1
|
Lahiri SK, Lu J, Aguilar-Sanchez Y, Li H, Moreira LM, Hulsurkar MM, Mendoza A, Turkieltaub Paredes MR, Navarro-Garcia JA, Munivez E, Horist B, Moore OM, Weninger G, Brandenburg S, Lenz C, Lehnart SE, Sayeed R, Krasopoulos G, Srivastava V, Zhang L, Karch JM, Reilly S, Wehrens XHT. Targeting calpain-2-mediated junctophilin-2 cleavage delays heart failure progression following myocardial infarction. J Mol Cell Cardiol 2024; 194:85-95. [PMID: 38960317 PMCID: PMC11519832 DOI: 10.1016/j.yjmcc.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.
Collapse
Affiliation(s)
- Satadru K Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jiao Lu
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Hui Li
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lucia M Moreira
- Cardiovascular Medicine, Radcliffe Dept of Medicine, University of Oxford, UK
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Arielys Mendoza
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Mara R Turkieltaub Paredes
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jose Alberto Navarro-Garcia
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Elda Munivez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Brooke Horist
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Oliver M Moore
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sören Brandenburg
- Department of Cardiology & Pneumology, Heart Research Center Göttingen; Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, University Medical Center Göttingen, Germany; Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology & Pneumology, Heart Research Center Göttingen; Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
| | - Rana Sayeed
- Cardiothoracic Unit, John Radcliffe Hospital, Oxford, UK
| | | | | | - Lilei Zhang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jason M Karch
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Svetlana Reilly
- Cardiovascular Medicine, Radcliffe Dept of Medicine, University of Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Department of Medicine/Cardiology, Baylor College of Medicine, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Liu GY, Xie WL, Wang YT, Chen L, Xu ZZ, Lv Y, Wu QP. Calpain: the regulatory point of myocardial ischemia-reperfusion injury. Front Cardiovasc Med 2023; 10:1194402. [PMID: 37456811 PMCID: PMC10346867 DOI: 10.3389/fcvm.2023.1194402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Calpain is a conserved cysteine protease readily expressed in several mammalian tissues, which is usually activated by Ca2+ and with maximum activity at neutral pH. The activity of calpain is tightly regulated because its aberrant activation will nonspecifically cleave various proteins in cells. Abnormally elevation of Ca2+ promotes the abnormal activation of calpain during myocardial ischemia-reperfusion, resulting in myocardial injury and cardiac dysfunction. In this paper, we mainly reviewed the effects of calpain in various programmed cell death (such as apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, and parthanatos) in myocardial ischemia-reperfusion. In addition, we also discussed the abnormal activation of calpain during myocardial ischemia-reperfusion, the effect of calpain on myocardial repair, and the possible future research directions of calpain.
Collapse
Affiliation(s)
- Guo-Yang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Wan-Li Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yan-Ting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhen-Zhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yong Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Qing-Ping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| |
Collapse
|
3
|
Souza-Neto FV, Islas F, Jiménez-González S, Luaces M, Ramchandani B, Romero-Miranda A, Delgado-Valero B, Roldan-Molina E, Saiz-Pardo M, Cerón-Nieto MÁ, Ortega-Medina L, Martínez-Martínez E, Cachofeiro V. Mitochondrial Oxidative Stress Promotes Cardiac Remodeling in Myocardial Infarction through the Activation of Endoplasmic Reticulum Stress. Antioxidants (Basel) 2022; 11:antiox11071232. [PMID: 35883722 PMCID: PMC9311874 DOI: 10.3390/antiox11071232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
We have evaluated cardiac function and fibrosis in infarcted male Wistar rats treated with MitoQ (50 mg/kg/day) or vehicle for 4 weeks. A cohort of patients admitted with a first episode of acute MI were also analyzed with cardiac magnetic resonance and T1 mapping during admission and at a 12-month follow-up. Infarcted animals presented cardiac hypertrophy and a reduction in the left ventricular ejection fraction (LVEF) and E- and A-waves (E/A) ratio when compared to controls. Myocardial infarction (MI) rats also showed cardiac fibrosis and endoplasmic reticulum (ER) stress activation. Binding immunoglobulin protein (BiP) levels, a marker of ER stress, were correlated with collagen I levels. MitoQ reduced oxidative stress and prevented all these changes without affecting the infarct size. The LVEF and E/A ratio in patients with MI were 57.6 ± 7.9% and 0.96 ± 0.34, respectively. No major changes in cardiac function, extracellular volume fraction (ECV), or LV mass were observed at follow-up. Interestingly, the myeloperoxidase (MPO) levels were associated with the ECV in basal conditions. BiP staining and collagen content were also higher in cardiac samples from autopsies of patients who had suffered an MI than in those who had died from other causes. These results show the interactions between mitochondrial oxidative stress and ER stress, which can result in the development of diffuse fibrosis in the context of MI.
