1
|
Shi C, Wen Z, Yang Y, Shi L, Liu D. NAD+ metabolism and therapeutic strategies in cardiovascular diseases. ATHEROSCLEROSIS PLUS 2024; 57:1-12. [PMID: 38974325 PMCID: PMC11223091 DOI: 10.1016/j.athplu.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a central and pleiotropic metabolite involved in cellular energy metabolism, cell signaling, DNA repair, and protein modifications. Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic stress and aging directly affect the cardiovascular system. Compelling data suggest that NAD + levels decrease with age, obesity, and hypertension, which are all notable risk factors for CVD. In addition, the therapeutic elevation of NAD + levels reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular disorders. In preclinical models, NAD + boosting can also expand the health span, prevent metabolic syndrome, and decrease blood pressure. Moreover, NAD + storage by genetic, pharmacological, or natural dietary NAD + -increasing strategies has recently been shown to be effective in improving the pathophysiology of cardiac and vascular health in different animal models, and human health. Here, we review and discuss NAD + -related mechanisms pivotal for vascular health and summarize recent experimental evidence in NAD + research directly related to vascular disease, including atherosclerosis, and coronary artery disease. Finally, we comparatively assess distinct NAD + precursors for their clinical efficacy and the efficiency of NAD + elevation in the treatment of major CVD. These findings may provide ideas for new therapeutic strategies to prevent and treat CVD in the clinic.
Collapse
Affiliation(s)
- Chongxu Shi
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
| | - Zhaozhi Wen
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
| | - Yihang Yang
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
| | - Linsheng Shi
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
- Co-Innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| |
Collapse
|
2
|
Meng X, Xie S, Liu J, Lv B, Huang X, Liu Q, Wang X, Malashicheva A, Liu J. Low dose cadmium inhibits syndecan-4 expression in glycocalyx of glomerular endothelial cells. J Appl Toxicol 2024; 44:908-918. [PMID: 38396353 DOI: 10.1002/jat.4592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Cadmium (Cd) is one of the most polluting heavy metal in the environment. Cd exposure has been elucidated to cause dysfunction of the glomerular filtration barrier (GFB). However, the underlying mechanism remains unclear. C57BL/6J male mice were administered with 2.28 mg/kg cadmium chloride (CdCl2) dissolved in distilled water by oral gavage for 14 days. The expression of SDC4 in the kidney tissues was detected. Human renal glomerular endothelial cells (HRGECs) were exposed to varying concentrations of CdCl2 for 24 h. The mRNA levels of SDC4, along with matrix metalloproteinase (MMP)-2 and 9, were analyzed by quantitative PCR. Additionally, the protein expression levels of SDC4, MMP-2/9, and both total and phosphorylated forms of Smad2/3 (P-Smad2/3) were detected by western blot. The extravasation rate of fluorescein isothiocyanate-dextran through the Transwell was used to evaluate the permeability of HRGECs. SB431542 was used as an inhibitor of transforming growth factor (TGF)-β signaling pathway to further investigate the role of TGF-β. Cd reduced SDC4 expression in both mouse kidney tissues and HRGECs. In addition, Cd exposure increased permeability and upregulated P-Smad2/3 levels in HRGECs. SB431542 treatment inhibited the phosphorylation of Smad2/3, Cd-induced SDC4 downregulation, and hyperpermeability. MMP-2/9 levels increased by Cd exposure was also blocked by SB431542, demonstrating the involvement of TGF-β/Smad pathway in low-dose Cd-induced SDC4 reduction in HRGECs. Given that SDC4 is an essential component of glycocalyx, protection or repair of endothelial glycocalyx is a potential strategy for preventing or treating kidney diseases associated with environmental Cd exposure.
Collapse
Affiliation(s)
- Xianli Meng
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shuhui Xie
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jing Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qiang Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xia Wang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
3
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Goligorsky MS. Permissive role of vascular endothelium in fibrosis: focus on the kidney. Am J Physiol Cell Physiol 2024; 326:C712-C723. [PMID: 38223932 PMCID: PMC11193458 DOI: 10.1152/ajpcell.00526.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Fibrosis, the morphologic end-result of a plethora of chronic conditions and the scorch for organ function, has been thoroughly investigated. One aspect of its development and progression, namely the permissive role of vascular endothelium, has been overshadowed by studies into (myo)fibroblasts and TGF-β; thus, it is the subject of the present review. It has been established that tensile forces of the extracellular matrix acting on cells are a prerequisite for mechanochemical coupling, leading to liberation of TGF-β and formation of myofibroblasts. Increased tensile forces are prompted by elevated vascular permeability in response to diverse stressors, resulting in the exudation of fibronectin, fibrinogen/fibrin, and other proteins, all stiffening the extracellular matrix. These processes lead to the development of endothelial cells dysfunction, endothelial-to-mesenchymal transition, premature senescence of endothelial cells, perturbation of blood flow, and gradual obliteration of microvasculature, leaving behind "string" vessels. The resulting microvascular rarefaction is not only a constant companion of fibrosis but also an adjunct mechanism of its progression. The deepening knowledge of the above chain of pathogenetic events involving endothelial cells, namely increased permeability-stiffening of the matrix-endothelial dysfunction-microvascular rarefaction-tissue fibrosis, may provide a roadmap for therapeutic interventions deemed to curtail and reverse fibrosis.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Department of Medicine, New York Medical College, Touro University, Valhalla, New York, United States
- Department of Pharmacology, New York Medical College, Touro University, Valhalla, New York, United States
- Department of Physiology, New York Medical College, Touro University, Valhalla, New York, United States
| |
Collapse
|
5
|
Sun L, Wang L, Ye KX, Wang S, Zhang R, Juan Z, Feng L, Min S. Endothelial Glycocalyx in Aging and Age-related Diseases. Aging Dis 2023; 14:1606-1617. [PMID: 37196119 PMCID: PMC10529737 DOI: 10.14336/ad.2023.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 05/19/2023] Open
Abstract
The worldwide population is aging exponentially, creating burdens to patients, their families and society. Increasing age is associated with higher risk of a wide range of chronic diseases, and aging of the vascular system is closely linked to the development of many age-related diseases. Endothelial glycocalyx is a layer of proteoglycan polymers on the surface of the inner lumen of blood vessels. It plays an important role in maintaining vascular homeostasis and protecting various organ functions. Endothelial glycocalyx loss happens through the aging process and repairing the endothelial glycocalyx may alleviate the symptoms of age-related diseases. Given the important role of the glycocalyx and its regenerative properties, it is posited that the endothelial glycocalyx may be a potential therapeutic target for aging and age-related diseases and repairing endothelial glycocalyx could play a role in the promotion of healthy aging and longevity. Here, we review the composition, function, shedding, and manifestation of the endothelial glycocalyx in aging and age-related diseases, as well as regeneration of endothelial glycocalyx.
