibrotic tissue that decreases the force producing capacity of muscle and impairs glucose disposal. Fibro/adipogenic progenitors (FAPs) are muscle resident, multipotent stromal cells that are responsible for muscle fibro/fatty tissue accumulation. Additionally, they are indirectly involved in muscle adaptation through their promotion of myogenic (muscle-forming) satellite cell proliferation and differentiation. In conditions similar to obesity that are characterized by chronic muscle degeneration, FAP dysfunction has been shown to be responsible for increased fibro/fatty tissue accumulation in skeletal muscle, and impaired satellite cell function. The role of metabolic stress in regulating FAP differentiation and paracrine function in skeletal muscle is just beginning to be unraveled. Thus, the present review aims to summarize the recent literature on the role of metabolic stress in regulating FAP differentiation and paracrine function in skeletal muscle, and the mechanisms responsible for these effects. Furthermore, we will review the role of physical activity in reversing or ameliorating the detrimental effects of obesity on FAP function.
Collapse
Affiliation(s)
- Nicolas Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Dvoretskiy S, Garg K, Munroe M, Pincu Y, Mahmassani ZS, Coombs C, Blackwell B, Garcia G, Waterstradt G, Lee I, Drnevich J, Rhodes JS, Boppart MD. The impact of skeletal muscle contraction on CD146 +Lin - pericytes. Am J Physiol Cell Physiol 2019; 317:C1011-C1024. [PMID: 31433691 PMCID: PMC6879875 DOI: 10.1152/ajpcell.00156.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
Unaccustomed resistance exercise can initiate skeletal muscle remodeling and adaptive mechanisms that can confer protection from damage and enhanced strength with subsequent stimulation. The myofiber may provide the primary origin for adaptation, yet multiple mononuclear cell types within the surrounding connective tissue may also contribute. The purpose of this study was to evaluate the acute response of muscle-resident interstitial cells to contraction initiated by electrical stimulation (e-stim) and subsequently determine the contribution of pericytes to remodeling as a result of training. Mice were subjected to bilateral e-stim or sham treatment. Following a single session of e-stim, NG2+CD45-CD31- (NG2+Lin-) pericyte, CD146+Lin- pericyte, and PDGFRα+ fibroadipogenic progenitor cell quantity and function were evaluated via multiplex flow cytometry and targeted quantitative PCR. Relative quantity was not significantly altered 24 h postcontraction, yet unique gene signatures were observed for each cell population at 3 h postcontraction. CD146+Lin- pericytes appeared to be most responsive to contraction, and upregulation of genes related to immunomodulation and extracellular matrix remodeling was observed via RNA sequencing. Intramuscular injection of CD146+Lin- pericytes did not significantly increase myofiber size yet enhanced ECM remodeling and angiogenesis in response to repeated bouts of e-stim for 4 wk. The results from this study provide the first evidence that CD146+Lin- pericytes are responsive to skeletal muscle contraction and may contribute to the beneficial outcomes associated with exercise.
Collapse
Affiliation(s)
- Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Koyal Garg
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael Munroe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yair Pincu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ziad S Mahmassani
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charlotte Coombs
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Brent Blackwell
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Gabriela Garcia
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Garret Waterstradt
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Isaac Lee
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, High Performance Biological Computing, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Justin S Rhodes
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
9
|
Averyanov A, Koroleva I, Konoplyannikov M, Revkova V, Lesnyak V, Kalsin V, Danilevskaya O, Nikitin A, Sotnikova A, Kotova S, Baklaushev V. First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline. Stem Cells Transl Med 2019; 9:6-16. [PMID: 31613055 PMCID: PMC6954714 DOI: 10.1002/sctm.19-0037] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022] Open
Abstract
Previous phase I studies demonstrated safety and some beneficial effects of mesenchymal stem cells (MSCs) in patients with mild to moderate idiopathic pulmonary fibrosis (IPF). The aim of our study was to evaluate the safety, tolerability, and efficacy of a high cumulative dose of bone marrow MSCs in patients with rapid progressive course of severe to moderate IPF. Twenty patients with forced ventilation capacity (FVC) ≥40% and diffusing capacity of the lung for carbon monoxide (DLCO) ≥20% with a decline of both >10% over the previous 12 months were randomized into two groups: one group received two intravenous doses of allogeneic MSCs (2 × 108 cells) every 3 months, and the second group received a placebo. A total amount of 1.6 × 109 MSCs had been administered to each patient after the study completion. There were no significant adverse effects after administration of MSCs in any patients. In the group of MSC therapy, we observed significantly better improvement for the 6‐minute walk distance in 13 weeks, for DLCO in 26 weeks, and for FVC in 39 weeks compared with placebo. FVC for 12 months in the MSCs therapy group increased by 7.8% from baseline, whereas it declined by 5.9% in the placebo group. We did not find differences between the groups in mortality (two patients died in each group) or any changes in the high‐resolution computed tomography fibrosis score. In patients with IPF and a rapid pulmonary function decline, therapy with high doses of allogeneic MSCs is a safe and promising method to reduce disease progression.
Collapse
Affiliation(s)
- Alexander Averyanov
- Federal Research and Clinical Center of Federal Medical-Biologic Agency, Moscow, Russia.,Pulmonology Scientific Research Institute under Federal Medical-Biologic Agency, Moscow, Russia
| | - Irina Koroleva
- Federal Research and Clinical Center of Federal Medical-Biologic Agency, Moscow, Russia
| | | | - Veronika Revkova
- Federal Research and Clinical Center of Federal Medical-Biologic Agency, Moscow, Russia
| | - Victor Lesnyak
- Federal Research and Clinical Center of Federal Medical-Biologic Agency, Moscow, Russia
| | - Vladimir Kalsin
- Federal Research and Clinical Center of Federal Medical-Biologic Agency, Moscow, Russia
| | - Olesya Danilevskaya
- Federal Research and Clinical Center of Federal Medical-Biologic Agency, Moscow, Russia.,Pulmonology Scientific Research Institute under Federal Medical-Biologic Agency, Moscow, Russia
| | - Alexey Nikitin
- Federal Research and Clinical Center of Federal Medical-Biologic Agency, Moscow, Russia.,Pulmonology Scientific Research Institute under Federal Medical-Biologic Agency, Moscow, Russia
| | - Anna Sotnikova
- Federal Research and Clinical Center of Federal Medical-Biologic Agency, Moscow, Russia.,Pulmonology Scientific Research Institute under Federal Medical-Biologic Agency, Moscow, Russia
| | - Svetlana Kotova
- Institute for Regenerative Medicine, I. M.Sechenov First Moscow State Medical University, Moscow, Russia.,Semenov Institute of Chemical Physics, Moscow
| | - Vladimir Baklaushev
- Federal Research and Clinical Center of Federal Medical-Biologic Agency, Moscow, Russia.,Pulmonology Scientific Research Institute under Federal Medical-Biologic Agency, Moscow, Russia
| |
Collapse
|
10
|
Hunt ER, Confides AL, Abshire SM, Dupont‐Versteegden EE, Butterfield TA. Massage increases satellite cell number independent of the age-associated alterations in sarcolemma permeability. Physiol Rep 2019; 7:e14200. [PMID: 31496052 PMCID: PMC6732494 DOI: 10.14814/phy2.14200] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Abstract
Massage is a widely accepted manual therapy used to modulate the inflammatory response of muscle and restore function, but prolonged compression of muscle potentially causes overt injury and damage to muscle fibers. Therefore, a balance exists between the positive effects of massage and the induction of mechanical damage and injury. In addition, skeletal muscle of aged individuals displays increased stiffness, and therefore, the response to massage is likely different compared with young. We hypothesized that the aged skeletal muscle exhibits increased sarcolemmal permeability when subjected to massage compared with young skeletal muscle. Male Brown Norway/F344 rats, 10 and 30 months of age, were each divided into control, non-massaged (n = 8) and massaged (n = 8) groups. The right gastrocnemius muscle received one bout of cyclic compressive loading for 30 min at 4.5 N as a massage-mimetic. Muscles were dissected and frozen 24 h after massage. Alterations in sarcolemma permeability were quantified by measuring the level of intracellular IgG within the muscle fibers. Immunohistochemistry was performed to determine IgG inside fibers and Pax7+ cell number as an indicator of stem cell abundance. Average IgG intensity was not different between control and massaged animals at either age. However, a significant shift to the right of the density histogram indicated that massaged animals had more fibers with higher IgG intensity than control at 10 months. In addition, Pax7+ cell number was significantly elevated in massaged muscles compared with control at both ages. One bout of massage did not induce overt muscle injury, but facilitated membrane permeability, which was associated with an increase in satellite cell number. Data suggest that the load applied here, which was previously shown to induce immunomodulatory changes, does not induce overt muscle injury in young and old muscles but may result in muscle remodeling. Funded by NIH grant AG042699 and AT009268.
