1
|
Chen Y, Li M, Wu Y. Heat shock protein 22: A new direction for cardiovascular disease (Review). Mol Med Rep 2025; 31:82. [PMID: 39886946 PMCID: PMC11800183 DOI: 10.3892/mmr.2025.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
Small heat shock proteins (sHSPs) are common molecular chaperone proteins that function in various biological processes, and serve indispensable roles in maintaining cellular protein homeostasis and regulating the hydrolysis of unfolded proteins. HSP22 is a member of the sHSP family that is primarily expressed in the heart and skeletal muscle, as well as in various types of cancer. There have been important findings concerning the role of HSP22 in cardiovascular diseases. The aim of the present study was to provide insights into the various molecular mechanisms by which HSP22 functions in the heart, including oxidative stress, autophagy, apoptosis, the subcellular distribution of proteins and the promoting effect of proteasomes. In addition, drugs and cytokines, including geranylgeranylacetone, can exert protective effects on the heart by regulating the expression of HSP22. Based on increasingly abundant research, HSP22 may be considered a potential therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Yi Chen
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
2
|
Soldatov V, Venediktov A, Belykh A, Piavchenko G, Naimzada MD, Ogneva N, Kartashkina N, Bushueva O. Chaperones vs. oxidative stress in the pathobiology of ischemic stroke. Front Mol Neurosci 2024; 17:1513084. [PMID: 39723236 PMCID: PMC11668803 DOI: 10.3389/fnmol.2024.1513084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins. The functions of chaperones are especially important for brain cells, which are highly sophisticated in terms of structural and functional organization. Molecular chaperones are known to exert beneficial effects in many brain diseases including one of the most threatening and widespread brain pathologies, ischemic stroke. However, whether and how they exert the antioxidant defense in stroke remains unclear. Herein, we discuss the chaperones shown to fight oxidative stress and the mechanisms of their antioxidant action. In ischemic stroke, during intense production of free radicals, molecular chaperones preserve the proteome by interacting with oxidized proteins, regulating imbalanced mitochondrial function, and directly fighting oxidative stress. For instance, cells recruit Hsp60 and Hsp70 to provide proper folding of newly synthesized proteins-these factors are required for early ischemic response and to refold damaged polypeptides. Additionally, Hsp70 upregulates some dedicated antioxidant pathways such as FOXO3 signaling. Small HSPs decrease oxidative stress via attenuation of mitochondrial function through their involvement in the regulation of Nrf- (Hsp22), Akt and Hippo (Hsp27) signaling pathways as well as mitophagy (Hsp27, Hsp22). A similar function has also been proposed for the Sigma-1 receptor, contributing to the regulation of mitochondrial function. Some chaperones can prevent excessive formation of reactive oxygen species whereas Hsp90 is suggested to be responsible for pro-oxidant effects in ischemic stroke. Finally, heat-resistant obscure proteins (Hero) are able to shield client proteins, thus preventing their possible over oxidation.
Collapse
Affiliation(s)
- Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
- Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mukhammad David Naimzada
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
- Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nastasya Ogneva
- Scientific Center of Biomedical Technologies, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Natalia Kartashkina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
3
|
Zelko IN, Hussain A, Malovichko MV, Wickramasinghe N, Srivastava S. Benzene metabolites increase vascular permeability by activating heat shock proteins and Rho GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626801. [PMID: 39677674 PMCID: PMC11643022 DOI: 10.1101/2024.12.04.626801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Benzene is a ubiquitous environmental and occupational pollutant abundant in household products, petrochemicals, and cigarette smoke. It is also a well-known carcinogen and hematopoietic toxin. Population-based studies indicate an increased risk of heart failure in subjects exposed to inhaled benzene, which coincides with the infiltration of immune cells into the myocardium. However, the mechanisms of benzene-induced cardiovascular disease remain unknown. Our data suggests that benzene metabolites trans,trans-muconaldehyde (MA), and hydroquinone (HQ) propagate endothelial activation and apoptosis analyzed by endothelial-specific microparticles in C57BL/6J mice plasma. Subcutaneous injections of MA and HQ increased vascular permeability by 1.54 fold and 1.27 fold correspondingly. In addition, the exposure of primary cardiac microvascular endothelial cells to MA increased vascular permeability detected by transendothelial monolayer resistance and by fluorescently labeled dextrans diffusion. The bulk RNA sequencing of endothelial cells exposed to MA for 2, 6, and 24 hours showed MA-dependent upregulation of heat shock-related pathways at 2 and 6 hours, dysregulation of GTPases at 6 hours, and altered cytoskeleton organization at 24 hours of exposure. We found that the HSP70 protein induced by MA in endothelial cells is colocalized with F-actin foci. HSP70 inhibitor 17AAG and HSP90 inhibitor JG98 attenuated MA-induced endothelial permeability, while HSP activator TRC enhanced endothelial leakage. Moreover, MA induced Rac1 GTPase activity, while Rho GTPase inhibitor Y-27632 attenuated MA-induced endothelial permeability. We showed that benzene metabolites compromised the endothelial barrier by altering HSP- and GTPase-related signaling pathways.
Collapse
Affiliation(s)
- Igor N. Zelko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Ahtesham Hussain
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Marina V. Malovichko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Nalinie Wickramasinghe
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
4
|
Shilenok I, Kobzeva K, Soldatov V, Deykin A, Bushueva O. C11orf58 (Hero20) Gene Polymorphism: Contribution to Ischemic Stroke Risk and Interactions with Other Heat-Resistant Obscure Chaperones. Biomedicines 2024; 12:2603. [PMID: 39595169 PMCID: PMC11592265 DOI: 10.3390/biomedicines12112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Recently identified Hero proteins, which possess chaperone-like functions, are promising candidates for research into atherosclerosis-related diseases, including ischemic stroke (IS). Methods: 2204 Russian subjects (917 IS patients and 1287 controls) were genotyped for fifteen common SNPs in Hero20 gene C11orf58 using probe-based PCR and the MassArray-4 system. Results: Six C11orf58 SNPs were significantly associated with an increased risk of IS in the overall group (OG) and significantly modified by smoking (SMK) and low fruit/vegetable intake (LFVI): rs10766342 (effect allele (EA) A; P(OG = 0.02; SMK = 0.009; LFVI = 0.04)), rs11024032 (EA T; P(OG = 0.01; SMK = 0.01; LFVI = 0.036)), rs11826990 (EA G; P(OG = 0.007; SMK = 0.004; LFVI = 0.03)), rs3203295 (EA C; P(OG = 0.016; SMK = 0.01; LFVI = 0.04)), rs10832676 (EA G; P(OG = 0.006; SMK = 0.002; LFVI = 0.01)), rs4757429 (EA T; P(OG = 0.02; SMK = 0.04; LFVI = 0.04)). The top ten intergenic interactions of Hero genes (two-, three-, and four-locus models) involved exclusively polymorphic loci of C11orf58 and C19orf53 and were characterized by synergic and additive (independent) effects between SNPs. Conclusions: Thus, C11orf58 gene polymorphism represents a major risk factor for IS. Bioinformatic analysis showed the involvement of C11orf58 SNPs in molecular mechanisms of IS mediated by their role in the regulation of redox homeostasis, inflammation, vascular remodeling, apoptosis, vasculogenesis, neurogenesis, lipid metabolism, proteostasis, hypoxia, cell signaling, and stress response. In terms of intergenic interactions, C11orf58 interacts most closely with C19orf53.
Collapse
Affiliation(s)
- Irina Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Division of Neurology, Kursk Emergency Hospital, 305035 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Vladislav Soldatov
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Alexey Deykin
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
5
|
Kaur G, Sohanur Rahman M, Shaikh S, Panda K, Chinnapaiyan S, Santiago Estevez M, Xia L, Unwalla H, Rahman I. Emerging roles of senolytics/senomorphics in HIV-related co-morbidities. Biochem Pharmacol 2024; 228:116179. [PMID: 38556028 PMCID: PMC11410549 DOI: 10.1016/j.bcp.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Human immunodeficiency virus (HIV) is known to cause cellular senescence and inflammation among infected individuals. While the traditional antiretroviral therapies (ART) have allowed the once fatal infection to be managed effectively, the quality of life of HIV patients on prolonged ART use is still inferior. Most of these individuals suffer from life-threatening comorbidities like chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension (PAH), and diabetes, to name a few. Interestingly, cellular senescence is known to play a critical role in the pathophysiology of these comorbidities as well. It is therefore important to understand the role of cellular senescence in the disease progression and co-morbidity development in HIV-infected individuals. In this respect, use of senolytic/senomorphic drugs as combination therapy with ART would be beneficial for HIV patients. This review provides a critical analysis of the current literature to determine the potential and efficacy of using senolytics/senotherapeutics in managing HIV infection, latency, and associated co-morbidities in humans. The various classes of senolytics have been studied in detail to focus on their potential to combat against HIV infections and associated pathologies with advancing age.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Md Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Maria Santiago Estevez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Li Xia
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
6
|
Wang S, Chen Y, Zhou D, Zhang J, Guo G, Chen Y. Pathogenic Autoimmunity in Atherosclerosis Evolves from HSP60-Reactive CD4 + T Cells. J Cardiovasc Transl Res 2024; 17:1172-1180. [PMID: 38767798 DOI: 10.1007/s12265-024-10516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Clinical evidence suggests anti-Hsp60 antibodies could contribute to atherosclerosis (AS) development, with unclear mechanisms. This study aims to explore the role of anti-HSP60-mediated autoimmunity in AS progression. HSP60-MHC tetramers were used to characterize HSP60-specific CD4 + T cells and assess TCR responses in mice. These cells were transplanted into AS mice to examine immune cell differentiation and infiltration in plaques and blood. Mice were injected with recombinant HSP60 or anti-HSP60 sera to evaluate effects on plaque progression and macrophage activity. Experiments with muMT-/-Apoe-/- mice examined humoral immunity's role in this autoimmunity. HSP60-reactive CD4 + T cells in AS mice differentiated into follicular helper cells, not Th1/Th17. Anti-HSP60 treatments increased macrophage infiltration and M1 polarization, indicating an anti-HSP60-driven inflammatory progression, dependent on humoral immunity. Anti-HSP60 influences macrophage infiltration, polarization, and plaque formation via humoral immunity, shedding light on its potential role in AS progression.