Collapse
Affiliation(s)
- Lina Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China.
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lingyan Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaisy Xinhong Ye
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Shoushi Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Rui Zhang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhaodong Juan
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lei Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Ricard-Blum S, Couchman JR. Conformations, interactions and functions of intrinsically disordered syndecans. Biochem Soc Trans 2023:BST20221085. [PMID: 37334846 DOI: 10.1042/bst20221085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans present on most mammalian cell surfaces. They have a long evolutionary history, a single syndecan gene being expressed in bilaterian invertebrates. Syndecans have attracted interest because of their potential roles in development and disease, including vascular diseases, inflammation and various cancers. Recent structural data is providing important insights into their functions, which are complex, involving both intrinsic signaling through cytoplasmic binding partners and co-operative mechanisms where syndecans form a signaling nexus with other receptors such as integrins and tyrosine kinase growth factor receptors. While the cytoplasmic domain of syndecan-4 has a well-defined dimeric structure, the syndecan ectodomains are intrinsically disordered, which is linked to a capacity to interact with multiple partners. However, it remains to fully establish the impact of glycanation and partner proteins on syndecan core protein conformations. Genetic models indicate that a conserved property of syndecans links the cytoskeleton to calcium channels of the transient receptor potential class, compatible with roles as mechanosensors. In turn, syndecans influence actin cytoskeleton organization to impact motility, adhesion and the extracellular matrix environment. Syndecan clustering with other cell surface receptors into signaling microdomains has relevance to tissue differentiation in development, for example in stem cells, but also in disease where syndecan expression can be markedly up-regulated. Since syndecans have potential as diagnostic and prognostic markers as well as possible targets in some forms of cancer, it remains important to unravel structure/function relationships in the four mammalian syndecans.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- ICBMS, UMR 5246 CNRS, Universite Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - John R Couchman
- Biotech Research & Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Lim J, Machin DR, Donato AJ. The role of hyaluronan in endothelial glycocalyx and potential preventative lifestyle strategy with advancing age. CURRENT TOPICS IN MEMBRANES 2023; 91:139-156. [PMID: 37080678 PMCID: PMC10464581 DOI: 10.1016/bs.ctm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The endothelial glycocalyx (EG) is a gel-like structure that forms a layer in between the surface of the endothelium and lumen. EG was once thought to be merely a structural support for the endothelium. However, in recent years, the importance of EG as a first line of defense and a key regulator to endothelial integrity has been illuminated. With advanced age, EG deterioration becomes more noticeable and at least partially associated with endothelial dysfunction. Hyaluronan (HA), one of the critical components of the EG, has distinct properties and roles to the maintenance of EG and endothelial function. Therefore, given the intimate relationship between the EG and endothelium during the aging process, HA may serve as a promising therapeutic target to prevent endothelial dysfunction.