Collapse
Affiliation(s)
- Emily R. Hunt
- Department of Rehabilitation Sciences, Center for Muscle BiologyUniversity of KentuckyLexingtonKentucky
| | - Amy L. Confides
- Department of Rehabilitation Sciences, Center for Muscle BiologyUniversity of KentuckyLexingtonKentucky
| | - Sarah M. Abshire
- Department of Rehabilitation Sciences, Center for Muscle BiologyUniversity of KentuckyLexingtonKentucky
| | | | - Timothy A. Butterfield
- Department of Rehabilitation Sciences, Center for Muscle BiologyUniversity of KentuckyLexingtonKentucky
| |
Collapse
|
11
|
Boppart MD, Mahmassani ZS. Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2019; 317:C629-C641. [PMID: 31314586 DOI: 10.1152/ajpcell.00009.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The α7β1-integrin is a transmembrane adhesion protein that connects laminin in the extracellular matrix (ECM) with actin in skeletal muscle fibers. The α7β1-integrin is highly expressed in skeletal muscle and is concentrated at costameres and myotendious junctions, providing the opportunity to transmit longitudinal and lateral forces across the membrane. Studies have demonstrated that α7-integrin subunit mRNA and protein are upregulated following eccentric contractions as a mechanism to reinforce load-bearing structures and resist injury with repeated bouts of exercise. It has been hypothesized for many years that the integrin can also promote protein turnover in a manner that can promote beneficial adaptations with resistance exercise training, including hypertrophy. This review provides basic information about integrin structure and activation and then explores its potential to serve as a critical mechanosensor and activator of muscle protein synthesis and growth. Overall, the hypothesis is proposed that the α7β1-integrin can contribute to mechanical-load induced skeletal muscle growth via an mammalian target of rapamycin complex 1-independent mechanism.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| |
Collapse
|
12
|
Munroe M, Dvoretskiy S, Lopez A, Leong J, Dyle MC, Kong H, Adams CM, Boppart MD. Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization. FASEB J 2019; 33:7694-7706. [PMID: 31021652 PMCID: PMC6529341 DOI: 10.1096/fj.201802580r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Conditions of extended bed rest and limb immobilization can initiate rapid and significant loss of skeletal muscle mass and function. Physical rehabilitation is standard practice following a period of disuse, yet mobility may be severely compromised, and recovery is commonly delayed or incomplete in special populations. Thus, a novel approach toward recovery of muscle mass is highly desired. Pericytes [neuron-glial antigen 2 (NG2)+CD31-CD45- (Lineage- [Lin-]) and CD146+Lin-] demonstrate capacity to facilitate muscle repair, yet the ability to enhance myofiber growth following disuse is unknown. In the current study, 3-4-mo-old mice were unilaterally immobilized for 14 d (IM) or immobilized for 14 d followed by 14 d of remobilization (RE). Flow cytometry and targeted gene expression analyses were completed to assess pericyte quantity and function following IM and RE. In addition, a transplantation study was conducted to assess the impact of pericytes on recovery. Results from targeted analyses suggest minimal impact of disuse on pericyte gene expression, yet NG2+Lin- pericyte quantity is reduced following IM (P < 0.05). Remarkably, pericyte transplantation recovered losses in myofiber cross-sectional area and the capillary-to-fiber ratio following RE, whereas deficits remained with vehicle alone (P = 0.01). These findings provide the first evidence that pericytes effectively rehabilitate skeletal muscle mass following disuse atrophy.-Munroe, M., Dvoretskiy, S., Lopez, A., Leong, J., Dyle, M. C., Kong, H., Adams, C. M., Boppart, M. D. Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization.
Collapse
Affiliation(s)
- Michael Munroe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amber Lopez
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiayu Leong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael C. Dyle
- Departments of Internal Medicine and University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois–Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher M. Adams
- Departments of Internal Medicine and University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Marni D. Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois–Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019; 37:1246-1262. [PMID: 30604468 DOI: 10.1002/jor.24212] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 02/04/2023]
Abstract
Adult skeletal muscle can regenerate effectively after mild physical or chemical insult. Muscle trauma or disease can overwhelm this innate capacity for regeneration and result in heightened inflammation and fibrotic tissue deposition resulting in loss of structure and function. Recent studies have focused on biomaterial and stem cell-based therapies to promote skeletal muscle regeneration following injury and disease. Many stem cell populations besides satellite cells are implicated in muscle regeneration. These stem cells include but are not limited to mesenchymal stem cells, adipose-derived stem cells, hematopoietic stem cells, pericytes, fibroadipogenic progenitors, side population cells, and CD133+ stem cells. However, several challenges associated with their isolation, availability, delivery, survival, engraftment, and differentiation have been reported in recent studies. While acellular scaffolds offer a relatively safe and potentially off-the-shelf solution to cell-based therapies, they are often unable to stimulate host cell migration and activity to a level that would result in clinically meaningful regeneration of traumatized muscle. Combining stem cells and biomaterials may offer a viable therapeutic strategy that may overcome the limitations associated with these therapies when they are used in isolation. In this article, we review the stem cell populations that can stimulate muscle regeneration in vitro and in vivo. We also discuss the regenerative potential of combination therapies that utilize both stem cell and biomaterials for the treatment of skeletal muscle injury and disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1246-1262, 2019.