Collapse
MESH Headings
- Animals
- Chaperonin 60/immunology
- Chaperonin 60/genetics
- Autoimmunity
- Atherosclerosis/immunology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/blood
- Disease Models, Animal
- Macrophages/immunology
- Macrophages/metabolism
- Plaque, Atherosclerotic
- Mice, Knockout, ApoE
- Immunity, Humoral
- Mice, Inbred C57BL
- Cell Differentiation
- Phenotype
- T Follicular Helper Cells/immunology
- Adoptive Transfer
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/immunology
- Mitochondrial Proteins/metabolism
- Autoantibodies/blood
- Aortic Diseases/immunology
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Cells, Cultured
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Disease Progression
- Macrophage Activation
- Male
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Shixiang Wang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Yongquan Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Danyan Zhou
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Jiawei Zhang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Guofeng Guo
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Youquan Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China.
| |
Collapse
|
7
|
Shilenok I, Kobzeva K, Deykin A, Pokrovsky V, Patrakhanov E, Bushueva O. Obesity and Environmental Risk Factors Significantly Modify the Association between Ischemic Stroke and the Hero Chaperone C19orf53. Life (Basel) 2024; 14:1158. [PMID: 39337941 PMCID: PMC11433390 DOI: 10.3390/life14091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The unique chaperone-like properties of C19orf53, discovered in 2020 as a "hero" protein, make it an intriguing subject for research in relation to ischemic stroke (IS). Our pilot study aimed to investigate whether C19orf53 SNPs are associated with IS. DNA samples from 2138 Russian subjects (947 IS and 1308 controls) were genotyped for 7 C19orf53 SNPs using probe-based PCR. Dominant (D), recessive (R), and log-additive (A) regression models in relation to the effect alleles (EA) were used to interpret associations. An increased risk of IS was associated with rs10104 (EA G; Pbonf(R) = 0.0009; Pbonf(A) = 0.0004), rs11666524 (EA A; Pbonf(R) = 0.003; Pbonf(A) = 0.02), rs346158 (EA C; Pbonf(R) = 0.006; Pbonf(A) = 0.045), and rs2277947 (EA A; Pbonf(R) = 0.002; Pbonf(A) = 0.01) in patients with obesity; with rs11666524 (EA A; Pbonf(R) = 0.02), rs346157 (EA G; Pbonf(R) = 0.036), rs346158 (EA C; Pbonf(R) = 0.005), and rs2277947 (EA A; Pbonf(R) = 0.02) in patients with low fruit and vegetable intake; and with rs10104 (EA G; Pbonf(R) = 0.03) and rs11666524 (EA A; Pbonf(R) = 0.048) in patients with low physical activity. In conclusion, our pilot study provides comprehensive genetic and bioinformatic evidence of the involvement of C19orf53 in IS risk.
Collapse
Affiliation(s)
- Irina Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Division of Neurology, Kursk Emergency Hospital, 305035 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Alexey Deykin
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Vladimir Pokrovsky
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny Patrakhanov
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
8
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Heat shock response during the resolution of inflammation and its progressive suppression in chronic-degenerative inflammatory diseases. Cell Stress Chaperones 2024; 29:116-142. [PMID: 38244765 PMCID: PMC10939074 DOI: 10.1016/j.cstres.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The heat shock response (HSR) is a crucial biochemical pathway that orchestrates the resolution of inflammation, primarily under proteotoxic stress conditions. This process hinges on the upregulation of heat shock proteins (HSPs) and other chaperones, notably the 70 kDa family of heat shock proteins, under the command of the heat shock transcription factor-1. However, in the context of chronic degenerative disorders characterized by persistent low-grade inflammation (such as insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases) a gradual suppression of the HSR does occur. This work delves into the mechanisms behind this phenomenon. It explores how the Western diet and sedentary lifestyle, culminating in the endoplasmic reticulum stress within adipose tissue cells, trigger a cascade of events. This cascade includes the unfolded protein response and activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome, leading to the emergence of the senescence-associated secretory phenotype and the propagation of inflammation throughout the body. Notably, the activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome not only fuels inflammation but also sabotages the HSR by degrading human antigen R, a crucial mRNA-binding protein responsible for maintaining heat shock transcription factor-1 mRNA expression and stability on heat shock gene promoters. This paper underscores the imperative need to comprehend how chronic inflammation stifles the HSR and the clinical significance of evaluating the HSR using cost-effective and accessible tools. Such understanding is pivotal in the development of innovative strategies aimed at the prevention and treatment of these chronic inflammatory ailments, which continue to take a heavy toll on global health and well-being.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Stetskaya TA, Krapiva AB, Kobzeva KA, Gurtovoy DE, Komkova GV, Polonikov AV, Bushueva OY. Polymorphism in Genes Encoding Adaptor Proteins ST13 and STIP1 and the Risk of Ischemic Stroke: a Pilot Study. Bull Exp Biol Med 2024; 176:477-480. [PMID: 38492099 DOI: 10.1007/s10517-024-06050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 03/18/2024]
Abstract
Adaptor proteins stress induced phosphoprotein 1 (STIP1) and ST13 Hsp70 interacting protein (ST13) may play a crucial role in the pathophysiology of ischemic stroke through controlling protein folding, neuronal survival, and regulation of HSP70/HSP90. The present pilot study investigated whether tagSNPs in genes encoding ST13 (rs138335, rs138344, rs7290793, and rs138344) and STIP1 (rs4980524) are associated with ischemic stroke. DNA samples from 721 ischemic stroke patients and 471 healthy controls were genotyped using the MassArray-4. Our research revealed a relationship between rs138344 ST13 and the risk of ischemic stroke, which was seen only in females (risk allele G; OR=1.34, 95%CI=1.07-1.69; p=0.01). The haplotype rs138335G-rs138344C-rs7290793C ST13 was linked with lower risk of ischemic stroke in females: OR=0.42; 95%CI=0.26-0.68; p=0.0005. Thus, ST13 represents a novel genetic marker for ischemic stroke.
Collapse
Affiliation(s)
- T A Stetskaya
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute of Genetics and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - A B Krapiva
- Laboratory of Genomic Research, Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - K A Kobzeva
- Laboratory of Genomic Research, Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - D E Gurtovoy
- Laboratory of Genomic Research, Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - G V Komkova
- Department of Biology, Medical Genetics, and Ecology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - A V Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute of Genetics and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
- Department of Biology, Medical Genetics, and Ecology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - O Yu Bushueva
- Laboratory of Genomic Research, Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia.
- Department of Biology, Medical Genetics, and Ecology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia.
| |
Collapse
|
10
|
Belykh AE, Soldatov VO, Stetskaya TA, Kobzeva KA, Soldatova MO, Polonikov AV, Deykin AV, Churnosov MI, Freidin MB, Bushueva OY. Polymorphism of SERF2, the gene encoding a heat-resistant obscure (Hero) protein with chaperone activity, is a novel link in ischemic stroke. IBRO Neurosci Rep 2023; 14:453-461. [PMID: 37252629 PMCID: PMC10209486 DOI: 10.1016/j.ibneur.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Background Ischemic stroke (IS) is one of the most serious cardiovascular events associated with high risk of death or disability. The growing body of evidence highlights molecular chaperones as especially important players in the pathogenesis of the disease. Since six small proteins called "Hero" have been recently identified as a novel class of chaperones we aimed to evaluate whether SNP rs4644832 in SERF2 gene encoding the member of Hero-proteins, is associated with the risk of IS. Methods A total of 1929 unrelated Russians (861 patients with IS and 1068 healthy individuals) from Central Russia were recruited into the study. Genotyping was done using a probe-based PCR approach. Statistical analysis was carried out in the whole group and stratified by age, gender and smoking status. Results Analysis of the link between rs4644832 SERF2 and IS showed that G allele is the risk factor of IS only in females (OR=1.29, 95%CI 1.02-1.64, Padj=0.035). In addition, the analysis of associations of rs4644832 SERF2 and IS depending on the smoking status revealed that this genetic variant is associated with an increased risk of IS exclusively in non-smoking individuals (OR=1.26, 95%CI 1.01-1.56, P = 0.041). Discussion Sex- and smoking interactions between rs4644832 polymorphism and IS may be related to the impact of tobacco components metabolism and sex hormones on SERF2 expression. Conclusion The present study reveals the novel genetic association between rs4644832 polymorphism and the risk of IS suggesting that SERF2, the part of the protein quality control system, contributes to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Andrei E. Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
| | - Vladislav O. Soldatov
- Laboratory of Genome Editing for Veterinary and Biomedicine, Belgorod State National Research University, Belgorod, Russia
| | - Tatiana A. Stetskaya
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Ksenia A. Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Maria O. Soldatova
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Alexey V. Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Alexey V. Deykin
- Laboratory of Genome Editing for Veterinary and Biomedicine, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail I. Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, Russia
| | - Maxim B. Freidin
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
- Queen Mary University of London, London, United Kingdom
| | - Olga Y. Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
11
|
Ghai S, Young A, Su KH. Proteotoxic stress response in atherosclerotic cardiovascular disease: Emerging role of heat shock factor 1. Front Cardiovasc Med 2023; 10:1155444. [PMID: 37077734 PMCID: PMC10106699 DOI: 10.3389/fcvm.2023.1155444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Atherosclerosis is a major risk factor for cardiovascular diseases. Hypercholesterolemia has been both clinically and experimentally linked to cardiovascular disease and is involved in the initiation of atherosclerosis. Heat shock factor 1 (HSF1) is involved in the control of atherosclerosis. HSF1 is a critical transcriptional factor of the proteotoxic stress response that regulates the production of heat shock proteins (HSPs) and other important activities such as lipid metabolism. Recently, HSF1 is reported to directly interact with and inhibit AMP-activated protein kinase (AMPK) to promote lipogenesis and cholesterol synthesis. This review highlights roles of HSF1 and HSPs in critical metabolic pathways of atherosclerosis, including lipogenesis and proteome homeostasis.