Collapse
Affiliation(s)
- Francisco V. Souza-Neto
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Fabian Islas
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, 28040 Madrid, Spain; (F.I.); (M.L.)
| | - Sara Jiménez-González
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, 28040 Madrid, Spain; (F.I.); (M.L.)
| | - Bunty Ramchandani
- Servicio de Cirugía Cardiaca Infantil, Hospital La Paz, 28046 Madrid, Spain;
| | - Ana Romero-Miranda
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Beatriz Delgado-Valero
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Elena Roldan-Molina
- Biobanco del Hospital Clínico San Carlos, Instituto de Investigación de Salud del Hospital Clínico San Carlos, 28040 Madrid, Spain; (E.R.-M.); (L.O.-M.)
| | - Melchor Saiz-Pardo
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
- Departamento de Medicina Legal, Psiquiatría y Patología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mª Ángeles Cerón-Nieto
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
| | - Luis Ortega-Medina
- Biobanco del Hospital Clínico San Carlos, Instituto de Investigación de Salud del Hospital Clínico San Carlos, 28040 Madrid, Spain; (E.R.-M.); (L.O.-M.)
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
- Departamento de Medicina Legal, Psiquiatría y Patología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Majadahonda, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-91-3941483 (E.M.-M.); +34-91-3941489 (V.C.)
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Majadahonda, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-91-3941483 (E.M.-M.); +34-91-3941489 (V.C.)
| |
Collapse
|
4
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA, Inserte J. Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. Int J Mol Sci 2022; 23:ijms23084103. [PMID: 35456920 PMCID: PMC9032729 DOI: 10.3390/ijms23084103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934894038
| |
Collapse
|
5
|
Zhang K, Cremers MM, Wiedemann S, Poitz DM, Pfluecke C, Heinzel FR, Pieske B, Adams V, Schauer A, Winzer R, Strasser RH, Linke A, Quick S, Heidrich FM. Spatio-temporal regulation of calpain activity after experimental myocardial infarction in vivo. Biochem Biophys Rep 2021; 28:101162. [PMID: 34761128 PMCID: PMC8566776 DOI: 10.1016/j.bbrep.2021.101162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Background Calpains are calcium activated cysteine proteases that play a pivotal role in the pathophysiology of cardiac remodeling. Methods Here, we performed left anterior descending coronary artery ligation in rats as a model for ischemic systolic heart failure and examined the time- and region-specific regulation of calpain-1 and calpain-2 in the left ventricular myocardium. Results Following anterior wall myocardial infarction, calpain activity was significantly increased restricted to the ischemic anterior area at days 1, 5 and 14. No changes in calpain activity at neither time point were detected in the borderzone and remote posterior area of the left ventricle. Of note, calpain activity in the infarcted anterior myocardium was regulated differentially in the acute vs. subacute and chronic phase. In the acute phase, calpain translocation to the plasma membrane and attenuation of the expression of its endogenous inhibitor, calpastatin, were identified as the driving forces. In the subacute and chronic phase, calpain activity was regulated at the level of protein expression that was shown to be essentially independent of transcriptional activity. Conclusions We conclude that myocardial infarction leads to a distinct calpain regulation pattern in the left ventricular myocardium that is region specific and time dependent. Considering the results from our previous studies, a spatio-temporal interaction between calpains and calcium dependent natriuretic peptide production in the infarcted myocardium is possible. General significance Our results shed more light in the differential regulation of calpain activity in the myocardium and might aid in the development of targeted post-infarct and/or heart failure therapeutics.