Collapse
Affiliation(s)
- Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
14
|
Guan YT, Xie Y, Li DS, Zhu YY, Zhang XL, Feng YL, Chen YP, Xu LJ, Liao PF, Wang G. Comparison of biological characteristics of mesenchymal stem cells derived from the human umbilical cord and decidua parietalis. Mol Med Rep 2019; 20:633-639. [PMID: 31180542 PMCID: PMC6579987 DOI: 10.3892/mmr.2019.10286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are derived from the mesoderm and have the self‑renewal capacity and multi‑directional differentiation potential of adult stem cells. Stem cells from different sources have different molecular and growth characteristics; therefore, the mechanisms and effects of stem cell‑mediated repair and tissue regeneration may be different. The aim of the present study was to compare the biological characteristics of MSCs derived from the umbilical cord (UC‑MSCs) and MSCs derived from the decidua parietalis (DP‑MSCs), and to provide new evidence for the selection of seed cells in regenerative medicine. Growth curves, cell doubling times, colony formation rates, immunophenotypes, differentiation capacities and secretion‑factor levels of MSCs derived from the two sources were analysed. UC‑MSCs and DP‑MSCs exhibited similar properties with regards to morphology, spiral growth, immunophenotype, and potential to differentiate into osteoblasts and adipocytes. For each cell type, the positive rates of the cell surface markers CD73, CD90 and CD105 were >95%, whereas CD34 and CD45 positive rates were <1%. Analyses of in vitro growth kinetics revealed shorter cell‑doubling times, and higher proliferative rates and colony formation rates of UC‑MSCs compared with DP‑MSCs (P<0.05). The concentration of basic fibroblast growth factor in the supernatant from UC‑MSCs was higher compared with that from DP‑MSCs (P<0.05). However, UC‑MSC supernatants exhibited lower levels of of keratinocyte growth factor, vascular endothelial growth factor and stem cell factor compared with DP‑MSCs (P<0.05). In conclusion, in vitro characterization of MSCs from these tissue sources revealed a number of common biological properties. However, the results also demonstrated clear biological distinctions and suggested that UC‑MSCs may have more effective application prospects.
Collapse
Affiliation(s)
- Yu-Tao Guan
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Yong Xie
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Dong-Sheng Li
- Guangdong Vitalife Biotechnology Co., Ltd., Foshan, Guangdong 528000, P.R. China
| | - Yu-Yuan Zhu
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Xiao-Lu Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Ying-Lin Feng
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Yang-Ping Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Li-Jiang Xu
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Pin-Fu Liao
- Guangdong Vitalife Biotechnology Co., Ltd., Foshan, Guangdong 528000, P.R. China
| | - Gang Wang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
15
|
Ruehle MA, Stevens HY, Beedle AM, Guldberg RE, Call JA. Aggregate mesenchymal stem cell delivery ameliorates the regenerative niche for muscle repair. J Tissue Eng Regen Med 2018; 12:1867-1876. [PMID: 29774991 DOI: 10.1002/term.2707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023]
Abstract
Duchenne muscular dystrophy is a severe muscle wasting disease due to the absence of the dystrophin protein from the muscle cell membrane, which renders the muscle susceptible to continuous damage. In Duchenne muscular dystrophy patients, muscle weakness, together with cycles of degeneration/regeneration and replacement with noncontractile tissue, limit mobility and lifespan. Because the loss of dystrophin results in loss of polarity and a reduction in the number of self-renewing satellite cells, it is postulated that these patients could achieve an improved quality of life if delivered cells could restore satellite cell function. In this study, we used both an established myotoxic injury model in wild-type (WT) mice and mdx mice alone (spontaneous muscle damage). Single (SC) and aggregated (AGG) mesenchymal stem cells (MSCs) were injected into the gastrocnemius muscles 4 hr after injury (WT mice). The recovery of peak isometric torque was longitudinally assessed over 5 weeks, with earlier takedowns for histological assessment of healing (fibre cross-section area and central nucleation) and MSC retention. AGG-treated WT mice had significantly greater torque recovery at Day 14 than SC or saline-treated mice and a greater CSA at Day 10, compared with SC/saline. AGG-treated mdx mice had a greater peak isometric torque compared with SC/saline. In vitro immunomodulatory factor secretion of AGG-MSCs was higher than SC-MSCs for all tested growth factors with the largest difference observed in hepatocyte growth factor. Future studies are necessary to pair immunomodulatory factor secretion with functional attributes, to better predict the potential therapeutic value of MSC treatment modalities.
Collapse
Affiliation(s)
- Marissa A Ruehle
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hazel Y Stevens
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, SUNY Binghamton University, Binghamton, NY, USA
| | - Robert E Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
16
|
Munroe M, Mahmassani ZS, Dvoretskiy S, Reid JJ, Miller BF, Hamilton K, Rhodes JS, Boppart MD. Cognitive function is preserved in aged mice following long-term β-hydroxy β-methylbutyrate supplementation. Nutr Neurosci 2018; 23:170-182. [PMID: 29914347 DOI: 10.1080/1028415x.2018.1483101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
β-hydroxy β-methylbutyrate (HMB) is a nutritional supplement purported to enhance skeletal muscle mass and strength, as well as cognitive function in older adults. The purpose of this study was to determine the potential for long-term HMB supplementation to preserve muscle function and cognition in aged mice, as well as provide evidence of a link between vessel-associated pericyte function and outcomes. Four- (Adult/Ad) and 17 month-old (Aged/Ag) C57BL/6J mice consumed chow containing 600 mg/kg BW/day of either Ca-HMB (Ad, n=16; Ag, n=17) or Ca-Lactate (Ad, n=16; Ag, n=17) for 6 months. HMB did not prevent age-related reductions in muscle mass, strength and coordination (Age main effect, P<0.05). The rate of muscle protein synthesis decreased within the mitochondrial fraction (age main effect, P<0.05), and this decline was not prevented with HMB. Despite no change in muscle mass or function, an age-dependent reduction in active avoidance learning was attenuated with HMB (Age and HMB main effects, P<0.05). Age detrimentally impacted muscle-resident pericyte gene expression with no recovery observed with HMB, whereas no changes in brain-resident pericyte quantity or function were observed with age or HMB. The findings from this study suggest that prolonged HMB supplementation starting in adulthood may preserve cognition with age.