Collapse
Affiliation(s)
- Jisok Lim
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Daniel Robert Machin
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Anthony John Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States; Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, UT, United States; Department of Nutrition and Integrative Physiology, Salt Lake City, UT, United States; Department of Biochemistry, University of Utah, Salt Lake City, UT, United States; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
8
|
Campagna R, Vignini A. NAD + Homeostasis and NAD +-Consuming Enzymes: Implications for Vascular Health. Antioxidants (Basel) 2023; 12:376. [PMID: 36829935 PMCID: PMC9952603 DOI: 10.3390/antiox12020376] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a ubiquitous metabolite that takes part in many key redox reactions. NAD+ biosynthesis and NAD+-consuming enzymes have been attracting markedly increasing interest since they have been demonstrated to be involved in several crucial biological pathways, impacting genes transcription, cellular signaling, and cell cycle regulation. As a consequence, many pathological conditions are associated with an impairment of intracellular NAD+ levels, directly or indirectly, which include cardiovascular diseases, obesity, neurodegenerative diseases, cancer, and aging. In this review, we describe the general pathways involved in the NAD+ biosynthesis starting from the different precursors, analyzing the actual state-of-art of the administration of NAD+ precursors or blocking NAD+-dependent enzymes as strategies to increase the intracellular NAD+ levels or to counteract the decline in NAD+ levels associated with ageing. Subsequently, we focus on the disease-related and age-related alterations of NAD+ homeostasis and NAD+-dependent enzymes in endothelium and the consequent vascular dysfunction, which significantly contributes to a wide group of pathological disorders.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60121 Ancona, Italy
| |
Collapse
|
9
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Rinaldi C, D’Angelo R, Sidoti A. Epitranscriptome Analysis of Oxidative Stressed Retinal Epithelial Cells Depicted a Possible RNA Editing Landscape of Retinal Degeneration. Antioxidants (Basel) 2022; 11:antiox11101967. [PMID: 36290689 PMCID: PMC9598096 DOI: 10.3390/antiox11101967] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress represents one of the principal causes of inherited retinal dystrophies, with many related molecular mechanisms still unknown. We investigated the posttranscriptional RNA editing landscape of human retinal pigment epithelium cells (RPE) exposed to the oxidant agent N-retinylidene-N-retinyl ethanolamine (A2E) for 1 h, 2 h, 3 h and 6 h. Using a transcriptomic approach, refined with a specific multialgorithm pipeline, 62,880 already annotated and de novo RNA editing sites within about 3000 genes were identified among all samples. Approximately 19% of these RNA editing sites were found within 3' UTR, including sites common to all time points that were predicted to change the binding capacity of 359 miRNAs towards 9654 target genes. A2E exposure also determined significant gene expression differences in deaminase family ADAR, APOBEC and ADAT members, involved in canonical and tRNA editing events. On GO and KEGG enrichment analyses, genes that showed different RNA editing levels are mainly involved in pathways strongly linked to a possible neovascularization of retinal tissue, with induced apoptosis mediated by the ECM and surface protein altered signaling. Collectively, this work demonstrated dynamic RNA editome profiles in RPE cells for the first time and shed more light on new mechanisms at the basis of retinal degeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-221-3136
| | - Sergio Zaccaria Scalinci
- DIMEC (Department of Medical and Surgical Sciences), University of Bologna, 40121 Bologna, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
10
|
Begum MK, Konja D, Singh S, Chlopicki S, Wang Y. Endothelial SIRT1 as a Target for the Prevention of Arterial Aging: Promises and Challenges. J Cardiovasc Pharmacol 2021; 78:S63-S77. [PMID: 34840264 DOI: 10.1097/fjc.0000000000001154] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT SIRT1, a member of the sirtuin family of longevity regulators, possesses potent activities preventing vascular aging. The expression and function of SIRT1 in endothelial cells are downregulated with age, in turn causing early vascular aging and predisposing various vascular abnormalities. Overexpression of SIRT1 in the vascular endothelium prevents aging-associated endothelial dysfunction and senescence, thus the development of hypertension and atherosclerosis. Numerous efforts have been directed to increase SIRT1 signaling as a potential strategy for different aging-associated diseases. However, the complex mechanisms underlying the regulation of SIRT1 have posed a significant challenge toward the design of specific and effective therapeutics. This review aimed to provide a summary on the regulation and function of SIRT1 in the vascular endothelium and to discuss the different approaches targeting this molecule for the prevention and treatment of age-related cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Musammat Kulsuma Begum
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Sandeep Singh
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; and
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Sanchez C, Lambert C, Dubuc JE, Bertrand J, Pap T, Henrotin Y. Syndecan-4 Is Increased in Osteoarthritic Knee, but Not Hip or Shoulder, Articular Hypertrophic Chondrocytes. Cartilage 2021; 13:862S-871S. [PMID: 31455087 PMCID: PMC8804772 DOI: 10.1177/1947603519870855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Syndecan-4 plays a critical role in cartilage degradation during osteoarthritis (OA). The aim of this study was to investigate the expression and localization of syndecan-4 in different OA joint tissues. DESIGN Syndecan-4 mRNA levels were quantified by reverse transcription-polymerase chain reaction in human OA primary cells. Syndecan-4 was localized by immunohistochemistry in knee, hip, or shoulder OA bone/cartilage biopsies. Syndecan-4 was quantified by immunoassay in chondrocytes culture supernatant and cell fraction. RESULTS Using immunochemistry, syndecan-4 was observed in chondrocytes clusters in the superficial zone of OA knee, but not in OA hip or shoulder cartilage. No significant difference was detected in syndecan-4 expression level in sclerotic compared with nonsclerotic osteoblasts or in inflamed synoviocytes compared to normal/reactive ones. Differentiated hypertrophic chondrocytes from knee, but not from hip cartilage, expressed more syndecan-4 than nonhypertrophic cells. Using an immunoassay for the extracellular domain of syndecan-4, we found 68% of the syndecan-4 in the culture supernatant of OA chondrocytes culture, suggesting that a large majority of the syndecan-4 is shed and released in the extracellular medium. The shedding rate was not affected by hypertrophic differentiation state of the chondrocytes or their joint origin. CONCLUSIONS Even if chondrocytes clusters are seen in OA knee, hip and shoulder cartilage and hypertrophic differentiation appears in knee and hip OA articular chondrocytes, syndecan-4 synthesis only increased in knee. These findings suggest the presence of biochemical difference between articular cartilage according to their location and that syndecan-4 could be a biochemical marker specific for knee OA.