Collapse
|
12
|
Ding Y, Zhou M, Wang K, Qu A, Hu S, Jiang Q, Yi K, Wang F, Cai C, Zhu C, Chen Z. Rice DST transcription factor negatively regulates heat tolerance through ROS-mediated stomatal movement and heat-responsive gene expression. FRONTIERS IN PLANT SCIENCE 2023; 14:1068296. [PMID: 36798712 PMCID: PMC9927019 DOI: 10.3389/fpls.2023.1068296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Plants are frequently subjected to a broad spectrum of abiotic stresses including drought, salinity and extreme temperatures and have evolved both common and stress-specific responses to promote fitness and survival. Understanding the components and mechanisms that underlie both common and stress-specific responses can enable development of crop plants tolerant to different stresses. Here, we report a rice heat stress-tolerant 1 (hst1) mutant with increased heat tolerance. HST1 encodes the DST transcription factor, which also regulates drought and salinity tolerance. Increased heat tolerance of hst1 was associated with suppressed expression of reactive oxygen species (ROS)-scavenging peroxidases and increased ROS levels, which reduced water loss by decreasing stomatal aperture under heat stress. In addition, increased ROS levels enhanced expression of genes encoding heat shock protein (HSPs) including HSP80, HSP74, HSP58 and small HSPs. HSPs promote stabilization of proteins and protein refolding under heat stress and accordingly mutation of HST1 also improved reproductive traits including pollen viability and seed setting under high temperature. These results broaden the negative roles of DST in abiotic stress tolerance and provide important new insights into DST-regulated tolerance to diverse abiotic stresses through both shared and stress-specific mechanisms.
Collapse
Affiliation(s)
- Yanfei Ding
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Mei Zhou
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ke Wang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Aili Qu
- School of Biological and Chemical Engineering, Ningbo Institute of Technology, Ningbo, China
| | - Shanshan Hu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qiong Jiang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Beijing, China
| | - Feijuan Wang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chong Cai
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhixiang Chen
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
13
|
Krüger K, Tirekoglou P, Weyh C. Immunological mechanisms of exercise therapy in dyslipidemia. Front Physiol 2022; 13:903713. [PMID: 36003652 PMCID: PMC9393246 DOI: 10.3389/fphys.2022.903713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Numerous studies demonstrated the strong link between dyslipidemia and the cardiovascular risk. Physical activity and exercise represent effective prevention and therapy strategies for dyslipidemia and at the same time counteract numerous comorbidities that often accompany the disease. The physiological mechanisms are manifold, and primary mechanisms might be an increased energy consumption and associated adaptations of the substrate metabolism. Recent studies showed that there are bidirectional interactions between dyslipidemia and the immune system. Thus, abnormal blood lipids may favor pro-inflammatory processes, and at the same time inflammatory processes may also promote dyslipidemia. Physical activity has been shown to affect numerous immunological processes and has primarily anti-inflammatory effects. These are manifested by altered leukocyte subtypes, cytokine patterns, stress protein expression, and by reducing hallmarks of immunosenescence. The aim of this review is to describe the effects of exercise on the treatment dyslipidemia and to discuss possible immunological mechanisms against the background of the current literature.
Collapse
Affiliation(s)
- Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sport Science, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
14
|
Sun T, Quan W, Peng S, Yang D, Liu J, He C, Chen Y, Hu B, Tuo Q. Network Pharmacology-Based Strategy Combined with Molecular Docking and in vitro Validation Study to Explore the Underlying Mechanism of Huo Luo Xiao Ling Dan in Treating Atherosclerosis. Drug Des Devel Ther 2022; 16:1621-1645. [PMID: 35669282 PMCID: PMC9166517 DOI: 10.2147/dddt.s357483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Huo Luo Xiao Ling Dan (HLXLD), a famous Traditional Chinese Medicine (TCM) classical formula, possesses anti-atherosclerosis (AS) activity. However, the underlying molecular mechanisms remain obscure. Aim The network pharmacology approach, molecular docking strategy, and in vitro validation experiment were performed to explore the potential active compounds, key targets, main signaling pathways, and underlying molecular mechanisms of HLXLD in treating AS. Methods Several public databases were used to search for active components and targets of HLXLD, as well as AS-related targets. Crucial bioactive ingredients, potential targets, and signaling pathways were acquired through bioinformatics analysis. Subsequently, the molecular docking strategy and molecular dynamics simulation were carried out to predict the affinity and stability of active compounds and key targets. In vitro cell experiment was performed to verify the findings from bioinformatics analysis. Results A total of 108 candidate compounds and 321 predicted target genes were screened. Bioinformatics analysis suggested that quercetin, dihydrotanshinone I, pelargonidin, luteolin, guggulsterone, and β-sitosterol may be the main ingredients. STAT3, HSP90AA1, TP53, and AKT1 could be the key targets. MAPK signaling pathway might play an important role in HLXLD against AS. Molecular docking and molecular dynamics simulation results suggested that the active compounds bound well and stably to their targets. Cell experiments showed that the intracellular accumulation of lipid and increased secretory of TNF-α, IL-1β, and MCP-1 in ox-LDL treated RAW264.7 cells, which can be significantly suppressed by pretreating with dihydrotanshinone I. The up-regulation of STAT3, ERK, JNK, and p38 phosphorylation induced by ox-LDL can be inhibited by pretreating with dihydrotanshinone I. Conclusion Our findings comprehensively demonstrated the active compounds, key targets, main signaling pathways, and underlying molecular mechanisms of HLXLD in treating AS. These findings would provide a scientific basis for the study of the complex mechanisms underlying disease and drug action.
Collapse
Affiliation(s)
- Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Wenjuan Quan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Sha Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Dongmei Yang
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Jiaqin Liu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Chaoping He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yu Chen
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Bo Hu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Qinhui Tuo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- The First hospital of Hunan University of Chinese Medicine, Changsha, 410007, People’s Republic of China
| |
Collapse
|
15
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022. [PMID: 35309296 DOI: 10.3389/fimmu.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022; 13:812774. [PMID: 35309296 PMCID: PMC8927970 DOI: 10.3389/fimmu.2022.812774] [Citation(s) in RCA: 341] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Zhang Y, Min H, Shi C, Xia G, Lai Z. Transcriptome analysis of the role of autophagy in plant response to heat stress. PLoS One 2021; 16:e0247783. [PMID: 33635879 PMCID: PMC7909648 DOI: 10.1371/journal.pone.0247783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy plays a critical role in plant heat tolerance in part by targeting heat-induced nonnative proteins for degradation. Autophagy also regulates metabolism, signaling and other processes and it is less understood how the broad function of autophagy affects plant heat stress responses. To address this issue, we performed transcriptome profiling of Arabidopsis wild-type and autophagy-deficient atg5 mutant in response to heat stress. A large number of differentially expressed genes (DEGs) were identified between wild-type and atg5 mutant even under normal conditions. These DEGs are involved not only in metabolism, hormone signaling, stress responses but also in regulation of nucleotide processing and DNA repair. Intriguingly, we found that heat treatment resulted in more robust changes in gene expression in wild-type than in the atg5 mutant plants. The dampening effect of autophagy deficiency on heat-regulated gene expression was associated with already altered expression of many heat-regulated DEGs prior to heat stress in the atg5 mutant. Altered expression of a large number of genes involved in metabolism and signaling in the autophagy mutant prior to heat stress may affect plant response to heat stress. Furthermore, autophagy played a positive role in the expression of defense- and stress-related genes during the early stage of heat stress responses but had little effect on heat-induced expression of heat shock genes. Taken together, these results indicate that the broad role of autophagy in metabolism, cellular homeostasis and other processes can also potentially affect plant heat stress responses and heat tolerance.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
- * E-mail:
| | - Haoxuan Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chengchen Shi
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Gengshou Xia
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Yang Z, Zhang Q, Yu H, Du H, Li L, He Y, Zhu S, Li C, Zhang S, Luo B, Gao Y. Genetic association study of a novel indel polymorphism in HSPA1B with the risk of sudden cardiac death in the Chinese populations. Forensic Sci Int 2020; 318:110637. [PMID: 33309992 DOI: 10.1016/j.forsciint.2020.110637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Sudden cardiac death (SCD) has become a global problem due to its high mortality in the general population. Identification of genetic factors predisposed to SCD is significant since it enables genetic testing that would contribute to molecular diagnosis and risk stratification of SCD. It has been reported that HSPA1B gene mutations might be related with SCD. In this study, based on candidate-gene-based approach and systematic screening strategy, a 5-base pair insertion/deletion (Indel) polymorphism (rs3036297) in the 3'UTR of HSPA1B gene was selected to perform a case-control study aiming to investigate its association with SCD susceptibility in Chinese populations. Logistic regression analysis showed that the insertion allele of rs3036297 was correlated with a comparatively lower risk for SCD [OR=0.58, 95%CI=0.43-0.77, P=1.28×10-4] compared with the deletion allele. Luciferase activity assay indicated that HSPA1B expression could be regulated by rs3036297 through interfering binding with miR-134-5p. Furthermore, analysis of database from Haploreg and GTEx revealed that the rs3036297 variant was involved in potential cis-regulatory element with the promoter of HLA-DRB5 through a long-range interaction and the deletion allele of rs3036297 increased HLA-DRB5 expression. In conclusion, the rs3036297 variant may regulate HSPA1B expression via a mechanism of miRNA binding and HLA-DRB5 expression via a long-range promoter interaction through which contributed to SCD susceptibility. Therefore, rs3036297 would be a potential marker for molecular diagnosis and genetic counseling of SCD.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China; Institute of Forensic Sciences, Henan University of Economics and Law, Zhengzhou, China