Collapse
Affiliation(s)
- Michael Munroe
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ziad S Mahmassani
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Justin J Reid
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Karyn Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marni D Boppart
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
17
|
Varga I, Kyselovič J, Galfiova P, Danisovic L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 999:117-136. [PMID: 29022261 DOI: 10.1007/978-981-10-4307-9_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The non-cardiomyocyte cellular microenvironment of the heart includes diverse types of cells of mesenchymal origin. During development, the majority of these cells derive from the epicardium, while a subset derives from the endothelium/endocardium and neural crest derived mesenchyme. This subset includes cardiac fibroblasts and telocytes, the latter of which are a controversial type of "connecting cell" that support resident cardiac progenitors in the postnatal heart. Smooth muscle cells, pericytes, and endothelial cells are also present, in addition to adipocytes, which accumulate as epicardial adipose connective tissue. Furthermore, the heart harbors many cells of hematopoietic origin, such as mast cells, macrophages, and other immune cell populations. Most of these control immune reactions and inflammation. All of the above-mentioned non-cardiomyocyte cells of the heart contribute to this organ's well-orchestrated physiology. These cells also contribute to regeneration as a result of injury or age, in addition to tissue remodeling triggered by chronic disease or increased physical activity (exercise-induced cardiac growth). These processes in the heart, the most important vital organ in the human body, are not only fascinating from a scientific standpoint, but they are also clinically important. It is well-known that regular exercise can help prevent many cardiovascular diseases. However, the precise mechanisms underpinning myocardial remodeling triggered by physical activity are still unknown. Surprisingly, exercise-induced adaptation mechanisms are often identical or very similar to tissue remodeling caused by pathological conditions, such as hypertension, cardiac hypertrophy, and cardiac fibrosis. This review provides a summary of our current knowledge regarding the cardiac cellular microenvironment, focusing on the clinical applications this information to the study of heart remodeling during regular physical exercise.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | - Jan Kyselovič
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Paulina Galfiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
18
|
Huntsman HD, Rendeiro C, Merritt JR, Pincu Y, Cobert A, De Lisio M, Kolyvas E, Dvoretskiy S, Dobrucki IT, Kemkemer R, Jensen T, Dobrucki LW, Rhodes JS, Boppart MD. The impact of mechanically stimulated muscle-derived stromal cells on aged skeletal muscle. Exp Gerontol 2017; 103:35-46. [PMID: 29269268 DOI: 10.1016/j.exger.2017.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/16/2017] [Accepted: 12/14/2017] [Indexed: 01/06/2023]
Abstract
Perivascular stromal cells, including mesenchymal stem/stromal cells (MSCs), secrete paracrine factor in response to exercise training that can facilitate improvements in muscle remodeling. This study was designed to test the capacity for muscle-resident MSCs (mMSCs) isolated from young mice to release regenerative proteins in response to mechanical strain in vitro, and subsequently determine the extent to which strain-stimulated mMSCs can enhance skeletal muscle and cognitive performance in a mouse model of uncomplicated aging. Protein arrays confirmed a robust increase in protein release at 24h following an acute bout of mechanical strain in vitro (10%, 1Hz, 5h) compared to non-strain controls. Aged (24month old), C57BL/6 mice were provided bilateral intramuscular injection of saline, non-strain control mMSCs, or mMSCs subjected to a single bout of mechanical strain in vitro (4×104). No significant changes were observed in muscle weight, myofiber size, maximal force, or satellite cell quantity at 1 or 4wks between groups. Peripheral perfusion was significantly increased in muscle at 4wks post-mMSC injection (p<0.05), yet no difference was noted between control and preconditioned mMSCs. Intramuscular injection of preconditioned mMSCs increased the number of new neurons and astrocytes in the dentate gyrus of the hippocampus compared to both control groups (p<0.05), with a trend toward an increase in water maze performance noted (p=0.07). Results from this study demonstrate that acute injection of exogenously stimulated muscle-resident stromal cells do not robustly impact aged muscle structure and function, yet increase the survival of new neurons in the hippocampus.
Collapse
Affiliation(s)
- Heather D Huntsman
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Catarina Rendeiro
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jennifer R Merritt
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yair Pincu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Adam Cobert
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emily Kolyvas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ralf Kemkemer
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Tor Jensen
- Division of Biomedical Sciences, Carle Hospital, Urbana, IL 61801, USA
| | - Lawrence W Dobrucki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
19
|
Discovery of High-Affinity PDGF-VEGFR Interactions: Redefining RTK Dynamics. Sci Rep 2017; 7:16439. [PMID: 29180757 PMCID: PMC5704011 DOI: 10.1038/s41598-017-16610-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/14/2017] [Indexed: 01/15/2023] Open
Abstract
Nearly all studies of angiogenesis have focused on uni-family ligand-receptor binding, e.g., VEGFs bind to VEGF receptors, PDGFs bind to PDGF receptors, etc. The discovery of VEGF-PDGFRs binding challenges this paradigm and calls for investigation of other ligand-receptor binding possibilities. We utilized surface plasmon resonance to identify and measure PDGF-to-VEGFR binding rates, establishing cut-offs for binding and non-binding interactions. We quantified the kinetics of the recent VEGF-A:PDGFRβ interaction for the first time with KD = 340 pM. We discovered new PDGF:VEGFR2 interactions with PDGF-AA:R2 KD = 530 nM, PDGF-AB:R2 KD = 110 pM, PDGF-BB:R2 KD = 40 nM, and PDGF-CC:R2 KD = 70 pM. We computationally predict that cross-family PDGF binding could contribute up to 96% of VEGFR2 ligation in healthy conditions and in cancer. Together the identification, quantification, and simulation of these novel cross-family interactions posits new mechanisms for understanding anti-angiogenic drug resistance and presents an expanded role of growth factor signaling with significance in health and disease.
Collapse
|
20
|
Hedhli J, Konopka CJ, Schuh S, Bouvin H, Cole JA, Huntsman HD, Kilian KA, Dobrucki IT, Boppart MD, Dobrucki LW. Multimodal Assessment of Mesenchymal Stem Cell Therapy for Diabetic Vascular Complications. Theranostics 2017; 7:3876-3888. [PMID: 29109784 PMCID: PMC5667411 DOI: 10.7150/thno.19547] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
Peripheral arterial disease (PAD) is a debilitating complication of diabetes mellitus (DM) that leads to thousands of injuries, amputations, and deaths each year. The use of mesenchymal stem cells (MSCs) as a regenerative therapy holds the promise of regrowing injured vasculature, helping DM patients live healthier and longer lives. We report the use of muscle-derived MSCs to treat surgically-induced hindlimb ischemia in a mouse model of type 1 diabetes (DM-1). We serially evaluate several facets of the recovery process, including αVβ3-integrin expression (a marker of angiogenesis), blood perfusion, and muscle function. We also perform microarray transcriptomics experiments to characterize the gene expression states of the MSC-treated is- chemic tissues, and compare the results with those of non-ischemic tissues, as well as ischemic tissues from a saline-treated control group. The results show a multifaceted impact of mMSCs on hindlimb ischemia. We determined that the angiogenic activity one week after mMSC treatment was enhanced by approximately 80% relative to the saline group, which resulted in relative increases in blood perfusion and muscle strength of approximately 42% and 1.7-fold, respectively. At the transcriptomics level, we found that several classes of genes were affected by mMSC treatment. The mMSCs appeared to enhance both pro-angiogenic and metabolic genes, while suppressing anti-angiogenic genes and certain genes involved in the inflammatory response. All told, mMSC treatment appears to exert far-reaching effects on the microenvironment of ischemic tissue, enabling faster and more complete recovery from vascular occlusion.