Collapse
Affiliation(s)
- Christelle Sanchez
- Bone and Cartilage Research Unit,
Arthropôle Liège, University of Liège, Liège, Belgium,Christelle Sanchez, Institute of Pathology
+5, Bone and Cartilage Research Unit, CHU-Sart-Tilman, Liège, 4000, Belgium.
| | - Cécile Lambert
- Bone and Cartilage Research Unit,
Arthropôle Liège, University of Liège, Liège, Belgium
| | - Jean-Emile Dubuc
- Orthopedic Department, Cliniques
Universitaires Saint-Luc, Brussels, Belgium
| | - Jessica Bertrand
- Experimental Orthopedics, University
Hospital Magdeburg, Magdeburg, Germany
| | - Thomas Pap
- Institute of Experimental
Musculoskeletal Medicine, University Hospital Munster, Munster, Germany
| | - Yves Henrotin
- Bone and Cartilage Research Unit,
Arthropôle Liège, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
13
|
Endothelial Glycocalyx as a Regulator of Fibrotic Processes. Int J Mol Sci 2021; 22:ijms22062996. [PMID: 33804258 PMCID: PMC7999025 DOI: 10.3390/ijms22062996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels’ mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.
Collapse
|
14
|
Zhao F, Zhong L, Luo Y. Endothelial glycocalyx as an important factor in composition of blood-brain barrier. CNS Neurosci Ther 2020; 27:26-35. [PMID: 33377610 PMCID: PMC7804892 DOI: 10.1111/cns.13560] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022] Open
Abstract
The blood‐brain barrier is a dynamic and complex neurovascular unit that protects neurons from somatic circulatory factors as well as regulates the internal environmental stability of the central nervous system. Endothelial glycocalyx is a critical component of an extended neurovascular unit that influences the structure of the blood‐brain barrier and plays various physiological functions, including an important role in maintaining normal neuronal homeostasis. Specifically, glycocalyx acts in physical and charge barriers, mechanical transduction, regulation of vascular permeability, modulation of inflammatory response, and anticoagulation. Since intact glycocalyx is necessary to maintain the stability and integrity of the internal environment of the blood‐brain barrier, damage to glycocalyx can lead to the dysfunction of the blood‐brain barrier. This review discusses the role of glycocalyx in the context of the substantial literature regarding the blood‐brain barrier research, in order to provide a theoretical basis for the diagnosis and treatment of neurological diseases as well as point to new breakthroughs and innovations in glycocalyx‐dependent blood‐brain barrier function.
Collapse
Affiliation(s)
- Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Peritubular Capillary Rarefaction: An Underappreciated Regulator of CKD Progression. Int J Mol Sci 2020; 21:ijms21218255. [PMID: 33158122 PMCID: PMC7662781 DOI: 10.3390/ijms21218255] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Peritubular capillary (PTC) rarefaction is commonly detected in chronic kidney disease (CKD) such as hypertensive nephrosclerosis and diabetic nephropathy. Moreover, PTC rarefaction prominently correlates with impaired kidney function and predicts the future development of end-stage renal disease in patients with CKD. However, it is still underappreciated that PTC rarefaction is a pivotal regulator of CKD progression, primarily because the molecular mechanisms of PTC rarefaction have not been well-elucidated. In addition to the established mechanisms (reduced proangiogenic factors and increased anti-angiogenic factors), recent studies discovered significant contribution of the following elements to PTC loss: (1) prompt susceptibility of PTC to injury, (2) impaired proliferation of PTC, (3) apoptosis/senescence of PTC, and (4) pericyte detachment from PTC. Mainly based on the recent and novel findings in basic research and clinical study, this review describes the roles of the above-mentioned elements in PTC loss and focuses on the major factors regulating PTC angiogenesis, the assessment of PTC rarefaction and its surrogate markers, and an overview of the possible therapeutic agents to mitigate PTC rarefaction during CKD progression. PTC rarefaction is not only a prominent histological characteristic of CKD but also a central driving force of CKD progression.
Collapse
|
16
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
17
|
Lipphardt M, Dihazi H, Maas JH, Schäfer AK, Amlaz SI, Ratliff BB, Koziolek MJ, Wallbach M. Syndecan-4 as a Marker of Endothelial Dysfunction in Patients with Resistant Hypertension. J Clin Med 2020; 9:jcm9093051. [PMID: 32971813 PMCID: PMC7564403 DOI: 10.3390/jcm9093051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Arterial hypertension (HTN) is one of the most relevant cardiovascular risk factors. Nowadays multiple pharmaceutical treatment options exist with novel interventional methods (e.g., baroreflex activation therapy (BAT)) as a last resort to treat patients with resistant HTN. Although pathophysiology behind resistant HTN is still not fully understood. There is evidence that selected biomarkers may be involved in the pathophysiology of HTN. (2) Methods: We investigated serum SDC4-levels in patients suffering from resistant HTN before and 6 months after BAT implantation. We collected 19 blood samples from patients with resistant HTN and blood pressure above target and measured serum SDC4-levels. (3) Results: Our results showed high serum SDC4-levels in patients with resistant HTN as compared to a healthy population. Patients with both, resistant HTN and diabetes mellitus type II, demonstrated higher serum SDC4-levels. β-blockers had lowering effects on serum SDC4-levels, whereas calcium channel blockers were associated with higher levels of serum SDC4. BAT implantation did not lead to a significant difference in serum SDC4-levels after 6 months of therapy. (4) Conclusion: Based on our results we propose SDC4 is elevated in patients suffering from resistant HTN. Thus, SDC4 might be a potential marker for endothelial dysfunction in patients with resistant hypertension.