| | - Qing Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Huan Yu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Hailin Du
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yan He
- Department of Epidemiology, Medical College of Soochow University, Suzhou, China
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Bin Luo
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
19
|
Duan Y, Tang H, Mitchell-Silbaugh K, Fang X, Han Z, Ouyang K. Heat Shock Protein 60 in Cardiovascular Physiology and Diseases. Front Mol Biosci 2020; 7:73. [PMID: 32426370 PMCID: PMC7203681 DOI: 10.3389/fmolb.2020.00073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 60 (HSP60) is a highly conserved protein abundantly expressed in both prokaryotic and eukaryotic cells. In mammals, HSP60 has been primarily considered to reside in the mitochondria, where HSP60 and HSP10 form a complex and facilitate mitochondrial protein folding. However, HSP60 is also observed in the cytoplasm, the plasma membrane, and the extracellular space. HSP60 regulates a broad spectrum of cellular events including protein trafficking, peptide hormone signaling, cell survival, cell proliferation, inflammation, and immunization. In the cardiovascular system, growing evidence indicates that HSP60 could not only play an important role under physiological conditions, but also regulate the initiation and progression of heart failure and atherosclerosis. In this review, we focus on recent progress in understanding the function of HSP60 in cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs), respectively, and discuss the related signaling pathways that have been found in these cells, so as to illustrate the role of HSP60 in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Yaoyun Duan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huayuan Tang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Kali Mitchell-Silbaugh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kunfu Ouyang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
20
|
Kassem MM, Muqri F, Dacosta M, Bruch D, Gahtan V, Maier KG. Inhibition of heat shock protein 90 attenuates post‑angioplasty intimal hyperplasia. Mol Med Rep 2020; 21:1959-1964. [PMID: 32319637 DOI: 10.3892/mmr.2020.10994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/01/2019] [Indexed: 11/05/2022] Open
Abstract
Intimal hyperplasia (IH) is a pathologic process that leads to restenosis after treatment for peripheral arterial disease. Heat shock protein 90 (HSP90) is a molecular chaperone that regulates protein maturation. Activation of HSP90 results in increased cell migration and proliferation. 17‑N‑allylamino‑17‑demethoxygeldanamycin (17‑AAG) and 17‑dimethylaminoethylamino‑17‑demethoxygeldanamycin (17‑DMAG) are low toxicity Food and Drug Association approved HSP90 inhibitors. The current study hypothesized that HSP90 inhibition was predicted to reduce vascular smooth muscle cell (VSMC) migration and proliferation. In addition, localized HSP90 inhibition may inhibit post‑angioplasty IH formation. For proliferation, VSMCs were treated with serum‑free media (SFM), 17‑DMAG or 17‑AAG. The selected proliferative agents were SFM, platelet derived growth factor (PDGF) or fibronectin. After three days, proliferation was measured. For migration, VSMCs were treated with SFM, 17‑AAG or 17‑DMAG with SFM, PDGF or fibronectin as chemoattractants. Balloon injury to the carotid artery was performed in rats. The groups included in the present study were the control, saline control, 17‑DMAG in 20% pluronic gel delivered topically to the adventitia or intraluminal delivery of 17‑DMAG. After 14 days, arteries were fixed and sectioned for morphometric analysis. Data was analyzed using ANOVA or a student's t‑test. P<0.05 was considered to indicate a statistically significant difference. The results revealed that 17‑AAG and 17‑DMAG had no effect on cell viability. PDGF and fibronectin also increased VSMC proliferation and migration. Furthermore, both 17‑AAG and 17‑DMAG decreased cell migration and proliferation in all agonists. Topical adventitial treatment with 17‑DMAG after balloon arterial injury reduced IH. HSP90 inhibitors suppressed VSMC proliferation and migration without affecting cell viability. Topical treatment with a HSP90 inhibitor (DMAG) decreased IH formation after arterial injury. It was concluded that 17‑DMAG may be utilized as an effective therapy to prevent restenosis after revascularization.
Collapse
Affiliation(s)
- Mohammed M Kassem
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Furqan Muqri
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mary Dacosta
- College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - David Bruch
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vivian Gahtan
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Kristopher G Maier
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
21
|
Gene expression of certain heat shock proteins and antioxidant enzymes in microwave exposed rats. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Gong R, Li XY, Chen HJ, Xu CC, Fang HY, Xiang J, Wu YQ. Role of heat shock protein 22 in the protective effect of geranylgeranylacetone in response to oxidized-LDL. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2619-2632. [PMID: 31534311 PMCID: PMC6680084 DOI: 10.2147/dddt.s209598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/04/2019] [Indexed: 01/03/2023]
Abstract
Objective The aim was to investigate the role and potential mechanism of geranylgeranylacetone (GGA) in the development of atherosclerosis, and to explore the role of heat shock protein 22 (HSP22) in mediating GGA effect. Methods Human coronary artery endothelial cell (HCAEC) was used for in vitro study. RNA interference was applied to suppress HSP22 in the cells. Cellular apoptosis and intracellular level of reactive oxygen species (ROS) were detected by flow cytometer, and proteins of HSP22, NF-κB, eNOS, and ICAM-1 were assessed by immunoblotting. HSP22-/-//ApoE-/-, and HSP22+/+//ApoE-/- mice were used to investigate the effect of GGA in the animal model of atherosclerosis. Atherosclerotic lesion of the mice aortas was evaluated by Oil Red O staining and H&E staining. Results GGA significantly inhibited HCAEC apoptosis in response to oxidized-LDL (ox-LDL), but stimulated HSP22 synthesis in the cells. Transfection of HSP22-siRNA in the cells resulted in complete blockage of the GGA effect on apoptosis. GGA also significantly inhibited ROS, NF-κB, and ICAM-1 in the cells transfected control siRNA, but not in the cells transfected with HSP22-siRNA. Atherosclerotic plaque in the aorta was significantly less in the wild type (WT) animals treated with GGA as stained either by Oil Red O or by H&E staining, but not in the HSP22-KO mice. GGA significantly inhibited expression of NF-κB and ICAM-1 in the WT mice, but not in the HSP22-KO mice. Conclusion GGA-induced HSP22, and inhibited ox-LDL-induced apoptosis as well as expression of NF-κB and ICAM-1 in the HCAECs. GGA also attenuated formation of atherosclerotic plaques in mice aorta. Suppression of HSP22 by siRNA resulted in blockage of the GGA inhibition on apoptosis or stimulation on NF-κB and ICAM-1. These findings suggested that GGA protects endothelial cells from injury in response to ox-LDL and block atherosclerotic development in mice aorta through induction of HSP22.
Collapse
Affiliation(s)
- Ren Gong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xi-Yong Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Huai-Jing Chen
- Department of Cardiology, Baoan Central Hospital of Shenzhen, Shenzhen, People's Republic of China
| | - Cong-Cong Xu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Hai-Yang Fang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jian Xiang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yan-Qing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
23
|
Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Semizu Y, Kitamura K, Ikeuchi T, Nakamura K, Yamamoto T. Molecular Network Analysis of the Urinary Proteome of Alzheimer's Disease Patients. Dement Geriatr Cogn Dis Extra 2019; 9:53-65. [PMID: 31043964 PMCID: PMC6477484 DOI: 10.1159/000496100] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Background/Aims The identification of predictive biomarkers for Alzheimer's disease (AD) from urine would aid in screening for the disease, but information about biological and pathophysiological changes in the urine of AD patients is limited. This study aimed to explore the comprehensive profile and molecular network relations of urinary proteins in AD patients. Methods Urine samples collected from 18 AD patients and 18 age- and sex-matched cognitively normal controls were analyzed by mass spectrometry and semiquantified with the normalized spectral index method. Bioinformatics analyses were performed on proteins which significantly increased by more than 2-fold or decreased by less than 0.5-fold compared to the control (p < 0.05) using DAVID bioinformatics resources and KeyMolnet software. Results The levels of 109 proteins significantly differed between AD patients and controls. Among these, annotation clusters related to lysosomes, complement activation, and gluconeogenesis were significantly enriched. The molecular relation networks derived from these proteins were mainly associated with pathways of lipoprotein metabolism, heat shock protein 90 signaling, matrix metalloproteinase signaling, and redox regulation by thioredoxin. Conclusion Our findings suggest that changes in the urinary proteome of AD patients reflect systemic changes related to AD pathophysiology.
Collapse
Affiliation(s)
- Yumi Watanabe
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Tokutake
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuka Semizu
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaori Kitamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazutoshi Nakamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | |
Collapse
|
24
|
Luttrull JK, Sinclair SH, Elmann S, Glaser BM. Low incidence of choroidal neovascularization following subthreshold diode micropulse laser (SDM) in high-risk AMD. PLoS One 2018; 13:e0202097. [PMID: 30138455 PMCID: PMC6107149 DOI: 10.1371/journal.pone.0202097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/02/2018] [Indexed: 01/10/2023] Open
Abstract
Purpose To determine the incidence of new choroidal neovascularization (CNV) in eyes with dry age-related macular degeneration (AMD) following subthreshold diode micropulse laser (SDM). Method In an observational retrospective cohort study, the records of all patients active in the electronic medical records database were reviewed to identify eyes with dry AMD treated with SDM. Identified eyes were classified by simplified AREDS categories, and analyzed for the primary endpoint of new CNV after treatment. Results The EMR revealed SDM was offered to 373/392 (95%) patients with dry AMD and elected by 363/373 (97%) between 2008–2017. Follow up was available for 354/363 patients (547 eyes, 98%) (range 6–108 mos., avg. 22). CNV risk factors included age (median 84 years, 67% > 80); reticular pseudodrusen (214 eyes, 39%); AREDS category (78% category 3 and 4); and fellow eye CNV (128 eyes, 23%). New CNV developed in 9/547 eyes (1.6%, annualized rate 0.87%). Visual acuity was unchanged. There were no adverse treatment effects. Summary In a review of a large group of eyes with exceptionally high-risk AMD, SDM was followed by a very low incidence of new CNV. If confirmed by further study, SDM would offer a new and highly effective treatment to reduce the risk of vision loss from AMD.