Collapse
Key Words
- AGTR1, angiotensin II receptor type 1
- Calcium
- Calpain
- Calpain-1
- Calpain-2
- Calpastatin
- Experimental myocardial infarction
- InsP3, inositol 1,4,5-trisphosphate
- InsP3R, inositol 1,4,5-trisphopshate receptor
- LAD, left anterior descending
- LVEDD, left ventricular enddiastolic diameter
- LVEF, left ventricular ejection fraction
- LVESD, left ventricular endsystolic diameter
- NF-ĸB, nuclear factor kappa B
- NT pro-ANP, N-terminal pro atrial natriuretic peptide
- SBDP, spectrin breakdown products
Collapse
Affiliation(s)
- Kun Zhang
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Melissa M Cremers
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Stephan Wiedemann
- Helios Klinikum Pirna, Department of Internal Medicine and Cardiology, Pirna, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christian Pfluecke
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Volker Adams
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Antje Schauer
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Robert Winzer
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital, Carl Gustav Carus University, Technische Universität Dresden, Dresden, Germany
| | - Ruth H Strasser
- Technische Universität Dresden, Medical Faculty, Dresden, Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Silvio Quick
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Felix M Heidrich
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Tang Y, Lin X, Chen C, Tong Z, Sun H, Li Y, Liang P, Jiang B. Nucleolin Improves Heart Function During Recovery From Myocardial Infarction by Modulating Macrophage Polarization. J Cardiovasc Pharmacol Ther 2021; 26:386-395. [PMID: 33550832 DOI: 10.1177/1074248421989570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nucleolin has multiple functions within cell survival and proliferation pathways. Our previous studies have revealed that nucleolin can significantly reduce myocardial ischemia-reperfusion injury by promoting myocardial angiogenesis and reducing myocardial apoptosis. In this study, we attempted to determine the role of nucleolin in myocardial infarction (MI) injury recovery and the underlying mechanism. METHODS Male BALB/c mice aged 6-8 weeks were used to set up MI models by ligating the left anterior descending coronary artery. Nucleolin expression in the heart was downregulated by intramyocardial injection of a lentiviral vector expressing nucleolin-specific small interfering RNA. Macrophage infiltration and polarization were measured by real-time polymerase chain reaction, flow cytometry, and immunofluorescence. Cytokines were detected by enzyme-linked immunosorbent assay. RESULTS Nucleolin expression in myocardium after MI induction decreased a lot at early phase and elevated at late phase. Nucleolin knockdown impaired heart systolic and diastolic functions and decreased the survival rate after MI. Macrophage infiltration increased in the myocardium after MI. Most macrophages belonged to the M1 phenotype at early phase (2 days) and the M2 phenotype increased greatly at late phase after MI. Nucleolin knockdown in the myocardium led to a decrease in M2 macrophage polarization with no effect on macrophage infiltration after MI. Furthermore, Notch3 and STAT6, key regulators of M2 macrophage polarization, were upregulated by nucleolin in RAW 264.7 macrophages. CONCLUSIONS Lack of nucleolin impaired heart function during recovery after MI by reducing M2 macrophage polarization. This finding probably points to a new therapeutic option for ischemic heart disease.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Cheng Chen
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Zhongyi Tong
- Department of Pathology, The Second Xiangya Hospital of 12570Central South University, Changsha, Hunan, China
| | - Hui Sun
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Yuanbin Li
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, 12570Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Abstract
OBJECTIVES Mechanical ventilation is associated with primary diaphragmatic dysfunction, also termed ventilator-induced diaphragmatic dysfunction. Studies evaluating diaphragmatic function recovery after extubation are lacking. We evaluated early and late recoveries from ventilator-induced diaphragmatic dysfunction in a mouse model. DESIGN Experimental randomized study. SETTING Research laboratory. SUBJECTS C57/BL6 mice. INTERVENTIONS Six groups of C57/BL6 mice. Mice were ventilated for 6 hours and then euthanatized immediately (n = 18), or 1 (n = 18) or 10 days after extubation with (n = 5) and without S107 (n = 16) treatment. Mice euthanatized immediately after 6 hours of anesthesia (n = 15) or after 6 hours of anesthesia and 10 days of recovery (n = 5) served as controls. MEASUREMENTS AND MAIN RESULTS For each group, diaphragm force production, posttranslational modification of ryanodine receptor, oxidative stress, proteolysis, and cross-sectional areas were evaluated. After 6 hours of mechanical ventilation, diaphragm force production was decreased by 25-30%, restored to the control levels 1 day after extubation, and secondarily decreased by 20% 10 days after extubation compared with controls. Ryanodine receptor was protein kinase A-hyperphosphorylated, S-nitrosylated, oxidized, and depleted of its stabilizing subunit calstabin-1 6 hours after the onset of the mechanical ventilation, 1 and 10 days after extubation. Post extubation treatment with S107, a Rycal drug that stabilizes the ryanodine complex, did reverse the loss of diaphragmatic force associated with mechanical ventilation. Total protein oxidation was restored to the control levels 1 day after extubation. Markers of proteolysis including calpain 1 and calpain 2 remained activated 10 days after extubation without significant changes in cross-sectional areas. CONCLUSIONS We report that mechanical ventilation is associated with a late diaphragmatic dysfunction related to a structural alteration of the ryanodine complex that is reversed with the S107 treatment.
Collapse
|
8
|
Chen Y, Su Z, Liu F. Effects of functionally diverse calpain system on immune cells. Immunol Res 2021; 69:8-17. [PMID: 33483937 DOI: 10.1007/s12026-021-09177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Calpains are a family of nonlysosomal cysteine proteases, which play important roles in numerous physiological and pathological processes. Locations of them dictates the functions so that they are classified as ubiquitously expressed calpains and tissue-specific calpains. Recent studies are mainly focused on conventional calpains (calpain-1,2) in development and diseases, and increasing people pay attention to other subtypes of calpains but may not been summarized appropriately. Growing evidence suggests that calpains are also involved in immune regulation. However, seldom articles review the regulation of calpains on immune cells. The aim of this article is to review the research progress of each calpain isozyme and the effect of calpains on immune cells, especially the promotion effect of calpains on the immune response of macrophage, neutrophils, dendritic cells, mast cells, natural killed cells, and lymphocytes. These effects would hold great promise for the clinical application of calpains as a practicable therapeutic option in the treatment of immune related diseases.
