1
|
Howe CA. Haemoconcentration and cerebral blood flow: absence of evidence is not evidence of absence. J Physiol 2024; 602:5713-5715. [PMID: 38970619 DOI: 10.1113/jp287042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Affiliation(s)
- Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia - Okanagan Campus, British Columbia, Canada
| |
Collapse
|
2
|
Turner R, Rasmussen P, Gatterer H, Tremblay JC, Roche J, Strapazzon G, Roveri G, Lawley J, Siebenmann C. Cerebral blood flow regulation in hypobaric hypoxia: role of haemoconcentration. J Physiol 2024; 602:5643-5657. [PMID: 38687185 DOI: 10.1113/jp285169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
During acute hypoxic exposure, cerebral blood flow (CBF) increases to compensate for the reduced arterial oxygen content (CaO2). Nevertheless, as exposure extends, both CaO2 and CBF progressively normalize. Haemoconcentration is the primary mechanism underlying the CaO2 restoration and may therefore explain, at least in part, the CBF normalization. Accordingly, we tested the hypothesis that reversing the haemoconcentration associated with extended hypoxic exposure returns CBF towards the values observed in acute hypoxia. Twenty-three healthy lowlanders (12 females) completed two identical 4-day sojourns in a hypobaric chamber, one in normoxia (NX) and one in hypobaric hypoxia (HH, 3500 m). CBF was measured by ultrasound after 1, 6, 12, 48 and 96 h and compared between sojourns to assess the time course of changes in CBF. In addition, CBF was measured at the end of the HH sojourn after hypervolaemic haemodilution. Compared with NX, CBF was increased in HH after 1 h (P = 0.001) but similar at all later time points (all P > 0.199). Haemoglobin concentration was higher in HH than NX from 12 h to 96 h (all P < 0.001). While haemodilution reduced haemoglobin concentration from 14.8 ± 1.0 to 13.9 ± 1.2 g·dl-1 (P < 0.001), it did not increase CBF (974 ± 282 to 872 ± 200 ml·min-1; P = 0.135). We thus conclude that, at least at this moderate altitude, haemoconcentration is not the primary mechanism underlying CBF normalization with acclimatization. These data ostensibly reflect the fact that CBF regulation at high altitude is a complex process that integrates physiological variables beyond CaO2. KEY POINTS: Acute hypoxia causes an increase in cerebral blood flow (CBF). However, as exposure extends, CBF progressively normalizes. We investigated whether hypoxia-induced haemoconcentration contributes to the normalization of CBF during extended hypoxia. Following 4 days of hypobaric hypoxic exposure (corresponding to 3500 m altitude), we measured CBF before and after abolishing hypoxia-induced haemoconcentration by hypervolaemic haemodilution. Contrary to our hypothesis, the haemodilution did not increase CBF in hypoxia. Our findings do not support haemoconcentration as a stimulus for the CBF normalization during extended hypoxia.