Collapse
|
25
|
Abstract
The development of stress drives a host of biological responses that include the overproduction of a family of proteins named heat shock proteins (HSPs), because they were initially studied after heat exposure. HSPs are evolutionarily preserved proteins with a high degree of interspecies homology. HSPs are intracellular proteins that also have extracellular expression. The primary role of HSPs is to protect cell function by preventing irreversible protein damage and facilitating molecular traffic through intracellular pathways. However, in addition to their chaperone role, HSPs are immunodominant molecules that stimulate natural as well as disease-related immune reactivity. The latter may be a consequence of molecular mimicry, generating cross-reactivity between human HSPs and the HSPs of infectious agents. Autoimmune reactivity driven by HSPs could also be the result of enhancement of the immune response to peptides generated during cellular injury and of their role in the delivery of peptides to the major histocompatibility complex in antigen-presenting cells. In humans, HSPs have been found to participate in the pathogenesis of a large number of diseases. This review is focused on the role of HSPs in atherosclerosis and essential hypertension.
Collapse
Affiliation(s)
- B Rodríguez-Iturbe
- 1 Instituto Venezolano de Investigaciones Científicas (IVIC-Zulia), Nephrology Service Hospital Universitario, Universidad del Zulia , Maracaibo, Venezuela
| | - R J Johnson
- 2 Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| |
Collapse
|
26
|
Zeng S, Wang H, Chen Z, Cao Q, Hu L, Wu Y. Effects of geranylgeranylacetone upon cardiovascular diseases. Cardiovasc Ther 2018; 36:e12331. [PMID: 29656548 DOI: 10.1111/1755-5922.12331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/05/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Shengqiang Zeng
- The Third Department of Cardiology; Jiangxi Provincial People's Hospital; Nanchang China
| | - Hong Wang
- The Third Department of Cardiology; Jiangxi Provincial People's Hospital; Nanchang China
| | - Zaihua Chen
- The Third Department of Cardiology; Jiangxi Provincial People's Hospital; Nanchang China
| | - Qianqiang Cao
- The Third Department of Cardiology; Jiangxi Provincial People's Hospital; Nanchang China
| | - Lin Hu
- The Third Department of Cardiology; Jiangxi Provincial People's Hospital; Nanchang China
| | - Yanqing Wu
- Department of Cardiovascular Medicine; The Second Affiliated Hospital of Nanchang University; Nanchang China
| |
Collapse
|
27
|
Li X, Cai C, Wang Z, Fan B, Zhu C, Chen Z. Plastid Translation Elongation Factor Tu Is Prone to Heat-Induced Aggregation Despite Its Critical Role in Plant Heat Tolerance. PLANT PHYSIOLOGY 2018; 176:3027-3045. [PMID: 29444814 PMCID: PMC5884619 DOI: 10.1104/pp.17.01672] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/07/2018] [Indexed: 05/18/2023]
Abstract
Translation elongation factor Tu (EF-Tu) is a conserved GTP-binding protein essential for protein translation in prokaryotes and in eukaryotic mitochondria and plastids. EF-Tu also has a GTP/GDP-independent chaperone activity that may function in acclimation to heat. Here, we report that the Arabidopsis (Arabidopsis thaliana) plastid EF-Tu, Rabe1b, rapidly becomes insoluble at temperatures as low as 35°C in vitro and 41°C in vivo, with more than 90% aggregation after 9 h at 45°C in vivo. Based on its established function in protein translation, heat-induced aggregation likely inactivates Rabe1b. To determine the effect of heat-induced aggregation, we isolated an Arabidopsis rabe1b knockdown mutant and discovered it to be highly compromised in heat tolerance. Overexpression of constitutive GTP- or GDP-bound mutant forms of Rabe1b in Arabidopsis and virus-induced silencing of Rabe1b in tomato (Solanum lycopersicum) also reduced heat tolerance. Compromised heat tolerance in the Arabidopsis rabe1b mutant and in the lines overexpressing constitutive GTP- or GDP-bound mutant Rabe1b proteins was associated with reduced plastid translation under heat stress. The Arabidopsis rabe1b mutant also showed compromised heat-induced expression of HsfA2 and its target genes. Constitutive overexpression of HsfA2 activated its target genes but only partially restored the heat tolerance of the rabe1b mutant. These results strongly suggest that the plastid protein EF-Tu is heat sensitive and acts as a critical limiting factor in plant heat stress responses, primarily functioning in plastid protein translation but also in protein folding and retrograde signaling of nuclear heat-responsive gene expression.
Collapse
Affiliation(s)
- Xifeng Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054
| | - Chong Cai
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zhe Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zhixiang Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
28
|
Miragem AA, Homem de Bittencourt PI. Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response. Hum Reprod Update 2018; 23:600-628. [PMID: 28903474 DOI: 10.1093/humupd/dmx020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although some unequivocal underlying mechanisms of menopausal hot flushes have been demonstrated in animal models, the paucity of similar approaches in humans impedes further mechanistic outcomes. Human studies might show some as yet unexpected physiological mechanisms of metabolic adaptation that permeate the phase of decreased oestrogen levels in both symptomatic and asymptomatic women. This is particularly relevant because both the severity and time span of hot flushes are associated with increased risk of chronic inflammatory disease. On the other hand, oestrogen induces the expression of heat shock proteins of the 70 kDa family (HSP70), which are anti-inflammatory and cytoprotective protein chaperones, whose expression is modulated by different types of physiologically stressful situations, including heat stress and exercise. Therefore, lower HSP70 expression secondary to oestrogen deficiency increases cardiovascular risk and predisposes the patient to senescence-associated secretory phenotype (SASP) that culminates in chronic inflammatory diseases, such as obesities, type 2 diabetes, neuromuscular and neurodegenerative diseases. OBJECTIVE AND RATIONALE This review focuses on HSP70 and its accompanying heat shock response (HSR), which is an anti-inflammatory and antisenescent pathway whose intracellular triggering is also oestrogen-dependent via nitric oxide (NO) production. The main goal of the manuscript was to show that the vasomotor symptoms that accompany hot flushes may be a disguised clue for important neuroendocrine alterations linking oestrogen deficiency to the anti-inflammatory HSR. SEARCH METHODS Results from our own group and recent evidence on hypothalamic control of central temperature guided a search on PubMed and Google Scholar websites. OUTCOMES Oestrogen elicits rapid production of the vasodilatory gas NO, a powerful activator of HSP70 expression. Whence, part of the protective effects of oestrogen over cardiovascular and neuroendocrine systems is tied to its capacity of inducing the NO-elicited HSR. The hypothalamic areas involved in thermoregulation (infundibular nucleus in humans and arcuate nucleus in other mammals) and whose neurons are known to have their function altered after long-term oestrogen ablation, particularly kisspeptin-neurokinin B-dynorphin neurons, (KNDy) are the same that drive neuroprotective expression of HSP70 and, in many cases, this response is via NO even in the absence of oestrogen. From thence, it is not illogical that hot flushes might be related to an evolutionary adaptation to re-equip the NO-HSP70 axis during the downfall of circulating oestrogen. WIDER IMPLICATIONS Understanding of HSR could shed light on yet uncovered mechanisms of menopause-associated diseases as well as on possible manipulation of HSR in menopausal women through physiological, pharmacological, nutraceutical and prebiotic interventions. Moreover, decreased HSR indices (that can be clinically determined with ease) in perimenopause could be of prognostic value in predicting the moment and appropriateness of starting a HRT.
Collapse
Affiliation(s)
- Antônio Azambuja Miragem
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil.,Federal Institute of Education, Science and Technology 'Farroupilha', Rua Uruguai 1675, Santa Rosa, RS 98900-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
29
|
Sell H, Poitou C, Habich C, Bouillot JL, Eckel J, Clément K. Heat Shock Protein 60 in Obesity: Effect of Bariatric Surgery and its Relation to Inflammation and Cardiovascular Risk. Obesity (Silver Spring) 2017; 25:2108-2114. [PMID: 29024428 DOI: 10.1002/oby.22014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Heat shock protein 60 (Hsp60) is an adipokine, and its serum concentrations are higher in patients with obesity compared to lean patients. This study aimed to analyze the effect of bariatric surgery on circulating concentrations of Hsp60 in morbid obesity and their correlation with inflammation and metabolic and cardiovascular risk. METHODS Fifty-three females with morbid obesity undergoing bariatric surgery were enrolled. Serum parameters and anthropometric measures were obtained at baseline and 3 to 12 months post surgery. RESULTS During the 12-month observation period, Hsp60 decreased significantly from 31.6 ± 4.7 ng/mL at baseline to 22.3 ± 3.0 ng/mL (3 months), 26.5 ± 5.5 (6 months), and 21.1 ± 3.3 ng/mL (12 months). Preoperatively, Hsp60 concentrations correlated positively with total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein B (ApoB) and negatively with adiponectin. At the end of the observation period, serum Hsp60 positively correlated with triglycerides, ApoB, HbA1c , and C-reactive protein (CRP). Patients in the highest quartile of serum Hsp60 were characterized by significantly elevated CRP and interleukin 6 independently of BMI, glycemia, and insulinemia. At baseline and 12 months after surgery, Hsp60 positively correlated with the ApoB/ApoA1 ratio and the cholesterol/high-density lipoprotein cholesterol ratio. CONCLUSIONS Hsp60 concentrations are elevated in morbid obesity and decreased after surgery-induced weight loss. Their correlation with inflammatory markers and cardiovascular risk might link obesity and cardiovascular disease.