Collapse
Affiliation(s)
- Yueqi Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Fang Liu
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
9
|
Hanna A, Shinde AV, Frangogiannis NG. Validation of diagnostic criteria and histopathological characterization of cardiac rupture in the mouse model of nonreperfused myocardial infarction. Am J Physiol Heart Circ Physiol 2020; 319:H948-H964. [PMID: 32886000 DOI: 10.1152/ajpheart.00318.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In patients with myocardial infarction (MI), cardiac rupture is an uncommon but catastrophic complication. In the mouse model of nonreperfused MI, reported rupture rates are highly variable and depend not only on the genetic background and sex of animals but also on the method used for documentation of rupture. In most studies, diagnosis of cardiac rupture is based on visual inspection during autopsy; however, criteria are poorly defined. We performed systematic histopathological analysis of whole hearts from C57BL/6J mice dying after nonreperfused MI and evaluated the reliability of autopsy-based criteria in identification of rupture. Moreover, we compared the cell biological environment of the infarct between rupture-related and rupture-independent deaths. Histopathological analysis documented rupture in 50% of mice dying during the first week post-MI. Identification of a gross rupture site was highly specific but had low sensitivity; in contrast, hemothorax had high sensitivity but low specificity. Mice with rupture had lower myofibroblast infiltration, accentuated macrophage influx, and a trend toward reduced collagen content in the infarct. Male mice had increased mortality and higher incidence of rupture. However, infarct myeloid cells harvested from male and female mice at the peak of the incidence of rupture had comparable inflammatory gene expression. In conclusion, the reliability of autopsy in documentation of rupture in infarcted mice is dependent on the specific criteria used. Macrophage-driven inflammation and reduced activation of collagen-secreting reparative myofibroblasts may be involved in the pathogenesis of post-MI cardiac rupture.NEW & NOTEWORTHY We show that cardiac rupture accounts for 50% of deaths in C57BL/6J mice undergoing nonreperfused myocardial infarction protocols. Overestimation of rupture events in published studies likely reflects the low specificity of hemothorax as a criterion for documentation of rupture. In contrast, identification of a gross rupture site has high specificity and low sensitivity. We also show that mice dying of rupture have increased macrophage influx and attenuated myofibroblast infiltration in the infarct. These findings are consistent with a role for perturbations in the balance between inflammatory and reparative responses in the pathogenesis of postinfarction cardiac rupture. We also report that the male predilection for rupture in infarcted mice is not associated with increased inflammatory activation of myeloid cells.
Collapse
Affiliation(s)
- Anis Hanna
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Arti V Shinde
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
10
|
Sawaki D, Czibik G, Pini M, Ternacle J, Suffee N, Mercedes R, Marcelin G, Surenaud M, Marcos E, Gual P, Clément K, Hue S, Adnot S, Hatem SN, Tsuchimochi I, Yoshimitsu T, Hénégar C, Derumeaux G. Visceral Adipose Tissue Drives Cardiac Aging Through Modulation of Fibroblast Senescence by Osteopontin Production. Circulation 2019; 138:809-822. [PMID: 29500246 DOI: 10.1161/circulationaha.117.031358] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aging induces cardiac structural and functional changes linked to the increased deposition of extracellular matrix proteins, including OPN (osteopontin), conducing to progressive interstitial fibrosis. Although OPN is involved in various pathological conditions, its role in myocardial aging remains unknown. METHODS OPN deficient mice (OPN-/-) with their wild-type (WT) littermates were evaluated at 2 and 14 months of age in terms of cardiac structure, function, histology and key molecular markers. OPN expression was determined by reverse-transcription polymerase chain reaction, immunoblot and immunofluorescence. Luminex assays were performed to screen plasma samples for various cytokines/adipokines in addition to OPN. Similar explorations were conducted in aged WT mice after surgical removal of visceral adipose tissue (VAT) or treatment with a small-molecule OPN inhibitor agelastatin A. Primary WT fibroblasts were incubated with plasma from aged WT and OPN-/- mice, and evaluated for senescence (senescence-associated β-galactosidase and p16), as well as fibroblast activation markers (Acta2 and Fn1). RESULTS Plasma OPN levels increased in WT mice during aging, with VAT showing the strongest OPN induction contrasting with myocardium that did not express OPN. VAT removal in aged WT mice restored cardiac function and decreased myocardial fibrosis in addition to a substantial reduction of circulating OPN and transforming growth factor β levels. OPN deficiency provided a comparable protection against age-related cardiac fibrosis and dysfunction. Intriguingly, a strong induction of senescence in cardiac fibroblasts was observed in both VAT removal and OPN-/- mice. The addition of plasma from aged OPN-/- mice to cultures of primary cardiac fibroblasts induced senescence and reduced their activation (compared to aged WT plasma). Finally, Agelastatin A treatment of aged WT mice fully reversed age-related myocardial fibrosis and dysfunction. CONCLUSIONS During aging, VAT represents the main source of OPN and alters heart structure and function via its profibrotic secretome. As a proof-of-concept, interventions targeting OPN, such as VAT removal and OPN deficiency, rescued the heart and induced a selective modulation of fibroblast senescence. Our work uncovers OPN's role in the context of myocardial aging and proposes OPN as a potential new therapeutic target for a healthy cardiac aging.