Collapse
Affiliation(s)
- Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institut für Sportwissenschaft, Universität Innsbruck, Tyrol, Austria
| | | | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Joshua C Tremblay
- School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Johanna Roche
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giulia Roveri
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Justin Lawley
- Institut für Sportwissenschaft, Universität Innsbruck, Tyrol, Austria
| | | |
Collapse
|
3
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
4
|
Steele AR, Howe CA, Gibbons TD, Foster K, Williams AM, Caldwell HG, Brewster LM, Duffy J, Monteleone JA, Subedi P, Anholm JD, Stembridge M, Ainslie PN, Tremblay JC. Hemorheological, cardiorespiratory, and cerebrovascular effects of pentoxifylline following acclimatization to 3,800 m. Am J Physiol Heart Circ Physiol 2024; 326:H705-H714. [PMID: 38241007 PMCID: PMC11221811 DOI: 10.1152/ajpheart.00783.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Pentoxifylline is a nonselective phosphodiesterase inhibitor used for the treatment of peripheral artery disease. Pentoxifylline acts through cyclic adenosine monophosphate, thereby enhancing red blood cell deformability, causing vasodilation and decreasing inflammation, and potentially stimulating ventilation. We conducted a double-blind, placebo-controlled, crossover, counter-balanced study to test the hypothesis that pentoxifylline could lower blood viscosity, enhance cerebral blood flow, and decrease pulmonary artery pressure in lowlanders following 11-14 days at 3,800 m. Participants (6 males/10 females; age, 27 ± 4 yr old) received either a placebo or 400 mg of pentoxifylline orally the night before and again 2 h before testing. We assessed arterial blood gases, venous hemorheology (blood viscosity, red blood cell deformability, and aggregation), and inflammation (TNF-α) in room air (end-tidal oxygen partial pressure, ∼52 mmHg). Global cerebral blood flow (gCBF), ventilation, and pulmonary artery systolic pressure (PASP) were measured in room air and again after 8-10 min of isocapnic hypoxia (end-tidal oxygen partial pressure, 40 mmHg). Pentoxifylline did not alter arterial blood gases, TNF-α, or hemorheology compared with placebo. Pentoxifylline did not affect gCBF or ventilation during room air or isocapnic hypoxia compared with placebo. However, in females, PASP was reduced with pentoxifylline during room air (placebo, 19 ± 3; pentoxifylline, 16 ± 3 mmHg; P = 0.021) and isocapnic hypoxia (placebo, 22 ± 5; pentoxifylline, 20 ± 4 mmHg; P = 0.029), but not in males. Acute pentoxifylline administration in lowlanders at 3,800 m had no impact on arterial blood gases, hemorheology, inflammation, gCBF, or ventilation. Unexpectedly, however, pentoxifylline reduced PASP in female participants, indicating a potential effect of sex on the pulmonary vascular responses to pentoxifylline.NEW & NOTEWORTHY We conducted a double-blind, placebo-controlled study on the rheological, cardiorespiratory and cerebrovascular effects of acute pentoxifylline in healthy lowlanders after 11-14 days at 3,800 m. Although red blood cell deformability was reduced and blood viscosity increased compared with low altitude, acute pentoxifylline administration had no impact on arterial blood gases, hemorheology, inflammation, cerebral blood flow, or ventilation. Pentoxifylline decreased pulmonary artery systolic pressure in female, but not male, participants.
Collapse
Affiliation(s)
- Andrew R Steele
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States
| | - Katharine Foster
- Pulmonary and Critical Care, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Alexandra M Williams
- Department of Cellular & Physiological Sciences, Faculty of Medicine, University of British Columbia, Kelowna, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - L Madden Brewster
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Jennifer Duffy
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Justin A Monteleone
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Prajan Subedi
- Pulmonary and Critical Care, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - James D Anholm
- Pulmonary and Critical Care, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Joshua C Tremblay
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Li N, Su S, Xie X, Yang Z, Li Z, Lu D. Tsantan Sumtang, a traditional Tibetan medicine, protects pulmonary vascular endothelial function of hypoxia-induced pulmonary hypertension rats through AKT/eNOS signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117436. [PMID: 37979813 DOI: 10.1016/j.jep.2023.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tsantan Sumtang (TS), originated from the Four Tantras, is an empirical Tibetan medicine prescription, which has been widely used for treating cardiovascular diseases in the clinic in Qinghai Province of China. Our previous studies found that TS alleviated hypoxia-induced pulmonary hypertension (HPH) in rats. However, the effect and bioactive fractions of TS on hypoxia-injured pulmonary vascular endothelium are unknown. AIM OF THE STUDY To investigate the effect, bioactive fractions and pharmacological mechanism of TS on hypoxia-injured pulmonary vascular endothelium in vivo and in vitro. MATERIALS AND METHODS In vivo studies, HPH animal model was established, and TS was administrated for four weeks. Then, hemodynamic indexes, ex vivo pulmonary artery perfusion experiment, morphological characteristics, nitric oxide (NO) production, and the protein expression of protein kinase B (AKT)/endothelial nitric oxide synthase (eNOS) and AMP-activated protein kinase (AMPK)/eNOS signaling were determined. In vitro studies, 1% O2-induced pulmonary artery endothelial cells (PAECs) injury model was applied for screening bioactive fractions of TS by cell proliferation assay and NO production measurement. The associated proteins of AKT/eNOS signaling were further measured to elucidate underlying mechanism of bioactive fraction of TS via using phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002. Ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS) was used to reveal the chemical profile of bioactive fraction of TS. RESULTS TS showed protective effect on the integrity of distal pulmonary arterial endothelium in HPH rats. Tsantan Sumtang dilated pulmonary arterial rings in HPH rats. TS enhanced NO bioavailability in lung tissue via regulating AKT/eNOS signaling. Furthermore, in the cellular level, cell viability as well as NO content of hypoxia-injured PAECs were elevated by fraction 17 of water extract of TS (WTS), through activating the AKT/eNOS signaling. Ellagic acid could be one of compositions in fraction 17 of WTS to produce NO in hypoxia-injured PAECs. CONCLUSION TS restored pulmonary arterial endothelial function in HPH rats. The bioactive fraction 17 was screened, which protected hypoxia-injured PAECs via upregulating AKT/eNOS signaling.