Collapse
|
21
|
Marcinczyk M, Elmashhady H, Talovic M, Dunn A, Bugis F, Garg K. Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration. Biomaterials 2017; 141:233-242. [PMID: 28697464 DOI: 10.1016/j.biomaterials.2017.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Laminin (LM)-111 supplementation has improved muscle regeneration in several models of disease and injury. This study investigated a novel hydrogel composed of fibrinogen and LM-111. Increasing LM-111 concentration (50-450 μg/mL) in fibrin hydrogels resulted in highly fibrous scaffolds with progressively thinner interlaced fibers. Rheological testing showed that all hydrogels had viscoelastic behavior and the Young's modulus ranged from 2-6KPa. C2C12 myobalsts showed a significant increase in VEGF production and decrease in IL-6 production on LM-111 enriched fibrin hydrogels as compared to pure fibrin hydrogels on day 4. Western blotting results showed a significant increase in MyoD and desmin protein quantity but a significant decrease in myogenin protein quantity in myoblasts cultured on the LM-111 (450 μg/mL) enriched fibrin hydrogel. Combined application of electromechanical stimulation significantly enhanced the production of VEGF and IGF-1 from myoblast seeded fibrin-LM-111 hydrogels. Taken together, these observations offer an important first step toward optimizing a tissue engineered constructs for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Hady Elmashhady
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Faiz Bugis
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA.
| |
Collapse
|
22
|
Niemiro GM, Parel J, Beals J, van Vliet S, Paluska SA, Moore DR, Burd NA, De Lisio M. Kinetics of circulating progenitor cell mobilization during submaximal exercise. J Appl Physiol (1985) 2017; 122:675-682. [DOI: 10.1152/japplphysiol.00936.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/23/2016] [Accepted: 01/08/2017] [Indexed: 12/28/2022] Open
Abstract
Circulating progenitor cells (CPCs) are a heterogeneous population of stem/progenitor cells in peripheral blood that includes hematopoietic stem and progenitor cells (HSPCs and HSCs), endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs) that are involved in tissue repair and adaptation. CPC mobilization during exercise remains uncharacterized in young adults. The purpose of this study was to investigate the kinetics of CPC mobilization during and after submaximal treadmill running and their relationship to mobilization factors. Seven men [age = 25.3 ± 2.4 yr, body mass index = 23.5 ± 1.0 kg/m2, peak O2uptake (V̇o2peak) = 60.9 ± 2.74 ml·kg−1·min−1] ran on a treadmill for 60 min at 70% V̇o2peak. Blood sampling occurred before (Pre), during [20 min (20e), 40 min (40e), 60 min (60e)], and after exercise [15 min (15p), 60 min (60p), 120 min (120p)] for quantification of CPCs (CD34+), HSPCs (CD34+/CD45low), HSCs (CD34+/CD45low/CD38−), CD34+MSCs (CD45−/CD34+/CD31−/CD105+), CD34−MSCs (CD45−/CD34−/CD31−/CD105+), and EPCs (CD45−/CD34+/CD31+) via flow cytometry. CPC concentration increased compared with Pre at 20e and 40e (2.7- and 2.4-fold, respectively, P < 0.05). HSPCs and HSCs increased at 20e compared with 60p (2.7- and 2.8-fold, respectively, P < 0.05), whereas EPCs and both MSC populations did not change. CXC chemokine ligand (CXCL) 12 (1.5-fold; P < 0.05) and stem cell factor (1.3-fold; P < 0.05) were increased at 40e and remained elevated postexercise. The peak increase in CPCs was positively correlated to concentration of endothelial cells during exercise with no relationship to CXCL12 and SCF. Our data show the kinetics of progenitor cell mobilization during exercise that could provide insight into cellular mediators of exercise-induced adaptations, and have implication for the use of exercise as an adjuvant therapy for CPC collection in hematopoietic stem cell transplant.NEW & NOTEWORTHY Using a comprehensive evaluation of circulating progenitor cells (CPCs), we show that CPC mobilization during exercise is related to tissue damage, and not plasma concentrations of CXC chemokine ligand 12 and stem cell factor. These data have implications for the use of exercise interventions as adjuvant therapy for CPC mobilization in the context of hematopoietic stem cell transplant and also support the role of mobilized progenitor cells as cellular mediators of systemic adaptations to exercise.
Collapse
Affiliation(s)
- Grace M. Niemiro
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Justin Parel
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Joseph Beals
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Scott A. Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Daniel R. Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; and
| | - Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
- School of Human Kinetics, Brain and Mind Institute, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Munroe M, Pincu Y, Merritt J, Cobert A, Brander R, Jensen T, Rhodes J, Boppart MD. Impact of β-hydroxy β-methylbutyrate (HMB) on age-related functional deficits in mice. Exp Gerontol 2016; 87:57-66. [PMID: 27887984 DOI: 10.1016/j.exger.2016.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 01/03/2023]
Abstract
β-Hydroxy β-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine. Recent studies demonstrate a decline in plasma HMB concentrations in humans across the lifespan, and HMB supplementation may be able to preserve muscle mass and strength in older adults. However, the impact of HMB supplementation on hippocampal neurogenesis and cognition remains largely unexplored. The purpose of this study was to simultaneously evaluate the impact of HMB on muscle strength, neurogenesis and cognition in young and aged mice. In addition, we evaluated the influence of HMB on muscle-resident mesenchymal stem/stromal cell (Sca-1+CD45-; mMSC) function to address these cells potential to regulate physiological outcomes. Three month-old (n=20) and 24 month-old (n=18) female C57BL/6 mice were provided with either Ca-HMB or Ca-Lactate in a sucrose solution twice per day for 5.5weeks at a dose of 450mg/kg body weight. Significant decreases in relative peak and mean force, balance, and neurogenesis were observed in aged mice compared to young (age main effects, p≤0.05). Short-term HMB supplementation did not alter activity, balance, neurogenesis, or cognitive function in young or aged mice, yet HMB preserved relative peak force in aged mice. mMSC gene expression was significantly reduced with age, but HMB supplementation was able to recover expression of select growth factors known to stimulate muscle repair (HGF, LIF). Overall, our findings demonstrate that while short-term HMB supplementation does not appear to affect neurogenesis or cognitive function in young or aged mice, HMB may maintain muscle strength in aged mice in a manner dependent on mMSC function.
Collapse
Affiliation(s)
- Michael Munroe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yair Pincu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jennifer Merritt
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Adam Cobert
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan Brander
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tor Jensen
- Division of Biomedical Sciences, Carle Hospital, Urbana, IL 61801, USA
| | - Justin Rhodes
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
24
|
Wehman B, Sharma S, Pietris N, Mishra R, Siddiqui OT, Bigham G, Li T, Aiello E, Murthi S, Pittenger M, Griffith B, Kaushal S. Mesenchymal stem cells preserve neonatal right ventricular function in a porcine model of pressure overload. Am J Physiol Heart Circ Physiol 2016; 310:H1816-26. [PMID: 27106046 DOI: 10.1152/ajpheart.00955.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/12/2016] [Indexed: 11/22/2022]
Abstract
Limited therapies exist for patients with congenital heart disease (CHD) who develop right ventricular (RV) dysfunction. Bone marrow-derived mesenchymal stem cells (MSCs) have not been evaluated in a preclinical model of pressure overload, which simulates the pathophysiology relevant to many forms of CHD. A neonatal swine model of RV pressure overload was utilized to test the hypothesis that MSCs preserve RV function and attenuate ventricular remodeling. Immunosuppressed Yorkshire swine underwent pulmonary artery banding to induce RV dysfunction. After 30 min, human MSCs (1 million cells, n = 5) or placebo (n = 5) were injected intramyocardially into the RV free wall. Serial transthoracic echocardiography monitored RV functional indices including 2D myocardial strain analysis. Four weeks postinjection, the MSC-treated myocardium had a smaller increase in RV end-diastolic area, end-systolic area, and tricuspid vena contracta width (P < 0.01), increased RV fractional area of change, and improved myocardial strain mechanics relative to placebo (P < 0.01). The MSC-treated myocardium demonstrated enhanced neovessel formation (P < 0.0001), superior recruitment of endogenous c-kit+ cardiac stem cells to the RV (P < 0.0001) and increased proliferation of cardiomyocytes (P = 0.0009) and endothelial cells (P < 0.0001). Hypertrophic changes in the RV were more pronounced in the placebo group, as evidenced by greater wall thickness by echocardiography (P = 0.008), increased cardiomyocyte cross-sectional area (P = 0.001), and increased expression of hypertrophy-related genes, including brain natriuretic peptide, β-myosin heavy chain and myosin light chain. Additionally, MSC-treated myocardium demonstrated increased expression of the antihypertrophy secreted factor, growth differentiation factor 15 (GDF15), and its downstream effector, SMAD 2/3, in cultured neonatal rat cardiomyocytes and in the porcine RV myocardium. This is the first report of the use of MSCs as a therapeutic strategy to preserve RV function and attenuate remodeling in the setting of pressure overload. Mechanistically, transplanted MSCs possibly stimulated GDF15 and its downstream SMAD proteins to antagonize the hypertrophy response of pressure overload. These encouraging results have implications in congenital cardiac pressure overload lesions.