Collapse
Affiliation(s)
- Daigo Sawaki
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Gabor Czibik
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Maria Pini
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Julien Ternacle
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
- AP-HP, Department of Cardiology, Henri Mondor Hospital, DHU-ATVB (J.T., G.D.)
| | - Nadine Suffee
- Sorbonne Université, INSERM UMRS 1166, Institute of Cardiometabolism and Nutrition ICAN (N.S., S.H.)
| | - Raquel Mercedes
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Geneviève Marcelin
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital (G.M., K.C.)
- Sorbonne Universities, Université Pierre et Marie Curie, University of Paris 06, INSERM UMR_S 1166, Nutriomics Team 6 (G.M., K.C.)
| | - Mathieu Surenaud
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
- AP-HP Vaccine Research Institute (VRI) (M.S., S.H.)
| | - Elisabeth Marcos
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Philippe Gual
- INSERM, U1065, C3M, Team 8 "hepatic complications in obesity" (P.G.)
- Université Côte d'Azur (P.G.)
| | - Karine Clément
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital (G.M., K.C.)
- Sorbonne Universities, Université Pierre et Marie Curie, University of Paris 06, INSERM UMR_S 1166, Nutriomics Team 6 (G.M., K.C.)
- Assistance Publique Hopitaux de Paris, AP-HP, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department and Hepato-biliary and Digestive Surgery Department (K.C.)
| | - Sophie Hue
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
- Sorbonne Université, INSERM UMRS 1166, Institute of Cardiometabolism and Nutrition ICAN (N.S., S.H.)
- AP-HP Vaccine Research Institute (VRI) (M.S., S.H.)
| | - Serge Adnot
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
- AP-HP, Department of Physiology, Henri Mondor Hospital, DHU-ATVB (S.A.)
| | - Stéphane N Hatem
- Institut de Cardiologie, Hôpital Universitaire Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (S.H.)
| | - Izuru Tsuchimochi
- Laboratory of Synthetic Organic and Medicinal Chemistry, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University (I.T., T.Y.)
| | - Takehiko Yoshimitsu
- Laboratory of Synthetic Organic and Medicinal Chemistry, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University (I.T., T.Y.)
| | - Corneliu Hénégar
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
| | - Geneviève Derumeaux
- INSERM IMRB U955, Université Paris-Est Creteil (D.S., G.C., M.P., J.T., R.M., M.S., E.M., S.H., S.A., C.H., G.D.)
- AP-HP, Department of Cardiology, Henri Mondor Hospital, DHU-ATVB (J.T., G.D.)
| |
Collapse
|
11
|
Hanouna G, Tang E, Perez J, Vandermeersch S, Haymann JP, Baud L, Letavernier E. Preventing Calpain Externalization by Reducing ABCA1 Activity with Probenecid Limits Melanoma Angiogenesis and Development. J Invest Dermatol 2019; 140:445-454. [PMID: 31425704 DOI: 10.1016/j.jid.2019.06.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 11/17/2022]
Abstract
Calpains, intracellular proteases specifically inhibited by calpastatin, play a major role in neoangiogenesis involved in tumor invasiveness and metastasis. They are partly exteriorized via the ATP-binding cassette transporter A1(ABCA1) transporter, but the importance of this process in tumor growth is still unknown. The aim of our study was to investigate the role of extracellular calpains in a model of melanoma by blocking their extracellular activity or exteriorization. In the first approach, a B16-F10 model of melanoma was developed in transgenic mice expressing high extracellular levels of calpastatin. In these mice, tumor growth was inhibited by ∼ 3-fold compared with wild-type animals. In vitro cytotoxicity assays and in vivo tumor studies have demonstrated that this protection was associated with a defect in tumor neoangiogenesis. Similarly, in wild-type animals given probenecid to blunt ABCA1 activity, melanoma tumor growth was inhibited by ∼ 3-fold. Again, this response was associated with a defect in neoangiogenesis. In vitro studies confirmed that probenecid limited endothelial cell migration and capillary formation from vascular explants. The observed reduction in fibronectin cleavage under these conditions is potentially involved in the response. Collectively, these studies demonstrate that probenecid, by blunting ABCA1 activity and thereby calpain exteriorization, limits melanoma tumor neoangiogenesis and invasiveness.