Collapse
Affiliation(s)
- Na Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China; Affiliated Hospital of Qinghai University, Xining, 810001, PR China
| | - Shanshan Su
- Technical Center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, 810003, PR China
| | - Xin Xie
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China
| | - Zhanting Yang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China.
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China; Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610086, PR China.
| |
Collapse
|
6
|
Richalet JP, Hermand E, Lhuissier FJ. Cardiovascular physiology and pathophysiology at high altitude. Nat Rev Cardiol 2024; 21:75-88. [PMID: 37783743 DOI: 10.1038/s41569-023-00924-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 10/04/2023]
Abstract
Oxygen is vital for cellular metabolism; therefore, the hypoxic conditions encountered at high altitude affect all physiological functions. Acute hypoxia activates the adrenergic system and induces tachycardia, whereas hypoxic pulmonary vasoconstriction increases pulmonary artery pressure. After a few days of exposure to low oxygen concentrations, the autonomic nervous system adapts and tachycardia decreases, thereby protecting the myocardium against high energy consumption. Permanent exposure to high altitude induces erythropoiesis, which if excessive can be deleterious and lead to chronic mountain sickness, often associated with pulmonary hypertension and heart failure. Genetic factors might account for the variable prevalence of chronic mountain sickness, depending on the population and geographical region. Cardiovascular adaptations to hypoxia provide a remarkable model of the regulation of oxygen availability at the cellular and systemic levels. Rapid exposure to high altitude can have adverse effects in patients with cardiovascular diseases. However, intermittent, moderate hypoxia might be useful in the management of some cardiovascular disorders, such as coronary heart disease and heart failure. The aim of this Review is to help physicians to understand the cardiovascular responses to hypoxia and to outline some recommendations that they can give to patients with cardiovascular disease who wish to travel to high-altitude destinations.
Collapse
Affiliation(s)
- Jean-Paul Richalet
- Hypoxie et Poumon, Université Sorbonne Paris Nord, INSERM U1272, Paris, France.