Collapse
Affiliation(s)
- Brody Wehman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Sudhish Sharma
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Nicholas Pietris
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rachana Mishra
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Osama T Siddiqui
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Grace Bigham
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Tieluo Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Emily Aiello
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Sarah Murthi
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Mark Pittenger
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Bartley Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Sunjay Kaushal
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
25
|
Zou K, Huntsman HD, Carmen Valero M, Adams J, Skelton J, De Lisio M, Jensen T, Boppart MD. Mesenchymal stem cells augment the adaptive response to eccentric exercise. Med Sci Sports Exerc 2016; 47:315-25. [PMID: 24905768 DOI: 10.1249/mss.0000000000000405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE The α7β1 integrin is a transmembrane protein expressed in the skeletal muscle that can link the actin cytoskeleton to the surrounding basal lamina. We have previously demonstrated that transgenic mice overexpressing the α7B integrin in the skeletal muscle (MCK:α7B; α7Tg) mount an enhanced satellite cell and growth response to single or multiple bouts of eccentric exercise. In addition, interstitial stem cells characterized as mesenchymal stem cells (MSCs) accumulate in α7Tg muscle (mMSCs) in the sedentary state and after exercise. The results from these studies prompted us to determine the extent to which mMSC underlie the beneficial adaptive responses observed in α7Tg skeletal muscle after exercise. METHODS mMSCs (Sca-1CD45) were isolated from α7Tg mice, dye-labeled, and intramuscularly injected into adult wild type recipient mice. After injection of mMSCs or saline, mice remained sedentary (SED) or were subjected to eccentric exercise training (TR) (downhill running) on a treadmill (three times per week) for 2 or 4 wk. Gastrocnemius-soleus complexes were collected 24 h after the last bout of exercise. RESULTS mMSCs did not directly fuse with existing fibers; however, mMSCs injection enhanced Pax7 satellite cell number and myonuclear content compared with all other groups at 2 wk after exercise. Mean CSA, percentage of larger caliber fibers (>3000 μm), and grip strength were increased in mMSCs/TR compared with saline/SED and mMSCs/SED at 4 wk. mMSC transplantation did not enhance repair or growth in the absence of exercise. CONCLUSIONS The results from this study demonstrate that mMSCs contribute to beneficial changes in satellite cell expansion and growth in α7Tg muscle after eccentric exercise. Thus, MSCs that naturally accumulate in the muscle after eccentric contractions may enhance the adaptive response to exercise.
Collapse
Affiliation(s)
- Kai Zou
- 1Department of Kinesiology and Community Health, University of Illinois, Urbana, IL; 2Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL; and 3Division of Biomedical Sciences, University of Illinois, Urbana, IL
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tang K, Gu Y, Dalton ND, Wagner H, Peterson KL, Wagner PD, Breen EC. Selective Life-Long Skeletal Myofiber-Targeted VEGF Gene Ablation Impairs Exercise Capacity in Adult Mice. J Cell Physiol 2015. [DOI: 10.1002/jcp.25097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kechun Tang
- Department of Medicine; University of California; San Diego, La Jolla California
| | - Yusu Gu
- Department of Medicine; University of California; San Diego, La Jolla California
| | - Nancy D. Dalton
- Department of Medicine; University of California; San Diego, La Jolla California
| | - Harrieth Wagner
- Department of Medicine; University of California; San Diego, La Jolla California
| | - Kirk L. Peterson
- Department of Medicine; University of California; San Diego, La Jolla California
| | - Peter D. Wagner
- Department of Medicine; University of California; San Diego, La Jolla California
| | - Ellen C. Breen
- Department of Medicine; University of California; San Diego, La Jolla California
| |
Collapse
|
27
|
Farup J, De Lisio M, Rahbek SK, Bjerre J, Vendelbo MH, Boppart MD, Vissing K. Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. J Appl Physiol (1985) 2015; 119:1053-63. [PMID: 26404620 DOI: 10.1152/japplphysiol.01108.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/17/2015] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle satellite cells (SCs) are important for muscle repair and hypertrophy in response mechanical stimuli. Neuron-glial antigen 2-positive (NG2(+)) and alkaline phosphatase-positive (ALP(+)) pericytes may provide an alternative source of myogenic progenitors and/or secrete paracrine factors to induce Pax7(+) SC proliferation and differentiation. The purpose of this study was to investigate NG2(+) and ALP(+) cell quantity, as well as SC content and activation, in human skeletal muscle following prolonged concentric (Conc) or eccentric (Ecc) resistance training. Male subjects engaged in unilateral resistance training utilizing isolated Ecc or Conc contractions. After 12 wk, muscle biopsies were analyzed for NG2(+) and ALP(+) pericytes, total Pax7(+) SCs, activated SCs (Pax7(+)MyoD(+)), and differentiating myogenic cells (Pax7(-) MyoD(+)). NG2(+) cells localized to CD31(+) vessels and the majority coexpressed ALP. NG2(+) pericyte quantity decreased following both Conc and Ecc training (P < 0.05). ALP(+) pericyte quantity declined following Conc (P < 0.05) but not Ecc training. Conversely, total Pax7(+) SC content was elevated following Conc only (P < 0.001), while Pax7(+)MyoD(+) SC content was increased following Conc and Ecc (P < 0.001). Follow up analyses demonstrated that CD90(+) and platelet-derived growth factor receptor-α (PDGFRα)(+) mononuclear cell proliferation was also increased in response to both Conc and Ecc training (P < 0.01). In summary, resistance training results in a decline in pericyte quantity and an increase in mesenchymal progenitor cell proliferation, and these events likely influence SC pool expansion and increased activation observed posttraining.