Collapse
Affiliation(s)
- Henrike Sell
- Paul-Langerhaus-Group Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Christine Poitou
- INSERM, U1166, team 6 Nutriomique, Université Pierre et Marie Curie-Paris 6, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Christiane Habich
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
| | - Jean-Luc Bouillot
- Assistance Publique-Hôpitaux de Paris, Hôtel-Dieu Hospital, Surgery Department, Paris, France
| | - Jürgen Eckel
- Paul-Langerhaus-Group Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Karine Clément
- INSERM, U1166, team 6 Nutriomique, Université Pierre et Marie Curie-Paris 6, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, Paris, France
| |
Collapse
|
30
|
Chi LM, Wang X, Nan GX. In silico analyses for molecular genetic mechanism and candidate genes in patients with Alzheimer's disease. Acta Neurol Belg 2016; 116:543-547. [PMID: 26935318 DOI: 10.1007/s13760-016-0613-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Abstract
This study aimed to identify candidate genes and explore the molecular pathogenesis of Alzheimer's disease (AD). Exon microarray data composed by of three human entorhinal cortex samples of AD patients and three non-demented controls (NDC) were analyzed, then expression profile data were preprocessed with the Oligo package and differentially expressed genes (DEGs) were identified by limma package in R/Bioconductor. In addition, protein-protein interaction (PPI) network was predicted and constructed using the STRING database. Finally, gene ontology (GO)-biological processes (BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by DEGs were recognized. A total of 124 up-regulated and 218 down-regulated genes were identified. TGF-beta-activated kinase 1/MAP3K7 binding protein 2 (TAB 2) and chromogranin B (secretogranin 1) (CHGB) were the significantly up- and down-regulated genes, respectively. In addition, DEGs of DnaJ (Hsp40) homolog, subfamily B, member 1 (DNAJB1) and heat shock 70 kDa protein 1A (HSPA1A) were in the up-regulated network, while synaptophysin (SYP) and somatostatin (SST) were in the down-regulated network. Furthermore, the up-regulated genes were enriched in GO-BP terms of protein stimulus, unfolding and organic substance, etc., and pathways of ECM-receptor interaction, etc. The down-regulated genes were mainly associated with nerve-related transmission and neuroactive substances transportation. Protein folding abnormality and altered synaptic transmission could have a synergistic effect on the pathomechanism of AD. DEGs including DNAJB1 and HSPA1A may be involved in both the processes, while CHGB, SYP and SST may be important for the regulation of synaptic transmission to contribute to the progress and development of AD.
Collapse
Affiliation(s)
- Lu-Mei Chi
- Department of Neurology, China-Japan Union Hospital of Jilin University, No 126 Xintai Street, Changchun, 130000, Jilin, China
| | - Xu Wang
- Cancer Center, First Affiliated Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Guang-Xian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No 126 Xintai Street, Changchun, 130000, Jilin, China.
| |
Collapse
|
31
|
Xie F, Zhan R, Yan LC, Gong JB, Zhao Y, Ma J, Qian LJ. Diet-induced elevation of circulating HSP70 may trigger cell adhesion and promote the development of atherosclerosis in rats. Cell Stress Chaperones 2016; 21:907-14. [PMID: 27435079 PMCID: PMC5003808 DOI: 10.1007/s12192-016-0716-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
Although accumulating evidence indicates that heat shock protein 70 (HSP70) could be secreted into plasma and its levels have been found to have an ambiguous association with atherosclerosis, our knowledge for the exact role of circulating HSP70 in the development of atherosclerosis is still limited. In the present study, we report an adhesion-promoting effect of exogenous HSP70 and evaluate the potential involvement of elevated circulating HSP70 in the development of atherosclerosis. Time-dependent elevation of plasma HSP70 was found in diet-induced atherosclerotic rats, whose effect was investigated through further in vitro experiments. In rat aortic endothelial cell (RAEC) cultures, exogenous HSP70 incubation neither produced cell injuries by itself nor had protective effects on cell injuries caused by Ox-LDL or homocysteine. However, exogenous HSP70 administration could lead to a higher adhesion rate between rat peripheral blood monocytes (PBMCs) and RAECs. This adhesion-promoting effect appeared only when PBMCs, rather than RAECs, were pretreated with HSP70 incubation. PBMCs in an HSP70 environment released more IL-6 to supernatant, which subsequently up-regulated the expression of ICAM-1 in RAECs. These results indicate that the diet-induced elevation of circulating HSP70 could trigger cell adhesion with the help of IL-6 as a mediator, which provides a novel possible mechanism for understanding the role of circulating HSP70 in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Fang Xie
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Rui Zhan
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Li-Cheng Yan
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Jing-Bo Gong
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Yun Zhao
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Jing Ma
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Ling-Jia Qian
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China.
| |
Collapse
|
32
|
Catalán Ú, Rubió L, López de las Hazas MC, Herrero P, Nadal P, Canela N, Pedret A, Motilva MJ, Solà R. Hydroxytyrosol and its complex forms (secoiridoids) modulate aorta and heart proteome in healthy rats: Potential cardio-protective effects. Mol Nutr Food Res 2016; 60:2114-2129. [DOI: 10.1002/mnfr.201600052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Úrsula Catalán
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| | - Laura Rubió
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
- Food Technology Department; Universitat de Lleida-AGROTECNIO Center; Lleida Spain
| | | | - Pol Herrero
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Pedro Nadal
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Núria Canela
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Anna Pedret
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| | - Maria-José Motilva
- Food Technology Department; Universitat de Lleida-AGROTECNIO Center; Lleida Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| |
Collapse
|
33
|
Merched AJ, Daret D, Li L, Franzl N, Sauvage-Merched M. Specific autoantigens in experimental autoimmunity-associated atherosclerosis. FASEB J 2016; 30:2123-34. [PMID: 26891734 DOI: 10.1096/fj.201500131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Higher cardiovascular morbidity in patients with a wide range of autoimmune diseases highlights the importance of autoimmunity in promoting atherosclerosis. Our purpose was to investigate the mechanisms of accelerated atherosclerosis and identified vascular autoantigens targeted by autoimmunity. We created a mouse model of autoimmunity-associated atherosclerosis by transplanting bone marrow from FcγRIIB knockout (FcRIIB(-/-)) mice into LDL receptor knockout mice. We characterized the cellular and molecular mechanisms of atherogenesis and identified specific aortic autoantigens using serologic proteomic studies. En face lesion area analysis showed more aggressive atherosclerosis in autoimmune mice compared with control mice (0.64 ± 0.12 vs 0.32 ± 0.05 mm(2); P < 0.05, respectively). At the cellular level, FcRIIB(-/-) macrophages showed significant reduction (46-72%) in phagocytic capabilities. Proteomic analysis revealed circulating autoantibodies in autoimmune mice that targeted 25 atherosclerotic lesion proteins, including essential components of adhesion complex, cytoskeleton, and extracellular matrix, and proteins involved in critical functions and pathways. Microscopic examination of atherosclerotic plaques revealed essential colocalization of autoantibodies with endothelial cells, their adherence to basement membranes, the internal elastica lamina, and necrotic cores. The new vascular autoimmunosome may be a useful target for diagnostic and immunotherapeutic interventions in autoimmunity-associated diseases that have accelerated atherosclerosis.-Merched, A. J., Daret, D., Li, L., Franzl, N., Sauvage-Merched, M. Specific autoantigens in experimental autoimmunity-associated atherosclerosis.
Collapse
Affiliation(s)
- Aksam J Merched
- Department of Pharmaceutical Sciences, and INSERM U1053, University of Bordeaux, Bordeaux, France Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Danièle Daret
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lan Li
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Nathalie Franzl
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
34
|
Parton A, McGilligan V, O’Kane M, Baldrick FR, Watterson S. Computational modelling of atherosclerosis. Brief Bioinform 2015; 17:562-75. [DOI: 10.1093/bib/bbv081] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 12/24/2022] Open
|
35
|
Eng JWL, Reed CB, Kokolus KM, Repasky EA. Housing temperature influences the pattern of heat shock protein induction in mice following mild whole body hyperthermia. Int J Hyperthermia 2015; 30:540-6. [PMID: 25430986 DOI: 10.3109/02656736.2014.981300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Researchers studying the murine response to stress generally use mice housed under standard, nationally mandated conditions as controls. Few investigators are concerned whether basic physical aspects of mouse housing could be an additional source of stress, capable of influencing the subsequent impact of an experimentally applied stressor. We have recently become aware of the potential for housing conditions to impact important physiological and immunological properties in mice. MATERIALS AND METHODS Here we sought to determine whether housing mice at standard temperature (ST; 22 °C) vs. thermoneutral temperature (TT; 30 °C) influences baseline expression of heat shock proteins (HSPs) and their typical induction following a whole body heating. RESULTS There were no significant differences in baseline expression of HSPs at ST and TT. However, in several cases, the induction of Hsp70, Hsp110 and Hsp90 in tissues of mice maintained at ST was greater than at TT following 6 h of heating (which elevated core body temperature to 39.5 °C). This loss of HSP induction was also seen when mice housed at ST were treated with propranolol, a β-adrenergic receptor antagonist, used clinically to treat hypertension and stress. CONCLUSIONS Taken together, these data show that housing temperature significantly influences the expression of HSPs in mice after whole body heating and thus should be considered when stress responses are studied in mice.
Collapse
Affiliation(s)
- Jason W-L Eng
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York , USA
| | | | | | | |
Collapse
|
36
|
Smith BW, Simpson DG, Miller RJ, Erdman JW, O'Brien WD. Contrast Ultrasound Imaging Does Not Affect Heat Shock Protein 70 Expression in Cholesterol-Fed Rabbit Aorta. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:1209-1216. [PMID: 26112623 PMCID: PMC4494680 DOI: 10.7863/ultra.34.7.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVES Diagnostic ultrasound imaging is enhanced by the use of circulating microbubble contrast agents (UCAs), but the interactions between ultrasound, UCAs, and vascular tissue are not fully understood. We hypothesized that ultrasound with a UCA would stress the vascular tissue and increase levels of heat shock protein 70 (Hsp70), a cellular stress protein. METHODS Male New Zealand White rabbits (n = 32) were fed a standard chow diet (n = 4) or a 1% cholesterol, 10% fat, and 0.11% magnesium diet (n = 28). At 21 days, 24 rabbits on the cholesterol diet were either exposed to ultrasound (3.2-MHz f/3 transducer; 2.1 MPa; mechanical index, 1.17; 10 Hz pulse repetition frequency; 1.6 microseconds pulse duration; 2 minutes exposure duration at 4 sites along the aorta) with the UCA Definity (1× concentration, 1 mL/min; Lantheus Medical Imaging, North Billerica, MA) or sham exposed with a saline vehicle injection (n = 12 per group). Four rabbits on the cholesterol diet and 4 on the chow diet served as cage controls and were not exposed to ultrasound or restrained for blood sample collection. Animals were euthanized 24 hours after exposure, and aortas were quickly isolated and frozen in liquid nitrogen. Aorta lysates from the area of ultrasound exposure were analyzed for Hsp70 level by Western blot. Blood plasma was analyzed for cholesterol, Hsp70, and von Willebrand factor, a marker of endothelial function. RESULTS Plasma total cholesterol levels increased to an average of 705 mg/dL. Ultrasound did not affect plasma von Willebrand factor, plasma Hsp70, or aorta Hsp70. Restraint increased Hsp70 (P < .001, analysis of variance). CONCLUSIONS Restraint, but not ultrasound with the UCA or cholesterol feeding, significantly increased Hsp70.