Collapse
Affiliation(s)
- Guillaume Hanouna
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France
| | - Ellie Tang
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France
| | - Joëlle Perez
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France
| | - Sophie Vandermeersch
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France
| | - Jean-Philippe Haymann
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Laurent Baud
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Emmanuel Letavernier
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France.
| |
Collapse
|
12
|
Calpains mediate isoproterenol-induced hypertrophy through modulation of GRK2. Basic Res Cardiol 2019; 114:21. [DOI: 10.1007/s00395-019-0730-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 01/27/2023]
|
13
|
Killing Two Angry Birds with One Stone: Autophagy Activation by Inhibiting Calpains in Neurodegenerative Diseases and Beyond. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4741252. [PMID: 30895192 PMCID: PMC6393885 DOI: 10.1155/2019/4741252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/27/2019] [Indexed: 12/21/2022]
Abstract
Proteolytic machineries execute vital cellular functions and their disturbances are implicated in diverse medical conditions, including neurodegenerative diseases. Interestingly, calpains, a class of Ca2+-dependent regulatory proteases, can modulate the degradational system of autophagy by cleaving proteins involved in this pathway. Moreover, both machineries are common players in many molecular pathomechanisms and have been targeted individually or together, as a therapeutic strategy in experimental setups. In this review, we briefly introduce calpains and autophagy, with their roles in health and disease, and focus on their direct pathologically relevant interplay in neurodegeneration and beyond. The modulation of calpain activity may comprise a promising treatment approach to attenuate the deregulation of these two essential mechanisms.
Collapse
|
14
|
Li S, Ma J, Li JB, Lacefield JC, Jones DL, Peng TQ, Wei M. Over-expression of calpastatin attenuates myocardial injury following myocardial infarction by inhibiting endoplasmic reticulum stress. J Thorac Dis 2018; 10:5283-5297. [PMID: 30416776 DOI: 10.21037/jtd.2018.08.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Ischemic heart injury activates calpains and endoplasmic reticulum (ER) stress in cardiomyocytes. This study investigated whether over-expression of calpastatin, an endogenous calpain inhibitor, protects the heart against myocardial infarction (MI) by inhibiting ER stress. Methods Mice over-expressing calpastatin (Tg-CAST) and littermate wild type (WT) mice were divided into four groups: WT-sham, Tg-CAST-sham, WT-MI, and Tg-CAST-MI, respectively. WT-sham and Tg-CAST-sham mice showed similar cardiac function at baseline. MI for 7 days impaired cardiac function in WT-MI mice, which was ameliorated in Tg-CAST-MI mice. Results Tg-CAST-MI mice exhibited significantly decreased diameter of the left ventricular cavity, scar area, and cardiac cell death compared to WT-MI mice. WT-MI mice had higher cardiac expression of C/EBP homologous protein (CHOP) and BIP, indicators of ER stress, compared to WT-sham mice, indicative of MI-induced ER stress. This increase was abolished in Tg-CAST-MI hearts. Furthermore, administration of tauroursodeoxycholic acid, an inhibitor of ER stress, reduced MI-induced expression of CHOP and BIP, scar area, and myocardial dysfunction. In an in vitro model of oxidative stress, H2O2 stimulation of H9c2 cardiomyoblasts induced calpain activation, CHOP expression, and cell death, all of which were prevented by the calpain inhibitor PD150606, as well as CHOP silencing. Conclusions Over-expression of calpastatin ameliorates MI-induced myocardial injury in mice. These protective effects of calpastatin are partially achieved through suppression of the ER stress/CHOP pathway.
Collapse
Affiliation(s)
- Shuai Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Department of Pathology, Western University, London, Ontario, Canada
| | - Jian Ma
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jing-Bo Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - James C Lacefield
- Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Douglas L Jones
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
| | - Tian-Qing Peng
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Department of Pathology, Western University, London, Ontario, Canada
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
15
|
Ternacle J, Wan F, Sawaki D, Surenaud M, Pini M, Mercedes R, Ernande L, Audureau E, Dubois-Rande JL, Adnot S, Hue S, Czibik G, Derumeaux G. Short-term high-fat diet compromises myocardial function: a radial strain rate imaging study. Eur Heart J Cardiovasc Imaging 2018; 18:1283-1291. [PMID: 28062567 DOI: 10.1093/ehjci/jew316] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/01/2016] [Indexed: 11/13/2022] Open
Abstract
Aim Long-term high-fat diet (HFD) induces both cardiac remodelling and myocardial dysfunction in murine models. The aim was to assess the time course and mechanisms of metabolic and cardiac modifications induced by short-term HFD in wild-type (WT) mice. Methods and results Thirty-three WT mice were subjected to HFD (60% fat, n = 16) and chow diet (CD, 13% fat, n = 17). Metabolic and echocardiographic data were collected at baseline and every 5 weeks for 20 weeks. Invasive haemodynamic data and myocardial samples were collected at 5 and 20 weeks. Echocardiographic data included left ventricular (LV) diameters and thickness, and systolic function using radial strain rate (SR). Histological assessment of cardiomyocyte and adipocyte sizes, interstitial fibrosis, and apoptosis index were performed. During follow-up, body weight, and glycaemia levels were higher in HFD than in CD mice, in association with an early adipose tissue remodelling. Despite no difference between both groups in blood pressure and LV mass at 5 weeks, an early LV dysfunction was observed in HFD mice as assessed by radial SR (21 ± 0.8 vs. 27 ± 0.8 unit/s, P < 0.001) and haemodynamic assessment. During follow-up, both groups demonstrated a progressive systolic and diastolic LV dysfunction and remodelling including dilatation and hypertrophy, which were more severe in HFD mice. Compared with CD mice, the early LV impairment in HFD mice was coupled with a higher cardiomyocyte apoptosis level (0.95 vs. 0.02%, P < 0.05) associated with an interstitial fibrosis process (2.3 vs. 0.2%, P < 0.05), which worsen during follow-up. Conclusion The HFD promoted early metabolic and cardiac dysfunctions, and adipose and myocardial tissues remodelling.