Collapse
Affiliation(s)
- Jean Farup
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Michael De Lisio
- Department of Kinesiology and Community Health and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois; and
| | - Stine Klejs Rahbek
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jonas Bjerre
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Mikkel Holm Vendelbo
- Department of Internal Medicine and Endocrinology and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Marni D Boppart
- Department of Kinesiology and Community Health and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois; and
| | - Kristian Vissing
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
28
|
Boppart MD, De Lisio M, Witkowski S. Exercise and Stem Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:423-56. [PMID: 26477925 DOI: 10.1016/bs.pmbts.2015.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cells are traditionally studied in the context of embryonic development, yet studies confirm that a fraction remains in the adult organism for the purpose of daily remodeling and rejuvenation of multiple tissues following injury. Adult stem cells (ASCs) are found in close proximity to vessels and respond to tissue-specific cues in the microenvironment that dictate their fate and function. Exercise can dramatically alter strain sensing, extracellular matrix composition, and inflammation, and such changes in the niche likely alter ASC quantity and function postexercise. The field of stem cell biology is still in its infancy and identification and terminology of ASCs continues to evolve; thus, current information regarding exercise and stem cells is lacking. This chapter summarizes the literature that reports on the ASC response to acute exercise and exercise training, with particular emphasis on hematopoietic stem cells, endothelial progenitor cells, and mesenchymal stem cells.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, USA.
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA
| | - Sarah Witkowski
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
29
|
De Lisio M, Farup J, Sukiennik RA, Clevenger N, Nallabelli J, Nelson B, Ryan K, Rahbek SK, de Paoli F, Vissing K, Boppart MD. The acute response of pericytes to muscle-damaging eccentric contraction and protein supplementation in human skeletal muscle. J Appl Physiol (1985) 2015. [PMID: 26205545 DOI: 10.1152/japplphysiol.01112.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle pericytes increase in quantity following eccentric exercise (ECC) and contribute to myofiber repair and adaptation in mice. The purpose of the present investigation was to examine pericyte quantity in response to muscle-damaging ECC and protein supplementation in human skeletal muscle. Male subjects were divided into protein supplement (WHY; n = 12) or isocaloric placebo (CHO; n = 12) groups and completed ECC using an isokinetic dynamometer. Supplements were consumed 3 times/day throughout the experimental time course. Biopsies were collected prior to (PRE) and 3, 24, 48, and 168 h following ECC. Reflective of the damaging protocol, integrin subunits, including α7, β1A, and β1D, increased (3.8-fold, 3.6-fold and 3.9-fold, respectively, P < 0.01) 24 h post-ECC with no difference between supplements. Pericyte quantity did not change post-ECC. WHY resulted in a small, but significant, decrease in ALP(+) pericytes when expressed as a percentage of myonuclei (CHO 6.8 ± 0.3% vs. WHY 5.8 ± 0.3%, P < 0.05) or per myofiber (CHO 0.119 ± 0.01 vs. WHY 0.098 ± 0.01, P < 0.05). The quantity of myonuclei expressing serum response factor and the number of pericytes expressing serum response factor, did not differ as a function of time post-ECC or supplement. These data demonstrate that acute muscle-damaging ECC increases α7β1 integrin content in human muscle, yet pericyte quantity is largely unaltered. Future studies should focus on the capacity for ECC to influence pericyte function, specifically paracrine factor release as a mechanism toward pericyte contribution to repair and adaptation postexercise.
Collapse
Affiliation(s)
- Michael De Lisio
- Department of Kinesiology and Community Health and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois; and
| | - Jean Farup
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark; and
| | - Richard A Sukiennik
- Department of Kinesiology and Community Health and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois; and
| | - Nicole Clevenger
- Department of Kinesiology and Community Health and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois; and
| | - Julian Nallabelli
- Department of Kinesiology and Community Health and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois; and
| | - Brett Nelson
- Department of Kinesiology and Community Health and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois; and
| | - Kelly Ryan
- Department of Kinesiology and Community Health and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois; and
| | - Stine K Rahbek
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark; and
| | - Frank de Paoli
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kristian Vissing
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark; and
| | - Marni D Boppart
- Department of Kinesiology and Community Health and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois; and
| |
Collapse
|
30
|
LaBarbera KE, Hyldahl RD, O'Fallon KS, Clarkson PM, Witkowski S. Pericyte NF-κB activation enhances endothelial cell proliferation and proangiogenic cytokine secretion in vitro. Physiol Rep 2015; 3:3/4/e12309. [PMID: 25911453 PMCID: PMC4425949 DOI: 10.14814/phy2.12309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pericytes are skeletal muscle resident, multipotent stem cells that are localized to the microvasculature. In vivo, studies have shown that they respond to damage through activation of nuclear-factor kappa-B (NF-κB), but the downstream effects of NF-κB activation on endothelial cell proliferation and cell-cell signaling during repair remain unknown. The purpose of this study was to examine pericyte NF-κB activation in a model of skeletal muscle damage; and use genetic manipulation to study the effects of changes in pericyte NF-κB activation on endothelial cell proliferation and cytokine secretion. We utilized scratch injury to C2C12 cells in coculture with human primary pericytes to assess NF-κB activation and monocyte chemoattractant protein-1 (MCP-1) secretion from pericytes and C2C12 cells. We also cocultured endothelial cells with pericytes that expressed genetically altered NF-κB activation levels, and then quantified endothelial cell proliferation and screened the conditioned media for secreted cytokines. Pericytes trended toward greater NF-κB activation in injured compared to control cocultures (P = 0.085) and in comparison to C2C12 cells (P = 0.079). Second, increased NF-κB activation in pericytes enhanced the proliferation of cocultured endothelial cells (1.3-fold, P = 0.002). Finally, we identified inflammatory signaling molecules, including MCP-1 and interleukin 8 (IL-8) that may mediate the crosstalk between pericytes and endothelial cells. The results of this study show that pericyte NF-κB activation may be an important mechanism in skeletal muscle repair with implications for the development of therapies for musculoskeletal and vascular diseases, including peripheral artery disease.
Collapse
Affiliation(s)
- Katherine E LaBarbera
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Kevin S O'Fallon
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Priscilla M Clarkson
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Sarah Witkowski
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
31
|
Smith LR. Influencing the secretion of myogenic factors from mesenchymal stem cells. Stem Cell Res Ther 2014; 5:96. [PMID: 25157834 PMCID: PMC4282150 DOI: 10.1186/scrt485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Mounting evidence indicates that the regenerative effect of mesenchymal stem cells in skeletal muscle is related to the secretion of factors that stimulate resident myogenic cells. However, the environmental cues that affect the secreted factors of mesenchymal stem cells are not well understood. A recent publication demonstrated that secretion of factors is dependent on cell substrate, with mesenchymal stem cells grown on laminin providing more pro-myogenic factors than those grown on collagen, and that cellular strain may also play a role. Conditioned media from mesenchymal stem cells grown on laminin and subjected to strain provided the quickest and largest stimulation to myogenic cell proliferation. The influence of cell substrate and mechanical perturbation on mesenchymal stem cells therefore appears key to secretion of factors that support myogenesis.