Collapse
Affiliation(s)
- Mark Lipphardt
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.D.); (A.-K.S.); (M.J.K.); (M.W.)
- Correspondence: ; Tel.: +49-(0)-551-39-65309; Fax: +49-(0)-551-39-8906
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.D.); (A.-K.S.); (M.J.K.); (M.W.)
| | - Jens-Holger Maas
- Department of Transfusion Medicine, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany;
| | - Ann-Kathrin Schäfer
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.D.); (A.-K.S.); (M.J.K.); (M.W.)
| | - Saskia I. Amlaz
- Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany;
| | - Brian B. Ratliff
- Renal Research Institute and Departments of Medicine, Pharmacology, and Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Michael J. Koziolek
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.D.); (A.-K.S.); (M.J.K.); (M.W.)
| | - Manuel Wallbach
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.D.); (A.-K.S.); (M.J.K.); (M.W.)
| |
Collapse
|
18
|
Dihazi GH, Eltoweissy M, Jahn O, Tampe B, Zeisberg M, Wülfrath HS, Müller GA, Dihazi H. The Secretome Analysis of Activated Human Renal Fibroblasts Revealed Beneficial Effect of the Modulation of the Secreted Peptidyl-Prolyl Cis-Trans Isomerase A in Kidney Fibrosis. Cells 2020; 9:cells9071724. [PMID: 32708451 PMCID: PMC7407823 DOI: 10.3390/cells9071724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The secretome is an important mediator in the permanent process of reciprocity between cells and their environment. Components of secretome are involved in a large number of physiological mechanisms including differentiation, migration, and extracellular matrix modulation. Alteration in secretome composition may therefore trigger cell transformation, inflammation, and diseases. In the kidney, aberrant protein secretion plays a central role in cell activation and transition and in promoting renal fibrosis onset and progression. Using comparative proteomic analyses, we investigated in the present study the impact of cell transition on renal fibroblast cells secretome. Human renal cell lines were stimulated with profibrotic hormones and cytokines, and alterations in secretome were investigated using proteomic approaches. We identified protein signatures specific for the fibrotic phenotype and investigated the impact of modeling secretome proteins on extra cellular matrix accumulation. The secretion of peptidyl-prolyl cis-trans isomerase A (PPIA) was demonstrated to be associated with fibrosis phenotype. We showed that the in-vitro inhibition of PPIA with ciclosporin A (CsA) resulted in downregulation of PPIA and fibronectin (FN1) expression and significantly reduced their secretion. Knockdown studies of PPIA in a three-dimensional (3D) cell culture model significantly impaired the secretion and accumulation of the extracellular matrix (ECM), suggesting a positive therapeutic effect on renal fibrosis progression.
Collapse
Affiliation(s)
- Gry H. Dihazi
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (G.H.D.); (H.S.W.)
| | - Marwa Eltoweissy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt;
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany;
| | - Björn Tampe
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
| | - Michael Zeisberg
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
| | - Hauke S. Wülfrath
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (G.H.D.); (H.S.W.)
| | - Gerhard A. Müller
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, D-37075 Göttingen, Germany
- Correspondence: ; Tel.: +49-551-399-1221; Fax: +49-551-399-1039
| |
Collapse
|
19
|
Lipphardt M, Song JW, Goligorsky MS. Sirtuin 1 and endothelial glycocalyx. Pflugers Arch 2020; 472:991-1002. [PMID: 32494847 PMCID: PMC7376508 DOI: 10.1007/s00424-020-02407-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
Sirtuin1 deficiency or reduced activity comprises one of the hallmarks of diseases as diverse as chronic cardiovascular, renal, and metabolic, some malignancies, and infections, as well as aging-associated diseases. In a mouse model of endothelium-limited defect in sirtuin 1 deacetylase activity, we found a dramatic reduction in the volume of endothelial glycocalyx. This was associated with the surge in the levels of one of key scaffolding heparan sulfate proteoglycans of endothelial glycocalyx, syndecan-4, and specifically, its extracellular domain (ectodomain). We found that the defect in endothelial sirtuin 1 deacetylase activity is associated with (a) elevated basal and stimulated levels of superoxide generation (via the FoxO1 over-acetylation mechanism) and (b) increased nuclear translocation of NF-kB (via p65 over-acetylation mechanism). These findings laid the foundation for the proposed novel function of sirtuin 1, namely, the maintenance of endothelial glycocalyx, particularly manifest in conditions associated with sirtuin 1 depletion. In the forthcoming review, we summarize the emerging conceptual framework of the enhanced glycocalyx degradation in the states of defective endothelial sirtuin 1 function, thus explaining a broad footprint of the syndrome of endothelial dysfunction, from impaired flow-induced nitric oxide production, deterrent leukocytes infiltration, increased endothelial permeability, coagulation, and pro-inflammatory changes to development of microvascular rarefaction and progression of an underlying disease.