Collapse
Affiliation(s)
- Brendon W Smith
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Douglas G Simpson
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Rita J Miller
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - John W Erdman
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - William D O'Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA.
| |
Collapse
|
37
|
2-DE Mapping of the Blue Mussel Gill Proteome: The Usual Suspects Revisited. Proteomes 2015; 3:3-41. [PMID: 28248261 PMCID: PMC5302490 DOI: 10.3390/proteomes3010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/04/2014] [Indexed: 11/17/2022] Open
Abstract
The Blue Mussel (Mytilus edulis, L. 1758) is an ecologically important and commercially relevant bivalve. Because of its ability to bioconcentrate xenobiotics, it is also a widespread sentinel species for environmental pollution, which has been used in ecotoxicological studies for biomarker assessment. Consequently, numerous proteomics studies have been carried out in various research contexts using mussels of the genus Mytilus, which intended to improve our understanding of complex physiological processes related to reproduction, adaptation to physical stressors or shell formation and for biomarker discovery. Differential-display 2-DE proteomics relies on an extensive knowledge of the proteome with as many proteoforms identified as possible. To this end, extensive characterization of proteins was performed in order to increase our knowledge of the Mytilus gill proteome. On average, 700 spots were detected on 2-DE gels by colloidal blue staining, of which 122 different, non-redundant proteins comprising 203 proteoforms could be identified by tandem mass spectrometry. These proteins could be attributed to four major categories: (i) “metabolism”, including antioxidant defence and degradation of xenobiotics; (ii) “genetic information processing”, comprising transcription and translation as well as folding, sorting, repair and degradation; (iii) “cellular processes”, such as cell motility, transport and catabolism; (iv) “environmental information processing”, including signal transduction and signalling molecules and interaction. The role of cytoskeleton proteins, energetic metabolism, chaperones/stress proteins, protein trafficking and the proteasome are discussed in the light of the exigencies of the intertidal environment, leading to an enhanced stress response, as well as the structural and physiological particularities of the bivalve gill tissue.
Collapse
|
38
|
Gurav AN. The implication of periodontitis in vascular endothelial dysfunction. Eur J Clin Invest 2014; 44:1000-9. [PMID: 25104241 DOI: 10.1111/eci.12322] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/04/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Periodontitis is the most common oral infection seen in humans worldwide. It is characterized by gradual destruction of tooth supporting tissues, eventually leading to loss of tooth. The periodontal biofilm associated with periodontitis comprises of gram-positive and gram-negative bacteria, instrumental for the initiation and progression of periodontitis. Evidence-based literature has identified the nature of periodontal infection as a possible causative condition in the inducement of 'low-grade systemic inflammation and infection'. The periodontal pathogens exert systemic effects via the haematogenous route. AIM The present review provides an insight into the pathophysiology of the endothelial dysfunction with reference to periodontal infection and highlights the association between periodontitis and endothelial dysfunction. Various studies addressing the implication of periodontitis on endothelial dysfunction will be described, with a focus of periodontal treatment on improvement of endothelial function. MATERIALS AND METHODS Studies examining the effects of periodontitis on vascular endothelial function were segregated. Studies conducted on both animal and human models were identified using MEDLINE database search with key search terms such as 'Periodontitis', 'vascular endothelium', 'endothelial dysfunction', 'periodontal bacteria' and 'periodontal therapy'. Systematic reviews and meta-analysis were also screened. Only studies published in English language were considered. The review has been prepared by screening MEDLINE database from 1989 to 2012. RESULTS AND CONCLUSIONS Chronic periodontitis results in altered vascular response, increased expression of pro-inflammatory cytokines and adhesion molecules inducing vascular endothelial dysfunction. Periodontal therapy may ameliorate the perturbed vascular endothelial function.
Collapse
Affiliation(s)
- Abhijit N Gurav
- Department of Periodontics, Tatyasaheb Kore Dental College & Research Centre, Kolhapur, India
| |
Collapse
|
39
|
Abstract
Atherosclerosis is the leading global cause of mortality, morbidity, and disability. Heat shock proteins (HSPs) are a highly conserved family of proteins with diverse functions expressed by all cells exposed to environmental stress. Studies have reported that several HSPs may be potential risk markers of atherosclerosis and related cardiovascular diseases, or may be directly involved in the atherogenic process itself. HSPs are expressed by cells in atherosclerotic plaque and anti-HSP has been reported to be increased in patients with vascular disease. Autoimmune responses may be generated against antigens present within the atherosclerotic plaque, including HSP and may lead to a cycle of ongoing vascular injury. It has been suggested that by inducing a state of tolerance to these antigens, the atherogenic process may be limited and thus provide a potential therapeutic approach. It has been suggested that anti-HSPs are independent predictors of risk of vascular disease. In this review, we summarize the current understanding of HSP in cardiovascular disease and highlight their potential role as diagnostic agents and therapeutic targets.
Collapse
|
40
|
Altered expression of genes associated with telomere maintenance and cell function of human vascular endothelial cell at elevated temperature. Mol Cell Biochem 2014; 397:305-12. [PMID: 25142166 DOI: 10.1007/s11010-014-2198-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022]
Abstract
The pathophysiological alterations of vascular endothelial cells induced by heat were studied. Human umbilical venous endothelial cells were cultured for 1 day at three different temperatures (37, 39, and 42 °C). The telomere lengths, the expressions of proteins associated with telomere length maintenance, apoptosis, heat shock, and vascular function were analyzed. The cell growth was not suppressed at 39 °C but suppressed at 42 °C. The mean telomere length did not change, whereas the telomere length distribution altered at 42 °C. Long telomere decreased and middle-sized telomere increased in the telomere length distribution at 42 °C. The telomerase activity did not show any heat-associated alterations. However, of the components of telomerase, telomerase reverse transcriptase was up-regulated along temperature elevation. In contrast, the expression level of RNA component TERC did not altered. Among the analyzed apoptosis-associated proteins, p21 was down-regulated and phosphorylated p53 was up-regulated. Heat shock proteins and NO synthase were up-regulated at 42 °C. These results suggested that induced growth suppression or cell senescence was induced by strong heat stress rather than mild one predominantly in cells bearing long telomeres with p53 activation, and simultaneously activated some telomere-associated factors, heat shock proteins, and NO synthesis probably for heat-resistant cell survival.
Collapse
|
41
|
Sandri M, Robbins J. Proteotoxicity: an underappreciated pathology in cardiac disease. J Mol Cell Cardiol 2014; 71:3-10. [PMID: 24380730 PMCID: PMC4011959 DOI: 10.1016/j.yjmcc.2013.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/03/2013] [Accepted: 12/15/2013] [Indexed: 12/21/2022]
Abstract
In general, in most organ systems, intracellular protein homeostasis is the sum of many factors, including chromosomal state, protein synthesis, post-translational processing and transport, folding, assembly and disassembly into macromolecular complexes, protein stability and clearance. In the heart, there has been a focus on the gene programs that are activated during pathogenic processes, but the removal of damaged proteins and organelles has been underappreciated as playing an important role in the pathogenesis of heart disease. Proteotoxicity refers to the adverse effects of damaged or misfolded proteins and even organelles on the cell. At the cellular level, the ultimate outcome of uncontrolled or severe proteotoxicity is cell death; hence, the pathogenic impact of proteotoxicity is maximally manifested in organs with no or very poor regenerative capability such as the brain and the heart. Evidence for increased cardiac proteotoxicity is rapidly mounting for a large subset of congenital and acquired human heart disease. Studies carried out in animal models and in cell culture have begun to establish both sufficiency and, in some cases, the necessity of proteotoxicity as a major pathogenic factor in the heart. This dictates rigorous testing for the efficacy of proteotoxic attenuation as a new strategy to treat heart disease. This review article highlights some recent advances in our understanding of how misfolded proteins can injure and are handled in the cell, examining the emerging evidence for targeting proteotoxicity as a new therapeutic strategy for heart disease. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy."
Collapse
Affiliation(s)
- Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy; Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Padova, Italy; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jeffrey Robbins
- The Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
42
|
Chyu KY, Shah PK. Advances in immune-modulating therapies to treat atherosclerotic cardiovascular diseases. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:56-66. [PMID: 24757525 PMCID: PMC3991155 DOI: 10.1177/2051013613514327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In addition to hypercholesterolemia, innate and adaptive immune mechanisms play a critical role in atherogenesis, thus making immune-modulation therapy a potentially attractive way of managing atherosclerotic cardiovascular disease. These immune-modulation strategies include both active and passive immunization and confer beneficial reduction in atherosclerosis. Preclinical studies have demonstrated promising results and we review current knowledge on the complex role of the immune system and the potential for immunization as an immune-modulation therapy for atherosclerosis.
Collapse
Affiliation(s)
- Kuang-Yuh Chyu
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Prediman K Shah
- Division of Cardiology, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Suite A-3307, Los Angeles, CA 90048, USA
| |
Collapse
|
43
|
Heat shock protein 72 expressing stress in sepsis: unbridgeable gap between animal and human studies--a hypothetical "comparative" study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:101023. [PMID: 24524071 PMCID: PMC3912989 DOI: 10.1155/2014/101023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/05/2013] [Indexed: 01/30/2023]
Abstract
Heat shock protein 72 (Hsp72) exhibits a protective role during times of increased risk of pathogenic challenge and/or tissue damage. The aim of the study was to ascertain Hsp72 protective effect differences between animal and human studies in sepsis using a hypothetical “comparative study” model.