Collapse
Affiliation(s)
- Julien Ternacle
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP, Department of Cardiology, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| | - Feng Wan
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France
| | - Daigo Sawaki
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France
| | - Mathieu Surenaud
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP Vaccine Research Institute (VRI), Créteil F-94010, France
| | - Maria Pini
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France
| | - Raquel Mercedes
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France
| | - Laura Ernande
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP, Department of Physiology, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| | - Etienne Audureau
- AP-HP, Public Health Department, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| | - Jean-Luc Dubois-Rande
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP, Department of Cardiology, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| | - Serge Adnot
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP, Department of Physiology, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| | - Sophie Hue
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP Vaccine Research Institute (VRI), Créteil F-94010, France
| | - Gabor Czibik
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France
| | - Genevieve Derumeaux
- INSERM U955, Université Paris-Est Creteil (UPEC), 51 Av de Lattre de Tassigny, 94100 Créteil, France.,AP-HP, Department of Cardiology, Henri Mondor Hospital, DHU-ATVB, Créteil, France
| |
Collapse
|
16
|
Poncelas M, Inserte J, Aluja D, Hernando V, Vilardosa U, Garcia-Dorado D. Delayed, oral pharmacological inhibition of calpains attenuates adverse post-infarction remodelling. Cardiovasc Res 2018; 113:950-961. [PMID: 28460013 DOI: 10.1093/cvr/cvx073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/27/2017] [Indexed: 01/12/2023] Open
Abstract
Calpains activate during myocardial ischemia-reperfusion and contribute to reperfusion injury. Studies in transgenic animals with altered calpain/calpastatin system subjected to permanent ischemia suggest that calpains are also involved in post-infarction remodelling and heart failure. Aims To determine whether delayed oral administration of the calpain inhibitor SNJ-1945 reduces adverse myocardial remodelling and dysfunction following transient coronary occlusion. Methods and results Male Sprague-Dawley rats were subjected to 30 min of ischemia followed by 21 days of reperfusion and received the calpain inhibitor SNJ-1945 intraperitoneally at the onset of reperfusion (Acute group), orally starting after 24 h of reperfusion and for 14 days (Chronic group), or the combination of both treatments. Calpain-1 and calpain-2 protein content increased and correlated with higher calpain activity in control hearts. Administration of SNJ-1945 attenuated calpain activation, and reduced scar expansion, ventricular dilation and dysfunction in both acute and chronic groups. Acute treatment reduced infarct size in hearts reperfused for 24 h and inflammation measured after 3 days. Delayed, chronic oral administration of SNJ-1945 attenuated inflammation, cardiomyocyte hypertrophy and collagen infiltration in the non-infarcted myocardium at 21 days in correlation with increased levels of IĸB and reduced NF-ĸB activation. In cultured fibroblasts, SNJ-1945 attenuated TGF-β1-induced fibroblast activation. Conclusions Our data demonstrate for the first time that long-term calpain inhibition is possible with delayed oral treatment, attenuates adverse post-infarction remodelling, likely through prevention of NF-ĸB activation, and may be a promising therapeutic intervention to prevent adverse remodelling and heart failure in patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Marcos Poncelas
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - Javier Inserte
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
- CIBERCV, Spain
| | - David Aluja
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - Victor Hernando
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - Ursula Vilardosa
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - David Garcia-Dorado
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
- CIBERCV, Spain
| |
Collapse
|
17
|
Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314:H812-H838. [PMID: 29351451 PMCID: PMC5966768 DOI: 10.1152/ajpheart.00335.2017] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| | - John M Canty
- Division of Cardiovascular Medicine, Departments of Biomedical Engineering and Physiology and Biophysics, The Veterans Affairs Western New York Health Care System and Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital , Würzburg , Germany
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia Health System , Charlottesville, Virginia
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes , Pasadena, California.,Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana
| | - Ronglih Liao
- Harvard Medical School , Boston, Massachusetts.,Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Peipei Ping
- National Institutes of Health BD2KBig Data to Knowledge (BD2K) Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California , Los Angeles, California
| | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione G. Monasterio, Pisa , Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Lisa Schwartz Longacre