Collapse
Affiliation(s)
- Mark Lipphardt
- Renal Research Institute, New York Medical College at the Touro University, Valhalla, NY, USA. .,Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Jong Wook Song
- Renal Research Institute, New York Medical College at the Touro University, Valhalla, NY, USA.,Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Michael S Goligorsky
- Renal Research Institute, New York Medical College at the Touro University, Valhalla, NY, USA
| |
Collapse
|
20
|
The Vascular Involvement in Soft Tissue Fibrosis-Lessons Learned from Pathological Scarring. Int J Mol Sci 2020; 21:ijms21072542. [PMID: 32268503 PMCID: PMC7177855 DOI: 10.3390/ijms21072542] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Soft tissue fibrosis in important organs such as the heart, liver, lung, and kidney is a serious pathological process that is characterized by excessive connective tissue deposition. It is the result of chronic but progressive accumulation of fibroblasts and their production of extracellular matrix components such as collagens. Research on pathological scars, namely, hypertrophic scars and keloids, may provide important clues about the mechanisms that drive soft tissue fibrosis, in particular the vascular involvement. This is because these dermal fibrotic lesions bear all of the fibrotic characteristics seen in soft tissue fibrosis. Moreover, their location on the skin surface means they are readily observable and directly treatable and therefore more accessible to research. We will focus here on the roles that blood vessel-associated cells play in cutaneous scar pathology and assess from the literature whether these cells also contribute to other soft tissue fibroses. These cells include endothelial cells, which not only exhibit aberrant functions but also differentiate into mesenchymal cells in pathological scars. They also include pericytes, hepatic stellate cells, fibrocytes, and myofibroblasts. This article will review with broad strokes the roles that these cells play in the pathophysiology of different soft tissue fibroses. We hope that this brief but wide-ranging overview of the vascular involvement in fibrosis pathophysiology will aid research into the mechanisms underlying fibrosis and that this will eventually lead to the development of interventions that can prevent, reduce, or even reverse fibrosis formation and/or progression.
Collapse
|
21
|
Lipphardt M, Dihazi H, Jeon NL, Dadafarin S, Ratliff BB, Rowe DW, Müller GA, Goligorsky MS. Dickkopf-3 in aberrant endothelial secretome triggers renal fibroblast activation and endothelial-mesenchymal transition. Nephrol Dial Transplant 2019; 34:49-62. [PMID: 29726981 DOI: 10.1093/ndt/gfy100] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/18/2018] [Indexed: 01/22/2023] Open
Abstract
Background Our laboratory has previously demonstrated that Sirt1endo-/- mice show endothelial dysfunction and exaggerated renal fibrosis, whereas mice with silenced endothelial transforming growth factor beta (TGF-β) signaling are resistant to fibrogenic signals. Considering the fact that the only difference between these mutant mice is confined to the vascular endothelium, this indicates that secreted substances contribute to these contrasting responses. Methods We performed an unbiased proteomic analysis of the secretome of renal microvascular endothelial cells (RMVECs) isolated from these two mutants. We cultured renal fibroblasts and RMVECs and used microfluidic devices for coculturing. Results Dickkopf-3 (DKK3), a putative ligand of the Wnt/β-catenin pathway, was present exclusively in the fibrogenic secretome. In cultured fibroblasts, DKK3 potently induced myofibroblast activation. In addition, DKK3 antagonized effects of DKK1, a known inhibitor of the Wnt pathway, in conversion of fibroblasts to myofibroblasts. In RMVECs, DKK3 induced endothelial-mesenchymal transition and impaired their angiogenic competence. The inhibition of endothelial outgrowth, enhanced myofibroblast formation and endothelial-mesenchymal transition were confirmed in coculture. In reporter DKK3-eGFP × Col3.6-GFPcyan mice, DKK3 was marginally expressed under basal conditions. Adriamycin-induced nephropathy resulted in upregulation of DKK3 expression in tubular and, to a lesser degree, endothelial compartments. Sulindac sulfide was found to exhibit superior Wnt pathway-suppressive action and decreased DKK3 signals and the extent of renal fibrosis. Conclusions In conclusion, this unbiased proteomic screen of the profibrogenic endothelial secretome revealed DKK3 acting as an agonist of the Wnt pathway, enhancing formation of myofibroblasts and endothelial-mesenchymal transition and impairing angiogenesis. A potent inhibitor of the Wnt pathway, sulindac sulfide, suppressed nephropathy-induced DKK3 expression and renal fibrosis.
Collapse
Affiliation(s)
- Mark Lipphardt
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA.,Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Noo Li Jeon
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea
| | - Sina Dadafarin
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| | - Brian B Ratliff
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| | - David W Rowe
- Department of Reconstructive Sciences, Biomaterials and Skeletal Development, Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Gerhard A Müller
- Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Michael S Goligorsky
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| |
Collapse
|
22
|
Syndecan-4 Inhibits the Development of Pulmonary Fibrosis by Attenuating TGF-β Signaling. Int J Mol Sci 2019; 20:ijms20204989. [PMID: 31600983 PMCID: PMC6834137 DOI: 10.3390/ijms20204989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Syndecan-4 is a transmembrane heparan sulfate proteoglycan expressed in a variety of cells, and its heparan sulfate glycosaminoglycan side chains bind to several proteins exhibiting various biological roles. The authors have previously demonstrated syndecan-4′s critical roles in pulmonary inflammation. In the current study, however, its role in pulmonary fibrosis was evaluated. Wild-type and syndecan-4-deficient mice were injected with bleomycin, and several parameters of inflammation and fibrosis were analyzed. The mRNA expression of collagen and α-smooth muscle action (α-SMA) in lung tissues, as well as the histopathological lung fibrosis score and collagen content in lung tissues, were significantly higher in the syndecan-4-deficient mice. However, the total cell count and cell differentiation in bronchoalveolar lavage fluid were equivalent between the wild-type and syndecan-4-deficient mice. Although there was no difference in the TGF-β expression in lung tissues between the wild-type and syndecan-4-deficient mice, significantly more activation of Smad3 in lung tissues was observed in the syndecan-4-deficient mice compared to the wild-type mice. Furthermore, in the in vitro experiments using lung fibroblasts, the co-incubation of syndecan-4 significantly inhibited TGF-β-induced Smad3 activation, collagen and α-SMA upregulation. Moreover, syndecan-4 knock-down by siRNA increased TGF-β-induced Smad3 activation and upregulated collagen and α-SMA expression. These findings showed that syndecan-4 inhibits the development of pulmonary fibrosis, at least in part, through attenuating TGF-β signaling.