| | - Eric Hermand
- Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR 7369-URePSSS, Université Littoral Côte d'Opale, Université Artois, Université Lille, CHU Lille, Dunkirk, France
| | | |
Collapse
|
7
|
Vizcardo-Galindo GA, Howe CA, Hoiland RL, Carter HH, Willie CK, Ainslie PN, Tremblay JC. Impact of Oxygen Supplementation on Brachial Artery Hemodynamics and Vascular Function During Ascent to 5,050 m. High Alt Med Biol 2023; 24:27-36. [PMID: 36940101 DOI: 10.1089/ham.2022.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Vizcardo-Galindo, Gustavo A., Connor A. Howe, Ryan L. Hoiland, Howard H. Carter, Christopher K. Willie, Philip N. Ainslie, and Joshua C. Tremblay. Impact of oxygen supplementation on brachial artery hemodynamics and vascular function during ascent to 5,050 m. High Alt Med Biol. 24:27-36, 2023.-High-altitude trekking alters upper limb hemodynamics and reduces brachial artery vascular function in lowlanders. Whether these changes are reversible with the removal of hypoxia is unknown. We investigated the impact of 20 minutes of oxygen supplementation (O2) on brachial artery hemodynamics, reactive hyperemia (RH; microvascular function), and flow-mediated dilation (FMD; endothelial function). Participants (aged 21-42 years) were examined before and with O2 at 3,440 m (n = 7), 4,371 m (n = 7), and 5,050 m (n = 12) using Duplex ultrasound (days 4, 7, and 10 respectively). At 3,440 m, O2 decreased brachial artery diameter (-5% ± 5%; p = 0.04), baseline blood flow (-44% ± 15%; p < 0.001), oxygen delivery (-39 ± 16; p < 0.001), and peak RH (-8% ± 8%; p = 0.02), but not RH normalized for baseline blood flow. Elevated FMD (p = 0.04) with O2 at 3,440 m was attributed to the reduction in baseline diameter. At 5,050 m, a reduction in brachial artery blood flow (-17% ± 22%; p = 0.03), but not oxygen delivery, diameter, RH, or FMD occurred with O2. These findings suggest that during early trekking at high altitude, O2 causes vasoconstriction in the upper limb along the arterial tree (conduit and resistance arteries). With incremental high-altitude exposure, O2 reduces blood flow without compromising oxygen delivery, RH, or FMD, suggesting a differential impact on vascular function modulated by the duration and severity of high-altitude exposure.
Collapse
Affiliation(s)
- Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Connor A Howe
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries, Vancouver, Canada
| | - Howard H Carter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Christopher K Willie
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| |
Collapse
|
8
|
Liu MY, Ju YN, Jia BW, Sun XK, Qiu L, Liu HY, Xu GX, Tai QH, Tan J, Gao W. Inhibition of DNA methylation attenuates lung ischemia-reperfusion injury after lung transplantation. J Int Med Res 2023; 51:3000605231153587. [PMID: 36756846 PMCID: PMC9912569 DOI: 10.1177/03000605231153587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVE DNA methylation plays an important role in inflammation and oxidative stress. This study aimed to investigate the effect of inhibiting DNA methylation on lung ischemia-reperfusion injury (LIRI). METHODS We adopted a completely random design for our study. Thirty-two rats were randomized into the sham, LIRI, azathioprine (AZA), and pluripotin (SC1) groups. The rats in the LIRI, AZA, and SC1 groups received left lung transplantation and intravenous injection of saline, AZA, and SC1, respectively. After 24 hours of reperfusion, histological injury, the arterial oxygen partial pressure to fractional inspired oxygen ratio, the wet/dry weight ratio, protein and cytokine concentrations in lung tissue, and DNA methylation in lung tissue were evaluated. The pulmonary endothelium that underwent hypoxemia and reoxygenation was treated with AZA or SC1. Endothelial apoptosis, chemokines, reactive oxygen species, nuclear factor-κB, and apoptotic proteins in the endothelium were studied. RESULTS Inhibition of DNA methylation by AZA attenuated lung injury, inflammation, and the oxidative stress response, but SC1 aggravated LIRI injury. AZA significantly improved endothelial function, suppressed apoptosis and necrosis, reduced chemokines, and inhibited nuclear factor-κB. CONCLUSIONS Inhibition of DNA methylation ameliorates LIRI and apoptosis and improves pulmonary function via the regulation of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Ming-yuan Liu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying-nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital
of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bao-wei Jia
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Xi-kun Sun
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Heng-yu Liu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Guang-xiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Qi-hang Tai
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Tan
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China,Wei Gao, Department of Anesthesiology, The
Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin,
Heilongjiang 150081, China.