Forty-one in vivo (56.1%), in vitro (17.1%), or combined (26.8%) animal and 14 in vivo (2) or in vitro (12) human Hsp72 studies (P < 0.0001) were enrolled in the analysis. Of the 14 human studies, 50% showed a protective Hsp72 effect compared to 95.8% protection shown in septic animal studies (P < 0.0001). Only human studies reported Hsp72-associated mortality (21.4%) or infection (7.1%) or reported results (14.3%) to be nonprotective (P < 0.001). In animal models, any Hsp72 induction method tried increased intracellular Hsp72 (100%), compared to 57.1% of human studies (P < 0.02), reduced proinflammatory cytokines (28/29), and enhanced survival (18/18). Animal studies show a clear Hsp72 protective effect in sepsis. Human studies are inconclusive, showing either protection or a possible relation to mortality and infections. This might be due to the fact that using evermore purified target cell populations in animal models, a lot of clinical information regarding the net response that occurs in sepsis is missing.
Collapse
|
44
|
Anderson JL, Ashwell CM, Smith SC, Shine R, Smith EC, Taylor RL. Atherosclerosis-susceptible and atherosclerosis-resistant pigeon aortic cells express different genes in vivo. Poult Sci 2013; 92:2668-80. [PMID: 24046414 DOI: 10.3382/ps.2013-03306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spontaneous atherosclerosis in the White Carneau (WC-As) pigeon is inherited as a single gene disorder, and its progression closely mirrors the human disease. Representational difference analysis and microarray were used to identify genes that were differentially expressed between the susceptible WC-As and resistant Show Racer (SR-Ar) aortic tissue. The RNA extracted from 1-d-old squab aortas was used to make cDNA for each experiment. Fifty-six unique genes were found using representational difference analysis, with 25 exclusively expressed in the WC-As, 15 exclusive to the SR-Ar, and 16 nonexclusive genes having copy number variation between breeds. Caveolin and β-actin were expressed in the WC-As, whereas the proteasome maturation protein and the transcription complex CCR4-NOT were exclusive to the SR-Ar. Microarray analysis revealed 48 genes with differential expression. Vascular endothelial growth factor and p53 binding protein were among the 17 genes upregulated in the WC-As. Thirty-one genes were upregulated in the SR-Ar including the transforming growth factor-β signaling factor SMAD2 and heat shock protein 90. Genes representing several biochemical pathways were distinctly different between breeds. The most striking divergences were in cytoskeletal remodeling, proteasome activity, cellular respiration, and immune response. Actin cytoskeletal remodeling appears to be one of the first differences between susceptible and resistant breeds, lending support to the smooth muscle cell phenotypic reversion hypothesis of human atherogenesis.
Collapse
Affiliation(s)
- J L Anderson
- Department of Animal and Nutritional Sciences, University of New Hampshire, Durham 03824; and
| | | | | | | | | | | |
Collapse
|
45
|
Koizumi G, Kumai T, Egawa S, Yatomi K, Hayashi T, Oda G, Ohba K, Iwai S, Watanabe M, Matsumoto N, Oguchi K. Gene expression in the vascular wall of the aortic arch in spontaneously hypertensive hyperlipidemic model rats using DNA microarray analysis. Life Sci 2013; 93:495-502. [PMID: 23994198 DOI: 10.1016/j.lfs.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 07/31/2013] [Accepted: 08/16/2013] [Indexed: 01/11/2023]
Abstract
AIMS In recent years, there has been an increase in patients with arteriosclerosis and the risk of lifestyle-related diseases. However, the pathogenesis and medication of atherosclerosis have not been elucidated. We developed a rat model of lifestyle-related diseases by feeding a high-fat diet and 30% sucrose solution (HFDS) to spontaneously hypertensive hyperlipidemic rats (SHHR) and reported that this model is a useful model of early atherosclerosis. In order to elucidate the pathogenesis of early atherosclerosis, we searched for atherosclerosis-related genes by microarray analysis using the aortic arch rat model of lifestyle-related diseases. MAIN METHODS Four-month-old male Sprague-Dawley rats and SHHR were each divided into two normal diet (ND) groups and two HFDS groups. After a four-month treatment, the expression of mRNA in the aortic arch was detected using the oligo DNA microarray one-color method and quantified using real-time PCR. KEY FINDINGS In this study, we detected 39 genes in microarray analysis. Esm1, Retnlb Mkks, and Grem2 showed particularly marked changes in gene expression in the SHHR-HFDS group. Compared with the SD-ND group, the SHHR-HFDS group had an increase in Mkks gene expression of about 26-fold and an approximately 22-fold increase in the expression of Grem2. Similarly, the expression of Esm1 increased by about 12-fold and that of Retnlg by about 10-fold as shown by quantitative real-time PCR. SIGNIFICANCE This study suggested that these four genes might be important in early atherosclerosis development.
Collapse
Affiliation(s)
- Go Koizumi
- Department of Pharmacology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacogenomics, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama, Kanagawa 227-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Maeda T, Guan JZ, Koyanagi M, Makino N. Alterations in the telomere length distribution and the subtelomeric methylation status in human vascular endothelial cells under elevated temperature in culture condition. Aging Clin Exp Res 2013; 25:231-8. [PMID: 23740586 DOI: 10.1007/s40520-013-0045-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 01/03/2013] [Indexed: 11/27/2022]
Abstract
Temperature-associated alteration in the telomere lengths of vascular endothelial cells has not been well investigated. Telomere length of human umbilical vein endothelial cells (HUVECs) cultured at a high temperature (42 °C) was analyzed. Here described are heat-associated phenotypical alterations of human vascular endothelial cell under prolonged heat stress in terms of telomere length, telomerase activity, and the expression of telomere associated proteins and heat shock proteins. The genomic DNA extracted from HUVECs cultured for 3 days under 42 °C was digested with methylation-sensitive and -insensitive isoschizomers and was subjected to genomic Southern blot probed with a telomere DNA fragment. Their telomere lengths and telomere length distributions were analyzed. Telomerase activity and the expressions of telomere-associated RNA, telomere-associated proteins (TERC, TERT, TRF1, and TRF2), and heat shock proteins (Hsp60, Hsp70, and Hsp90) were also analyzed. At 42 °C, cell growth was suppressed and the cell senescence rate was transiently elevated. A proportional decrease in the number of long telomeres was observed transiently at 42 °C. A trend of subtelomeric hypomethylation and lowered telomerase activity were observed at 42 °C after 3-day culture. The altered phenotypes on day 1 seemed reactive responses for cell protection to heat, and those on day 3 seemed exhausted reactions after 3-day culture. Maintained expression was observed in Hsps, TRF2, and TERC. These altered phenotypes might contribute to cell-survival under prolonged heat stress.
Collapse
Affiliation(s)
- Toyoki Maeda
- The Department of Cardiovascular, Respiratory and Geriatric Disease, Kyushu University Beppu Hospital, Beppu, Oita, 874-0838, Japan.
| | | | | | | |
Collapse
|
47
|
Mata-Greenwood E, Stewart JM, Steinhorn RH, Pearce WJ. Role of BCL2-associated athanogene 1 in differential sensitivity of human endothelial cells to glucocorticoids. Arterioscler Thromb Vasc Biol 2013; 33:1046-55. [PMID: 23493285 DOI: 10.1161/atvbaha.113.301247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Chronic therapy with synthetic glucocorticoids has been associated with cardiovascular side effects, although differential interindividual susceptibility to glucocorticoids has been observed. The objective of this study was to identify the molecular mechanisms leading to differential glucocorticoid responses in endothelial cells. APPROACH AND RESULTS We tested the sensitivity of 42 human umbilical vein endothelial cells (HUVECs) to dexamethasone as determined by changes in gene expression, promoter transactivation, and procoagulant activity. We identified that 16 HUVECs were sensitive in every test, 14 HUVECs were sensitive in at least 1 test and 12 HUVECs were resistant in every test to dexamethasone. Nuclear translocation assays revealed that Dex-sensitive HUVECs have higher basal and Dex-stimulated levels of nuclear glucocorticoid receptor compared with Dex-resistant HUVECs. Cycloheximide assays revealed that Dex-resistant HUVECs have significantly shorter glucocorticoid receptor protein half-lives than Dex-sensitive HUVECs. Dex-resistant HUVECs have a stronger interaction of glucocorticoid receptor with the proteasomal recruiting protein, BCL2-associated athanogene 1 (BAG1), as shown by immunoprecipitation assays. Silencing BAG1 expression increased Dex-sensitivity in resistant HUVECs, whereas BAG1 overexpression decreased Dex-sensitivity in sensitive HUVECs. Finally, Dex-resistant HUVECs presented higher BAG1 expression than Dex-sensitive HUVECs. CONCLUSIONS In vitro endothelial sensitivity to Dex varies within individuals and is inversely proportional to BAG1 protein expression and glucocorticoid receptor protein turnover.
Collapse
Affiliation(s)
- Eugenia Mata-Greenwood
- Department of Basic Sciences, Center for Perinatal Biology, Medical Center, Room A572, Loma Linda University, 11234 Anderson St, Loma Linda, CA 92350, USA.
| | | | | | | |
Collapse
|
48
|
Stanley WC, Keehan KH. Update on innovative initiatives for the American Journal of Physiology-Heart and Circulatory Physiology. Am J Physiol Heart Circ Physiol 2013; 304:H1045-9. [PMID: 23457015 DOI: 10.1152/ajpheart.00082.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Heat shock proteins: pathogenic role in atherosclerosis and potential therapeutic implications. Autoimmune Dis 2012; 2012:502813. [PMID: 23304456 PMCID: PMC3530228 DOI: 10.1155/2012/502813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/15/2012] [Accepted: 09/24/2012] [Indexed: 11/17/2022] Open
Abstract
Heat shock proteins (HSPs) are a highly conserved group of proteins that are constitutively expressed and function as molecular chaperones, aiding in protein folding and preventing the accumulation of misfolded proteins. In the arterial wall, HSPs have a protective role under normal physiologic conditions. In disease states, however, HSPs expressed on the vascular endothelial cell surface can act as targets for detrimental autoimmunity due to their highly conserved sequences. Developing therapeutic strategies for atherosclerosis based on HSPs is challenged by the need to balance such physiologic and pathologic roles of these proteins. This paper summarizes the role of HSPs in normal vascular wall processes as well as in the development and progression of atherosclerosis. The potential implications of HSPs in clinical therapies for atherosclerosis are also discussed.
Collapse
|