Collapse
|
23
|
Gondelaud F, Ricard‐Blum S. Structures and interactions of syndecans. FEBS J 2019; 286:2994-3007. [DOI: 10.1111/febs.14828] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Frank Gondelaud
- ICBMS UMR 5246 CNRS – University Lyon 1 Univ Lyon Villeurbanne France
| | | |
Collapse
|
24
|
Corti F, Wang Y, Rhodes JM, Atri D, Archer-Hartmann S, Zhang J, Zhuang ZW, Chen D, Wang T, Wang Z, Azadi P, Simons M. N-terminal syndecan-2 domain selectively enhances 6-O heparan sulfate chains sulfation and promotes VEGFA 165-dependent neovascularization. Nat Commun 2019; 10:1562. [PMID: 30952866 PMCID: PMC6450910 DOI: 10.1038/s41467-019-09605-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 03/19/2019] [Indexed: 01/26/2023] Open
Abstract
The proteoglycan Syndecan-2 (Sdc2) has been implicated in regulation of cytoskeleton organization, integrin signaling and developmental angiogenesis in zebrafish. Here we report that mice with global and inducible endothelial-specific deletion of Sdc2 display marked angiogenic and arteriogenic defects and impaired VEGFA165 signaling. No such abnormalities are observed in mice with deletion of the closely related Syndecan-4 (Sdc4) gene. These differences are due to a significantly higher 6-O sulfation level in Sdc2 versus Sdc4 heparan sulfate (HS) chains, leading to an increase in VEGFA165 binding sites and formation of a ternary Sdc2-VEGFA165-VEGFR2 complex which enhances VEGFR2 activation. The increased Sdc2 HS chains 6-O sulfation is driven by a specific N-terminal domain sequence; the insertion of this sequence in Sdc4 N-terminal domain increases 6-O sulfation of its HS chains and promotes Sdc2-VEGFA165-VEGFR2 complex formation. This demonstrates the existence of core protein-determined HS sulfation patterns that regulate specific biological activities.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Yingdi Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - John M Rhodes
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Deepak Atri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhen W Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Dongying Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Tianyun Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
25
|
Solbu MD, Kolset SO, Jenssen TG, Wilsgaard T, Løchen ML, Mathiesen EB, Melsom T, Eriksen BO, Reine TM. Gender differences in the association of syndecan-4 with myocardial infarction: The population-based Tromsø Study. Atherosclerosis 2018; 278:166-173. [DOI: 10.1016/j.atherosclerosis.2018.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/27/2018] [Accepted: 08/15/2018] [Indexed: 01/23/2023]
|
26
|
Lipphardt M, Dihazi H, Müller GA, Goligorsky MS. Fibrogenic Secretome of Sirtuin 1-Deficient Endothelial Cells: Wnt, Notch and Glycocalyx Rheostat. Front Physiol 2018; 9:1325. [PMID: 30298020 PMCID: PMC6160542 DOI: 10.3389/fphys.2018.01325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022] Open
Abstract
Sirtuins (SIRT) are ubiquitous histone and protein deacetylases and a member of this family, SIRT1, is the best-studied one. Its functions in endothelial cells encompass branching angiogenesis, activation of endothelial nitric oxide synthase, regulation of proapoptotic and proinflammatory pathways, among others. Defective SIRT1 activity has been described in various cardiovascular, renal diseases and in aging-associated conditions. Therefore, understanding of SIRT1-deficient, endothelial dysfunctional phenotype has much to offer clinically. Here, we summarize recent studies by several investigative teams of the characteristics of models of global endothelial SIRT1 deficiency, the causes of facilitative development of fibrosis in these conditions, dissect the protein composition of the aberrant secretome of SIRT1-deficient endothelial cells and present several components of this aberrant secretome that are involved in fibrogenesis via activation of fibroblasts to myofibroblasts. These include ligands of Wnt and Notch pathways, as well as proteolytic fragments of glycocalyx core protein, syndecan-4. The latter finding is crucial for understanding the degradation of glycocalyx that accompanies SIRT1 deficiency. This spectrum of abnormalities associated with SIRT1 deficiency in endothelial cells is essential for understanding the origins and features of endothelial dysfunction in a host of cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Mark Lipphardt
- Departments of Medicine, Physiology and Pharmacology, New York Medical College, Valhalla, NY, United States.,Clinic for Nephrology and Rheumatology, Göttingen University Medical Faculty, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, Göttingen University Medical Faculty, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gerhard A Müller
- Clinic for Nephrology and Rheumatology, Göttingen University Medical Faculty, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael S Goligorsky
- Departments of Medicine, Physiology and Pharmacology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
27
|
Zent J, Guo LW. Signaling Mechanisms of Myofibroblastic Activation: Outside-in and Inside-Out. Cell Physiol Biochem 2018; 49:848-868. [PMID: 30184544 DOI: 10.1159/000493217] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Myofibroblasts are central mediators of fibrosis. Typically derived from resident fibroblasts, myofibroblasts represent a heterogeneous population of cells that are principally defined by acquired contractile function and high synthetic ability to produce extracellular matrix (ECM). Current literature sheds new light on the critical role of ECM signaling coupled with mechanotransduction in driving myofibroblastic activation. In particular, transforming growth factor β1 (TGF-β1) and extra domain A containing fibronectin (EDA-FN) are thought to be the primary ECM signaling mediators that form and also induce positive feedback loops. The outside-in and inside-out signaling circuits are transmitted and integrated by TGF-β receptors and integrins at the cell membrane, ultimately perpetuating the abundance and activities of TGF-β1 and EDA-FN in the ECM. In this review, we highlight these conceptual advances in understanding myofibroblastic activation, in hope of revealing its therapeutic anti-fibrotic implications.