| |
Collapse
|
9
|
Carr JMJR, Ainslie PN, Howe CA, Gibbons TD, Tymko MM, Steele AR, Hoiland RL, Vizcardo-Galindo GA, Patrician A, Brown CV, Caldwell HG, Tremblay JC. Brachial artery responses to acute hypercapnia: The roles of shear stress and adrenergic tone. Exp Physiol 2022; 107:1440-1453. [PMID: 36114662 DOI: 10.1113/ep090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the contributions of shear stress and adrenergic tone to brachial artery vasodilatation during hypercapnia? What is the main finding and its importance? In healthy young adults, shear-mediated vasodilatation does not occur in the brachial artery during hypercapnia, as elevated α₁-adrenergic activity typically maintains vascular tone and offsets distal vasodilatation controlling flow. ABSTRACT We aimed to assess the shear stress dependency of brachial artery (BA) responses to hypercapnia, and the α₁-adrenergic restraint of these responses. We hypothesized that elevated shear stress during hypercapnia would cause BA vasodilatation, but where shear stress was prohibited (via arterial compression), the BA would not vasodilate (study 1); and, in the absence of α₁-adrenergic activity, blood flow, shear stress and BA vasodilatation would increase (study 2). In study 1, 14 healthy adults (7/7 male/female, 27 ± 4 years) underwent bilateral BA duplex ultrasound during hypercapnia (partial pressure of end-tidal carbon dioxide, +10.2 ± 0.3 mmHg above baseline, 12 min) via dynamic end-tidal forcing, and shear stress was reduced in one BA using manual compression (compression vs. control arm). Neither diameter nor blood flow was different between baseline and the last minute of hypercapnia (P = 0.423, P = 0.363, respectively) in either arm. The change values from baseline to the last minute, in diameter (%; P = 0.201), flow (ml/min; P = 0.234) and conductance (ml/min/mmHg; P = 0.503) were not different between arms. In study 2, 12 healthy adults (9/3 male/female, 26 ± 4 years) underwent the same design with and without α₁-adrenergic receptor blockade (prazosin; 0.05 mg/kg) in a placebo-controlled, double-blind and randomized design. BA flow, conductance and shear rate increased during hypercapnia in the prazosin control arm (interaction, P < 0.001), but in neither arm during placebo. Even in the absence of α₁-adrenergic restraint, downstream vasodilatation in the microvasculature during hypercapnia is insufficient to cause shear-mediated vasodilatation in the BA.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada.,Faculty of Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew R Steele
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Alex Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Courtney V Brown
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| |
Collapse
|
10
|
Hansen AB, Moralez G, Amin SB, Hofstätter F, Simpson LL, Gasho C, Tymko MM, Ainslie PN, Lawley JS, Hearon CM. Global REACH 2018: increased adrenergic restraint of blood flow preserves coupling of oxygen delivery and demand during exercise at high-altitude. J Physiol 2022; 600:3483-3495. [PMID: 35738560 PMCID: PMC9357095 DOI: 10.1113/jp282972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/16/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic exposure to hypoxia (high-altitude, HA; >4000 m) attenuates the vasodilatory response to exercise and is associated with a persistent increase in basal sympathetic nerve activity (SNA). The mechanism(s) responsible for the reduced vasodilatation and exercise hyperaemia at HA remains unknown. We hypothesized that heightened adrenergic signalling restrains skeletal muscle blood flow during handgrip exercise in lowlanders acclimatizing to HA. We tested nine adult males (n = 9) at sea-level (SL; 344 m) and following 21-28 days at HA (∼4300 m). Forearm blood flow (FBF; duplex ultrasonography), mean arterial pressure (MAP; brachial artery catheter), forearm vascular conductance (FVC; FBF/MAP), and arterial and venous blood sampling (O2 delivery ( DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ ) and uptake ( V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ )) were measured at rest and during graded rhythmic handgrip exercise (5%, 15% and 25% of maximum voluntary isometric contraction; MVC) before and after local α- and β-adrenergic blockade (intra-arterial phentolamine and propranolol). HA reduced ΔFBF (25% MVC: SL: 138.3 ± 47.6 vs. HA: 113.4 ± 37.1 ml min-1 ; P = 0.022) and Δ V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (25% MVC: SL: 20.3 ± 7.5 vs. HA: 14.3 ± 6.2 ml min-1 ; P = 0.014) during exercise. Local adrenoreceptor blockade at HA restored FBF during exercise (25% MVC: SLα-β blockade : 164.1 ± 71.7 vs. HAα-β blockade : 185.4 ± 66.6 ml min-1 ; P = 0.947) but resulted in an exaggerated relationship between DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ and V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ( DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ / V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ slope: SL: 1.32; HA: slope: 1.86; P = 0.037). These results indicate that tonic adrenergic signalling restrains exercise hyperaemia in lowlanders acclimatizing to HA. The increase in adrenergic restraint is necessary to match oxygen delivery to demand and prevent over perfusion of contracting muscle at HA. KEY POINTS: In exercising skeletal muscle, local vasodilatory signalling and sympathetic vasoconstriction integrate to match oxygen delivery to demand and maintain arterial blood pressure. Exposure to chronic hypoxia (altitude, >4000 m) causes a persistent increase in sympathetic nervous system activity that is associated with impaired functional capacity and diminished vasodilatation during exercise. In healthy male lowlanders exposed to chronic hypoxia (21-28 days; ∼4300 m), local adrenoreceptor blockade (combined α- and β-adrenergic blockade) restored skeletal muscle blood flow during handgrip exercise. However, removal of tonic adrenergic restraint at high altitude caused an excessive rise in blood flow and subsequently oxygen delivery for any given metabolic demand. This investigation is the first to identify greater adrenergic restraint of blood flow during acclimatization to high altitude and provides evidence of a functional role for this adaptive response in regulating oxygen delivery and demand.
Collapse
Affiliation(s)
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, TX, USA
| | - Sachin B. Amin
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofstätter
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Lydia L. Simpson
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, University of Loma Linda, Loma Linda, California, USA
| | - Michael M. Tymko
- Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada.,Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia, Canada
| | - Philip N. Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia, Canada
| | - Justin S. Lawley
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Christopher M. Hearon
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, TX, USA.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, TX, USA.,Correspondence: Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Suite 435, Dallas, TX, 75231, USA.
| |
Collapse
|
11
|
Flores K, Siques P, Brito J, Arribas SM. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms23116205. [PMID: 35682884 PMCID: PMC9181235 DOI: 10.3390/ijms23116205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pulmonary artery pressure produced by vasoconstriction and hyperproliferative remodeling of the pulmonary artery and subsequent right ventricular hypertrophy (RVH). The search for therapeutic targets for cardiovascular pathophysiology has extended in many directions. However, studies focused on mitigating high-altitude pulmonary hypertension (HAPH) have been rare. Because AMP-activated protein kinase (AMPK) is involved in cardiovascular and metabolic pathology, AMPK is often studied as a potential therapeutic target. AMPK is best characterized as a sensor of cellular energy that can also restore cellular metabolic homeostasis. However, AMPK has been implicated in other pathways with vasculoprotective effects. Notably, cellular metabolic stress increases the intracellular ADP/ATP or AMP/ATP ratio, and AMPK activation restores ATP levels by activating energy-producing catabolic pathways and inhibiting energy-consuming anabolic pathways, such as cell growth and proliferation pathways, promoting cardiovascular protection. Thus, AMPK activation plays an important role in antiproliferative, antihypertrophic and antioxidant pathways in the pulmonary artery in HPH. However, AMPK plays contradictory roles in promoting HPH development. This review describes the main findings related to AMPK participation in HPH and its potential as a therapeutic target. It also extrapolates known AMPK functions to discuss the less-studied HAPH context.
