1
|
Menon NJ, Halvorson BD, Alimorad GH, Frisbee JC, Lizotte DJ, Ward AD, Goldman D, Chantler PD, Frisbee SJ. Application of a novel index for understanding vascular health following pharmacological intervention in a pre-clinical model of metabolic disease. Front Pharmacol 2023; 14:1104568. [PMID: 36762103 PMCID: PMC9905672 DOI: 10.3389/fphar.2023.1104568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
While a thorough understanding of microvascular function in health and how it becomes compromised with progression of disease risk is critical for developing effective therapeutic interventions, our ability to accurately assess the beneficial impact of pharmacological interventions to improve outcomes is vital. Here we introduce a novel Vascular Health Index (VHI) that allows for simultaneous assessment of changes to vascular reactivity/endothelial function, vascular wall mechanics and microvessel density within cerebral and skeletal muscle vascular networks with progression of metabolic disease in obese Zucker rats (OZR); under control conditions and following pharmacological interventions of clinical relevance. Outcomes are compared to "healthy" conditions in lean Zucker rats. We detail the calculation of vascular health index, full assessments of validity, and describe progressive changes to vascular health index over the development of metabolic disease in obese Zucker rats. Further, we detail the improvement to cerebral and skeletal muscle vascular health index following chronic treatment of obese Zucker rats with anti-hypertensive (15%-52% for skeletal muscle vascular health index; 12%-48% for cerebral vascular health index; p < 0.05 for both), anti-dyslipidemic (13%-48% for skeletal muscle vascular health index; p < 0.05), anti-diabetic (12%-32% for cerebral vascular health index; p < 0.05) and anti-oxidant/inflammation (41%-64% for skeletal muscle vascular health index; 29%-42% for cerebral vascular health index; p < 0.05 for both) drugs. The results present the effectiveness of mechanistically diverse interventions to improve cerebral or skeletal muscle vascular health index in obese Zucker rats and provide insight into the superiority of some pharmacological agents despite similar effectiveness in terms of impact on intended targets. In addition, we demonstrate the utility of including a wider, more integrative approach to the study of microvasculopathy under settings of elevated disease risk and following pharmacological intervention. A major benefit of integrating vascular health index is an increased understanding of the development, timing and efficacy of interventions through greater insight into integrated microvascular function in combination with individual, higher resolution metrics.
Collapse
Affiliation(s)
| | | | | | | | - Daniel J. Lizotte
- Department of Epidemiology and Biostatistics, London, ON, Canada,Department of Computer Science, Faculty of Science, University of Western Ontario, London, ON, Canada,Lawson Health Research Institute, London, ON, Canada
| | - Aaron D. Ward
- Department of Medical Biophysics, London, ON, Canada,Lawson Health Research Institute, London, ON, Canada
| | | | - Paul D. Chantler
- Department of Human Performance-Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Stephanie J. Frisbee
- Department of Epidemiology and Biostatistics, London, ON, Canada,Lawson Health Research Institute, London, ON, Canada,Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,*Correspondence: Stephanie J. Frisbee,
| |
Collapse
|
2
|
Qiao YS, Tang X, Chai YH, Gong HJ, Xu H, Patel I, Li L, Lu T, Zhao WY, Li ZY, Cardoso MA, Zhou JB. Cerebral Blood Flow Alterations and Obesity: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 90:15-31. [DOI: 10.3233/jad-220601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Reduction in cerebral blood flow (CBF) plays an essential role in the cognitive impairment and dementia in obesity. However, current conclusions regarding CBF changes in patients with obesity are inconsistent. Objective: A systematic review and meta-analysis was performed to evaluate the relationship between obesity and CBF alterations. Methods: We systematically screened published cross-sectional and longitudinal studies focusing on the differences in CBF between obese and normal-weight individuals. Eighteen studies including 24,866 participants, of which seven articles reported longitudinal results, were evaluated in the present study. Results: The results of the meta-analysis showed that in cross-sectional studies, body mass index (BMI) was negatively associated with CBF (β= –0.31, 95% confidence interval [CI]: –0.44, –0.19). Moreover, this systematic review demonstrated that obese individuals showed global and regional reductions in the CBF and increased CBF in diverse functional areas of the frontal lobe, including the prefrontal cortex, left frontal superior orbital, right frontal mid-orbital cortex, and left premotor superior frontal gyrus. Conclusion: Our findings suggest that BMI, rather than waist circumference and waist-to-hip ratio, is inversely associated with CBF in cross-sectional studies. The CBF of obese individuals showed global and regional reductions, including the frontal lobe, temporal and parietal lobes, cerebellum, hippocampus, and thalamus.