Collapse
|
32
|
Zou K, De Lisio M, Huntsman HD, Pincu Y, Mahmassani Z, Miller M, Olatunbosun D, Jensen T, Boppart MD. Laminin-111 improves skeletal muscle stem cell quantity and function following eccentric exercise. Stem Cells Transl Med 2014; 3:1013-22. [PMID: 25015639 DOI: 10.5966/sctm.2014-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Laminin-111 (α1, β1, γ1; LM-111) is an important component of the extracellular matrix that is required for formation of skeletal muscle during embryonic development. Recent studies suggest that LM-111 supplementation can enhance satellite cell proliferation and muscle function in mouse models of muscular dystrophy. The purpose of this study was to determine the extent to which LM-111 can alter satellite and nonsatellite stem cell quantity following eccentric exercise-induced damage in young adult, healthy mice. One week following injection of LM-111 or saline, mice either remained sedentary or were subjected to a single bout of downhill running (EX). While one muscle was preserved for evaluation of satellite cell number, the other muscle was processed for isolation of mesenchymal stem cells (MSCs; Sca-1+CD45-) via FACS at 24 hours postexercise. Satellite cell number was approximately twofold higher in LM-111/EX compared with all other groups (p<.05), and the number of satellite cells expressing the proliferation marker Ki67 was 50% to threefold higher in LM-111/EX compared with all other groups (p<.05). LM-111 also increased the quantity of embryonic myosin heavy chain-positive (eMHC+) fibers in young mice after eccentric exercise (p<.05). Although MSC percentage and number were not altered, MSC proinflammatory gene expression was decreased, and hepatocyte growth factor gene expression was increased in the presence of LM-111 (p<.05). Together, these data suggest that LM-111 supplementation provides a viable solution for increasing skeletal muscle stem cell number and/or function, ultimately allowing for improvements in the regenerative response to eccentric exercise.
Collapse
Affiliation(s)
- Kai Zou
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, and Division of Biomedical Sciences, University of Illinois, Urbana, Illinois, USA
| | - Michael De Lisio
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, and Division of Biomedical Sciences, University of Illinois, Urbana, Illinois, USA
| | - Heather D Huntsman
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, and Division of Biomedical Sciences, University of Illinois, Urbana, Illinois, USA
| | - Yair Pincu
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, and Division of Biomedical Sciences, University of Illinois, Urbana, Illinois, USA
| | - Ziad Mahmassani
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, and Division of Biomedical Sciences, University of Illinois, Urbana, Illinois, USA
| | - Matthew Miller
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, and Division of Biomedical Sciences, University of Illinois, Urbana, Illinois, USA
| | - Dami Olatunbosun
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, and Division of Biomedical Sciences, University of Illinois, Urbana, Illinois, USA
| | - Tor Jensen
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, and Division of Biomedical Sciences, University of Illinois, Urbana, Illinois, USA
| | - Marni D Boppart
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, and Division of Biomedical Sciences, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
33
|
De Lisio M, Jensen T, Sukiennik RA, Huntsman HD, Boppart MD. Substrate and strain alter the muscle-derived mesenchymal stem cell secretome to promote myogenesis. Stem Cell Res Ther 2014; 5:74. [PMID: 24906706 PMCID: PMC4097833 DOI: 10.1186/scrt463] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) reside in a variety of tissues and provide a stromal role in regulating progenitor cell function. Current studies focus on identifying the specific factors in the niche that can alter the MSC secretome, ultimately determining the effectiveness and timing of tissue repair. The purpose of the present study was to evaluate the extent to which substrate and mechanical strain simultaneously regulate MSC quantity, gene expression, and secretome. METHODS MSCs (Sca-1+CD45-) isolated from murine skeletal muscle (muscle-derived MSCs, or mMSCs) via fluorescence-activated cell sorting were seeded onto laminin (LAM)- or collagen type 1 (COL)-coated membranes and exposed to a single bout of mechanical strain (10%, 1 Hz, 5 hours). RESULTS mMSC proliferation was not directly affected by substrate or strain; however, gene expression of growth and inflammatory factors and extracellular matrix (ECM) proteins was downregulated in mMSCs grown on COL in a manner independent of strain. Focal adhesion kinase (FAK) may be involved in substrate regulation of mMSC secretome as FAK phosphorylation was significantly elevated 24 hours post-strain in mMSCs plated on LAM but not COL (P <0.05). Conditioned media (CM) from mMSCs exposed to both LAM and strain increased myoblast quantity 5.6-fold 24 hours post-treatment compared with myoblasts treated with serum-free media (P <0.05). This response was delayed in myoblasts treated with CM from mMSCs grown on COL. CONCLUSIONS Here, we demonstrate that exposure to COL, the primary ECM component associated with tissue fibrosis, downregulates genes associated with growth and inflammation in mMSCs and delays the ability for mMSCs to stimulate myoblast proliferation.
Collapse
Affiliation(s)
- Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| | - Tor Jensen
- Division of Biomedical Sciences, University of Illinois, Urbana, IL, USA
| | - Richard A Sukiennik
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| | - Heather D Huntsman
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| |
Collapse
|
34
|
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2014; 28:330-58. [PMID: 23997192 DOI: 10.1152/physiol.00019.2013] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The concept of a "polypill" is receiving growing attention to prevent cardiovascular disease. Yet similar if not overall higher benefits are achievable with regular exercise, a drug-free intervention for which our genome has been haped over evolution. Compared with drugs, exercise is available at low cost and relatively free of adverse effects. We summarize epidemiological evidence on the preventive/therapeutic benefits of exercise and on the main biological mediators involved.
Collapse
|
35
|
Abstract
Ectopic bone formation refers to the ossification of tissue outside of its typical microenvironment. Numerous animal models exist to experimentally induce ectopic bone formation in order to examine the process of osteogenesis or to evaluate the "osteogenic potential" of a given implant. The most widely employed methods in the rodent include subcutaneous, intramuscular, and renal capsule implantation. This chapter will outline the (1) clinical correlates to ectopic ossification, (2) a brief history of experimental models of ectopic ossification, (3) advantages and disadvantages of various models (with a focus on rodent models), and (4) detailed methods and explanation of a mouse intramuscular implantation procedure.
Collapse
Affiliation(s)
- Greg Asatrian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
36
|
Boppart MD, De Lisio M, Zou K, Huntsman HD. Defining a role for non-satellite stem cells in the regulation of muscle repair following exercise. Front Physiol 2013; 4:310. [PMID: 24204344 PMCID: PMC3817631 DOI: 10.3389/fphys.2013.00310] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/10/2013] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle repair is essential for effective remodeling, tissue maintenance, and initiation of beneficial adaptations post-eccentric exercise. A series of well characterized events, such as recruitment of immune cells and activation of satellite cells, constitute the basis for muscle regeneration. However, details regarding the fine-tuned regulation of this process in response to different types of injury are open for investigation. Muscle-resident non-myogenic, non-satellite stem cells expressing conventional mesenchymal stem cell (MSC) markers, have the potential to significantly contribute to regeneration given the role for bone marrow-derived MSCs in whole body tissue repair in response to injury and disease. The purpose of this mini-review is to highlight a regulatory role for Pnon-satellite stem cells in the process of skeletal muscle healing post-eccentric exercise. The non-myogenic, non-satellite stem cell fraction will be defined, its role in tissue repair will be briefly reviewed, and recent studies demonstrating a contribution to eccentric exercise-induced regeneration will be presented.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana, IL, USA
| | | | | | | |
Collapse
|