Collapse
Affiliation(s)
- Joshua Zent
- Medical Scientist Training Program, the Ohio State University, Columbus, Columbus, Ohio, USA
| | - Lian-Wang Guo
- Department of Surgery, Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, the Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
28
|
Rashid CS, Bansal A, Simmons RA. Oxidative Stress, Intrauterine Growth Restriction, and Developmental Programming of Type 2 Diabetes. Physiology (Bethesda) 2018; 33:348-359. [PMID: 30109821 PMCID: PMC6230552 DOI: 10.1152/physiol.00023.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Intrauterine growth restriction (IUGR) leads to reduced birth weight and the development of metabolic diseases such as Type 2 diabetes in adulthood. Mitochondria dysfunction and oxidative stress are commonly found in key tissues (pancreatic islets, liver, and skeletal muscle) of IUGR individuals. In this review, we explore the role of oxidative stress in IUGR-associated diabetes etiology.
Collapse
Affiliation(s)
- Cetewayo S Rashid
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 2018; 65:70-99. [PMID: 30056242 DOI: 10.1016/j.mam.2018.07.001] [Citation(s) in RCA: 521] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is a common pathophysiologic companion of most myocardial diseases, and is associated with systolic and diastolic dysfunction, arrhythmogenesis, and adverse outcome. Because the adult mammalian heart has negligible regenerative capacity, death of a large number of cardiomyocytes results in reparative fibrosis, a process that is critical for preservation of the structural integrity of the infarcted ventricle. On the other hand, pathophysiologic stimuli, such as pressure overload, volume overload, metabolic dysfunction, and aging may cause interstitial and perivascular fibrosis in the absence of infarction. Activated myofibroblasts are the main effector cells in cardiac fibrosis; their expansion following myocardial injury is primarily driven through activation of resident interstitial cell populations. Several other cell types, including cardiomyocytes, endothelial cells, pericytes, macrophages, lymphocytes and mast cells may contribute to the fibrotic process, by producing proteases that participate in matrix metabolism, by secreting fibrogenic mediators and matricellular proteins, or by exerting contact-dependent actions on fibroblast phenotype. The mechanisms of induction of fibrogenic signals are dependent on the type of primary myocardial injury. Activation of neurohumoral pathways stimulates fibroblasts both directly, and through effects on immune cell populations. Cytokines and growth factors, such as Tumor Necrosis Factor-α, Interleukin (IL)-1, IL-10, chemokines, members of the Transforming Growth Factor-β family, IL-11, and Platelet-Derived Growth Factors are secreted in the cardiac interstitium and play distinct roles in activating specific aspects of the fibrotic response. Secreted fibrogenic mediators and matricellular proteins bind to cell surface receptors in fibroblasts, such as cytokine receptors, integrins, syndecans and CD44, and transduce intracellular signaling cascades that regulate genes involved in synthesis, processing and metabolism of the extracellular matrix. Endogenous pathways involved in negative regulation of fibrosis are critical for cardiac repair and may protect the myocardium from excessive fibrogenic responses. Due to the reparative nature of many forms of cardiac fibrosis, targeting fibrotic remodeling following myocardial injury poses major challenges. Development of effective therapies will require careful dissection of the cell biological mechanisms, study of the functional consequences of fibrotic changes on the myocardium, and identification of heart failure patient subsets with overactive fibrotic responses.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B, Bronx, NY, 10461, USA.
| |
Collapse
|
30
|
Song JW, Goligorsky MS. Perioperative implication of the endothelial glycocalyx. Korean J Anesthesiol 2018; 71:92-102. [PMID: 29619781 PMCID: PMC5903118 DOI: 10.4097/kjae.2018.71.2.92] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/25/2018] [Accepted: 03/25/2018] [Indexed: 11/10/2022] Open
Abstract
The endothelial glycocalyx (EG) is a gel-like layer lining the luminal surface of healthy vascular endothelium. Recently, the EG has gained extensive interest as a crucial regulator of endothelial funtction, including vascular permeability, mechanotransduction, and the interaction between endothelial and circulating blood cells. The EG is degraded by various enzymes and reactive oxygen species upon pro-inflammatory stimulus. Ischemia-reperfusion injury, oxidative stress, hypervolemia, and systemic inflammatory response are responsible for perioperative EG degradation. Perioperative damage of the EG has also been demonstrated, especially in cardiac surgery. However, the protection of the EG and its association with perioperative morbidity needs to be elucidated in future studies. In this review, the present knowledge about EG and its perioperative implication is discussed from an anesthesiologist's perspective.
Collapse
Affiliation(s)
- Jong Wook Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Michael S Goligorsky
- Renal Research Institute and Departments of Medicine, Pharmacology, and Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|