Collapse
Affiliation(s)
- Yu-Shun Qiao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Yin-He Chai
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hong-Jian Gong
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hui Xu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ikramulhaq Patel
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tong Lu
- Department of Clinical Nutrition, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wan-Ying Zhao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ze-Yu Li
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Marly Augusto Cardoso
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Olsthoorn L, Vreeken D, Kiliaan AJ. Gut Microbiome, Inflammation, and Cerebrovascular Function: Link Between Obesity and Cognition. Front Neurosci 2021; 15:761456. [PMID: 34938153 PMCID: PMC8685335 DOI: 10.3389/fnins.2021.761456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity affects 13% of the adult population worldwide and this number is only expected to increase. Obesity is known to have a negative impact on cardiovascular and metabolic health, but it also impacts brain structure and function; it is associated with both gray and white matter integrity loss, as well as decreased cognitive function, including the domains of executive function, memory, inhibition, and language. Especially midlife obesity is associated with both cognitive impairment and an increased risk of developing dementia at later age. However, underlying mechanisms are not yet fully revealed. Here, we review recent literature (published between 2010 and March 2021) and discuss the effects of obesity on brain structure and cognition, with a main focus on the contributions of the gut microbiome, white adipose tissue (WAT), inflammation, and cerebrovascular function. Obesity-associated changes in gut microbiota composition may cause increased gut permeability and inflammation, therewith affecting cognitive function. Moreover, excess of WAT in obesity produces pro-inflammatory adipokines, leading to a low grade systemic peripheral inflammation, which is associated with decreased cognition. The blood-brain barrier also shows increased permeability, allowing among others, peripheral pro-inflammatory markers to access the brain, leading to neuroinflammation, especially in the hypothalamus, hippocampus and amygdala. Altogether, the interaction between the gut microbiota, WAT inflammation, and cerebrovascular integrity plays a significant role in the link between obesity and cognition. Future research should focus more on the interplay between gut microbiota, WAT, inflammation and cerebrovascular function to obtain a better understanding about the complex link between obesity and cognitive function in order to develop preventatives and personalized treatments.
Collapse
Affiliation(s)
- Lisette Olsthoorn
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Debby Vreeken
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands.,Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, Netherlands
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| |
Collapse
|
4
|
Boateng SY, Olfert IM, Chantler PD. Role of Perivascular Adipose Tissue and Exercise on Arterial Function with Obesity. Exerc Sport Sci Rev 2021; 49:188-196. [PMID: 33831902 PMCID: PMC8195847 DOI: 10.1249/jes.0000000000000251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose tissue and arterial dysfunction are common in the obese state. Perivascular adipose tissue (PVAT) plays an important role in mediating arterial health, and with obesity, the PVAT dysfunction negatively affects arterial health. Exercise training exerts direct and beneficial effects on PVAT, providing an additional and novel pathway by which exercise can improve arterial health in diseased populations.
Collapse
Affiliation(s)
- Samuel Y Boateng
- Biological Sciences, School of Biological Sciences, University of Reading, UK
| | - I. Mark Olfert
- Department of Human Performance, Division of Exercise Physiology, School of Medicine, West Virginia University, USA
- West Virginia Clinical and Translational Science Institute (WVCTSI), Morgantown, WV
| | - Paul D Chantler
- Department of Human Performance, Division of Exercise Physiology, School of Medicine, West Virginia University, USA
- West Virginia Clinical and Translational Science Institute (WVCTSI), Morgantown, WV
| |
Collapse
|
5
|
Wang Y, Sun L, He G, Gang X, Zhao X, Wang G, Ning G. Cerebral perfusion alterations in type 2 diabetes mellitus - a systematic review. Front Neuroendocrinol 2021; 62:100916. [PMID: 33957174 DOI: 10.1016/j.yfrne.2021.100916] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/04/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is related to abnormal brain structure and function, increasing the risk of cognitive impairment and dementia. We systematically reviewed the published literature focusing on cerebral perfusion in patients with T2DM. Although no significant difference was found in global cerebral blood flow (CBF) between the T2DM group and the healthy control group, the regional cerebral perfusion in T2DM was significantly reduced in multiple locations, including the occipital lobe, domains involved in the default mode network and the cerebellum. The decline in regional CBF was associated with a wide range of cognitive disorders in T2DM, including learning, memory, attention, and executive processing, as well as visual function. In addition, diabetes-related biochemical indicators, such as glycated hemoglobin and insulin resistance, were negatively correlated with regional CBF. In general, these functional perfusion imaging studies indicate that decreased CBF in T2DM may be a potential cause of cognitive impairment.