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California , Davis, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School , Essen , Germany
| |
Collapse
|
18
|
Specific calpain inhibition protects kidney against inflammaging. Sci Rep 2017; 7:8016. [PMID: 28808241 PMCID: PMC5556007 DOI: 10.1038/s41598-017-07922-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/03/2017] [Indexed: 11/12/2022] Open
Abstract
Calpains are ubiquitous pro-inflammatory proteases, whose activity is controlled by calpastatin, their specific inhibitor. Transgenic mice over-expressing rabbit calpastatin (CalpTG) are protected against vascular remodelling and angiotensin II-dependent inflammation. We hypothesized that specific calpain inhibition would protect against aging-related lesions in arteries and kidneys. We analysed tissues from 2-months and 2-years-old CalpTG and wild-type mice and performed high throughput RNA-Sequencing of kidney tissue in aged mice. In addition, we analysed inflammatory response in the kidney of aged CalpTG and wild-type mice, and in both in vivo (monosodium urate peritonitis) and in vitro models of inflammation. At two years, CalpTG mice had preserved kidney tissue, less vascular remodelling and less markers of senescence than wild-type mice. Nevertheless, CalpTG mice lifespan was not extended, due to the development of lethal spleen tumors. Inflammatory pathways were less expressed in aged CalpTG mice, especially cytokines related to NF-κB and NLRP3 inflammasome activation. CalpTG mice had reduced macrophage infiltration with aging and CalpTG mice produced less IL-1α and IL-1β in vivo in response to inflammasome activators. In vitro, macrophages from CalpTG mice produced less IL-1α in response to particulate activators of inflammasome. Calpains inhibition protects against inflammaging, limiting kidney and vascular lesions related to aging.
Collapse
|
19
|
Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 2016; 15:854-876. [PMID: 27833121 DOI: 10.1038/nrd.2016.212] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
20
|
Li M, Su Y, Yu Y, Yu Y, Wang X, Zou Y, Ge J, Chen R. Dual roles of calpain in facilitating Coxsackievirus B3 replication and prompting inflammation in acute myocarditis. Int J Cardiol 2016; 221:1123-31. [PMID: 27472894 PMCID: PMC7114300 DOI: 10.1016/j.ijcard.2016.07.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/17/2016] [Accepted: 07/08/2016] [Indexed: 01/14/2023]
Abstract
Background Viral myocarditis (VMC) treatment has long been lacking of effective methods. Our former studies indicated roles of calpain in VMC pathogenesis. This study aimed at verifying the potential of calpain in Coxsackievirus B3 (CVB3)-induced myocarditis treatment. Methods A transgenic mouse overexpressing the endogenous calpain inhibitor, calpastatin, was introduced in the study. VMC mouse model was established via intraperitoneal injection of CVB3 in transgenic and wild mouse respectively. Myocardial injury was assayed histologically (HE staining and pathology grading) and serologically (myocardial damage markers of CK-MB and cTnI). CVB3 replication was observed in vivo and in vitro via the capsid protein VP1 detection or virus titration. Inflammation/fibrotic factors of MPO, perforin, IFNγ, IL17, Smad3 and MMP2 were evaluated using western blot or immunohistology stain. Role of calpain in regulating fibroblast migration was studied in scratch assays. Results Calpastatin overexpression ameliorated myocardial injury induced by CVB3 infection significantly in transgenic mouse indicated by reduced peripheral CK-MB and cTnI levels and improved histology injury. Comparing with CVB3-infected wild type mouse, the transgenic mouse heart tissue carried lower virus load. The inflammation factors of MPO, perforin, IFNγ and IL17 were down-regulated accompanied with fibrotic agents of Smad3 and MMP2 inhibition. And calpain participated in the migration of fibroblasts in vitro, which further proves its role in regulating fibrosis. Conclusion Calpain plays dual roles of facilitating CVB3 replication and inflammation promotion. Calpain inhibition in CVB3-induced myocarditis showed significant treatment effect. Calpain might be a novel target for VMC treatment in clinical practices. Calpain is involved in virus replication in myocarditis. Calpain mediates inflammation infiltration in myocarditis. Calpain might be a candidate for viral myocarditis treatment.
Collapse
Affiliation(s)
- Minghui Li
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yangang Su
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Yu
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Yu
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinggang Wang
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunzeng Zou
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Ruizhen Chen
- Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
21
|
Affiliation(s)
- Emmanuel Letavernier
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155 et Inflammation-Immunopathology-Biotherapy Department (DHU i2B), hôpital Tenon, 4, rue de la Chine, F-75020, Paris, France
| | - Laurent Baud
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155 et Inflammation-Immunopathology-Biotherapy Department (DHU i2B), hôpital Tenon, 4, rue de la Chine, F-75020, Paris, France
| |
Collapse
|