Collapse
Affiliation(s)
- Karen Flores
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
- Correspondence: ; Tel.: +56-572526392
| | - Patricia Siques
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Silvia M. Arribas
- Department of Physiology, University Autonoma of Madrid, 28049 Madrid, Spain;
| |
Collapse
|
12
|
Hypoxia and hemorheological properties in older individuals. Ageing Res Rev 2022; 79:101650. [PMID: 35597435 DOI: 10.1016/j.arr.2022.101650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 12/17/2022]
Abstract
Hypoxia is caused by insufficient oxygen availability for the organism leading to reduced oxygen delivery to tissues and cells. It has been regarded as a severe threat to human health and it is indeed implicated in pathophysiological mechanisms involved in the development and progression of many diseases. Nevertheless, the potential of controlled hypoxia interventions (i.e. hypoxia conditioning) for improving cardio-vascular health is gaining increased attention. However, blood rheology is often a forgotten factor for vascular health while aging and hypoxia exposure are both suspected to alter hemorheological properties. These changes in blood rheology may influence the benefits-risks balance of hypoxia exposure in older individuals. The benefits of hypoxia exposure for vascular health are mainly reported for healthy populations and the combined impact of aging and hypoxia on blood rheology could therefore be deleterious in older individuals. This review discusses evidence of hypoxia-related and aging-related changes in blood viscosity and its determinants. It draws upon an extensive literature search on the effects of hypoxia/altitude and aging on blood rheology. Aging increases blood viscosity mainly through a rise in plasma viscosity, red blood cell (RBC) aggregation and a decrease in RBC deformability. Hypoxia also causes an increase in RBC aggregation and plasma viscosity. In addition, hypoxia exposure may increase hematocrit and modulate RBC deformability, depending on the hypoxic dose, i.e, beneficial effect of intermittent hypoxia with moderate dose vs deleterious effect of chronic continuous or intermittent hypoxia or if the hypoxic dose is too high. Special attention is directed toward the risks vs. benefits of hemorheological changes during hypoxia exposure in older individuals, and its clinical relevance for vascular disorders.
Collapse
|
13
|
Tryfonos A, Rasoul D, Sadler D, Shelley J, Mills J, Green DJ, Dawson EA, Cocks M. Elevated shear rate-induced by exercise increases eNOS ser 1177 but not PECAM-1 Tyr 713 phosphorylation in human conduit artery endothelial cells. Eur J Sport Sci 2022; 23:561-570. [PMID: 35195045 DOI: 10.1080/17461391.2022.2046175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although evidence demonstrates the fundamental role of shear stress in vascular health, predominantly through the release of nitric oxide (NO), the mechanisms by which endothelial cells (EC)s sense and transduce shear are poorly understood. In cultured ECs tyrosine phosphorylation of PECAM-1 has been shown to activate eNOS in response to shear stress. However, in the human skeletal muscle microcirculation PECAM-1 was not activated in response to exercise or passive leg movement. Given this contradiction, this study aimed to assess the effect of exercise on conduit artery PECAM-1 and eNOS activation in humans. Eleven males were randomised to two groups; 30 minutes of handgrip exercise (n = 6), or a time-control group (n = 5). Protein content of eNOS and PECAM-1, alongside eNOS Ser1177 and PECAM-1 Tyr713 phosphorylation were assessed in ECs obtained from the radial artery pre- and post-intervention. Handgrip exercise resulted in a 5-fold increase in mean shear rate in the exercise group, with no change in the control group (group*time, P < 0.001). There was a 54% increase in eNOS Ser1177 phosphorylation in the exercise group, when compared to control group (group*time, P = 0.016), but no change was reported in PECAM-1 Tyr713 phosphorylation in either group (group*time, P > 0.05). eNOS and PECAM-1 protein content were unchanged (group*time, P > 0.05). Our data show that exercise-induced elevations in conduit artery shear rate increase eNOS Ser1177 phosphorylation but not PECAM-1 Tyr713 phosphorylation. This suggests PECAM-1 phosphorylation may not be involved in the vascular response to acute but prolonged elevations in exercise-induced shear rate in conduit arteries of healthy, active men.
Collapse
Affiliation(s)
- Andrea Tryfonos
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Debar Rasoul
- Liverpool Heart and Chest Hospital, Liverpool L14 3PE, United Kingdom
| | - Daniel Sadler
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - James Shelley
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Joseph Mills
- Liverpool Heart and Chest Hospital, Liverpool L14 3PE, United Kingdom
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Ellen A Dawson
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Matthew Cocks
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
14
|
Hudson J, Farkas L. Epigenetic Regulation of Endothelial Dysfunction and Inflammation in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms222212098. [PMID: 34829978 PMCID: PMC8617605 DOI: 10.3390/ijms222212098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022] Open
Abstract
Once perceived as a disorder treated by vasodilation, pulmonary artery hypertension (PAH) has emerged as a pulmonary vascular disease with severe endothelial cell dysfunction. In the absence of a cure, many studies seek to understand the detailed mechanisms of EC regulation to potentially create more therapeutic options for PAH. Endothelial dysfunction is characterized by complex phenotypic changes including unchecked proliferation, apoptosis-resistance, enhanced inflammatory signaling and metabolic reprogramming. Recent studies have highlighted the role of epigenetic modifications leading to pro-inflammatory response pathways, endothelial dysfunction, and the progression of PAH. This review summarizes the existing literature on epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs, which can lead to aberrant endothelial function. Our goal is to develop a conceptual framework for immune dysregulation and epigenetic changes in endothelial cells in the context of PAH. These studies as well as others may lead to advances in therapeutics to treat this devastating disease.
Collapse
|
15
|
Stone RM, Ainslie PN, Tremblay JC, Akins JD, MacLeod DB, Tymko MM, DeSouza CA, Bain AR. GLOBAL REACH 2018: intra-arterial vitamin C improves endothelial-dependent vasodilatory function in humans at high altitude. J Physiol 2021; 600:1373-1383. [PMID: 34743333 DOI: 10.1113/jp282281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
High altitude-induced hypoxaemia is often associated with peripheral vascular dysfunction. However, the basic mechanism(s) underlying high-altitude vascular impairments remains unclear. This study tested the hypothesis that oxidative stress contributes to the impairments in endothelial function during early acclimatization to high altitude. Ten young healthy lowlanders were tested at sea level (344 m) and following 4-6 days at high altitude (4300 m). Vascular endothelial function was determined using the isolated perfused forearm technique with forearm blood flow (FBF) measured by strain-gauge venous occlusion plethysmography. FBF was quantified in response to acetylcholine (ACh), sodium nitroprusside (SNP) and a co-infusion of ACh with the antioxidant vitamin C (ACh+VitC). The total FBF response to ACh (area under the curve) was ∼30% lower at high altitude than at sea level (P = 0.048). There was no difference in the response to SNP at high altitude (P = 0.860). At sea level, the co-infusion of ACh+VitC had no influence on the FBF dose response (P = 0.268); however, at high altitude ACh+VitC resulted in an average increase in the FBF dose response by ∼20% (P = 0.019). At high altitude, the decreased FBF response to ACh, and the increase in FBF in response to ACh+VitC, were associated with the magnitude of arterial hypoxaemia (R2 = 0.60, P = 0.008 and R2 = 0.63, P = 0.006, respectively). Collectively, these data support the hypothesis that impairments in vascular endothelial function at high altitude are in part attributable to oxidative stress, a consequence of the magnitude of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related vascular dysfunction. KEY POINTS: Vascular dysfunction has been demonstrated in lowlanders at high altitude (>4000 m). However, the extent of impairment and the delineation of contributing mechanisms have remained unclear. Using the gold-standard isolated perfused forearm model, we determined the extent of vasodilatory dysfunction and oxidative stress as a contributing mechanism in healthy lowlanders before and 4-6 days after rapid ascent to 4300 m. The total forearm blood flow response to acetylcholine at high altitude was decreased by ∼30%. Co-infusion of acetylcholine with the antioxidant vitamin C partially restored the total forearm blood flow by ∼20%. The magnitude of forearm blood flow reduction, as well as the impact of oxidative stress, was positively associated with the individual severity of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related changes in endothelial-mediated vasodilatory function.
Collapse
Affiliation(s)
- Rachel M Stone
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| | - Philip N Ainslie
- Kelowna, Centre for Heart Lung and Vascular Health, University of British Columbia, Vancouver, Canada
| | - Joshua C Tremblay
- Kelowna, Centre for Heart Lung and Vascular Health, University of British Columbia, Vancouver, Canada
| | | | - David B MacLeod
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | - Anthony R Bain
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| |
Collapse
|