Collapse
Affiliation(s)
- Yaqiong Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyu He
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guang Ning
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China; National Clinical Research Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Carvalho KFDS, Ferreira AAM, Barbosa NC, Alves JV, Costa RMD. Atorvastatin Attenuates Vascular Remodeling in Mice with Metabolic Syndrome. Arq Bras Cardiol 2021; 117:737-747. [PMID: 34161419 PMCID: PMC8528348 DOI: 10.36660/abc.20200322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022] Open
Abstract
Fundamento A síndrome metabólica é caracterizada por um conjunto de comorbidades. Durante a síndrome, observam-se alterações estruturais no sistema cardiovascular, especialmente o remodelamento vascular. Uma das causas predisponentes para essas alterações é a inflamação crônica oriunda de mudanças na estrutura e composição do tecido adiposo perivascular. Atorvastatina é eficaz no tratamento das dislipidemias. No entanto, seus efeitos pleiotrópicos não são totalmente compreendidos. Supõe-se que, durante a síndrome metabólica, ocorre remodelamento vascular e que o tratamento com atorvastatina pode ser capaz de atenuar tal condição. Objetivos Avaliar os efeitos do tratamento com atorvastatina sobre o remodelamento vascular em modelo experimental de síndrome metabólica. Métodos Camundongos Swiss receberam dieta controle ou dieta hiperglicídica por 18 semanas. Após 14 semanas de dieta, os camundongos foram tratados com veículo ou atorvastatina (20mg/kg) durante 4 semanas. Foram avaliados o perfil nutricional e metabólico por testes bioquímicos; análise estrutural da artéria aorta por histologia e dosagem de citocinas por ensaio imunoenzimático. O nível de significância aceitável para os resultados foi p <0,05. Resultados A dieta hiperglicídica promoveu o desenvolvimento de síndrome metabólica. Tal fato culminou no remodelamento hipertrófico do músculo liso vascular e tecido adiposo perivascular. Além disso, houve aumentos das citocinas TNF-α e IL-6 circulantes e no tecido adiposo perivascular. O tratamento com atorvastatina reduziu significativamente os danos metabólicos, o remodelamento vascular e os níveis de citocinas. Conclusão Atorvastatina ameniza danos metabólicos associados à síndrome metabólica induzida por dieta hiperglicídica, além de atenuar o remodelamento vascular, sendo esses efeitos associados à redução de citocinas pró-inflamatórias.
Collapse
Affiliation(s)
| | | | | | - Juliano Vilela Alves
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo - Departamento de Farmacologia, Ribeirão Preto, SP - Brasil
| | | |
Collapse
|
7
|
DeVallance ER, Branyan KW, Olfert IM, Pistilli EE, Bryner RW, Kelley EE, Frisbee JC, Chantler PD. Chronic stress induced perivascular adipose tissue impairment of aortic function and the therapeutic effect of exercise. Exp Physiol 2021; 106:1343-1358. [PMID: 33913209 DOI: 10.1113/ep089449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Thoracic perivascular adipose tissue (tPVAT) is known to, in part, regulate aortic function: what are the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and what is the role of exercise training in alleviating the potential negative actions of UCMS on tPVAT? What is the main finding and its importance? UCMS causes tPVAT to disrupt endothelium-dependent dilatation, increases inflammatory cytokine production and diminishes tPVAT-adiponectin. Exercise training proved efficacious in preventing tPVAT-mediated disruption of aortic function. The data support a tPVAT mechanism through which chronic stress negatively impacts vascular health, which adds to our knowledge of how psychological disorders might increase the risk of cardiovascular disease. ABSTRACT Chronic stress is a major risk for cardiovascular disease. Perivascular adipose tissue (PVAT) has been shown to regulate vascular function; however, the impact of chronic stress and the comorbidity of metabolic syndrome (MetS) on thoracic (t)PVAT is unknown. Additionally, aerobic exercise training (AET) is known to combat the pathology of MetS and chronic stress, but the role of tPVAT in these actions is also unknown. Therefore, the purpose of this study was to examine the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and the preventative effect of AET. Lean (LZR) and obese (OZR) Zucker rats (16-17 weeks old) were exposed to 8 weeks of UCMS with and without treadmill exercise (AET). In LZR, UCMS impaired aortic endothelium-dependent dilatation (EDD) (assessed ex vivo by wire myography) and aortic stiffness (assessed by elastic modulus) with no change in OZR subject to UCMS. However, both LZR and OZR UCMS tPVAT impaired EDD compared to respective controls. LZR and OZR subject to UCMS had higher oxidative stress production, diminished adiponectin and impaired aortic nitric oxide levels. Divergently, UCMS induced greater inflammatory cytokine production in LZR UCMS tPVAT, but not in OZR UCMS tPVAT. AET prevented the tPVAT impairment of aortic relaxation with UCMS in LZR and OZR. Additionally, AET reduced aortic stiffness in both LZR and OZR. These beneficial effects on tPVAT regulation of the aorta are likely due to AET preservation of adiponectin, reduced oxidative stress and inflammation, and enhanced nitric oxide. UCMS impaired tPVAT-regulated aortic function in LZR, and augmented MetS-induced EDD in OZR. Conversely, AET in combination with UCMS largely preserved aortic function and the tPVAT environment, in both groups.
Collapse
Affiliation(s)
- Evan R DeVallance
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kayla W Branyan
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - I Mark Olfert
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Emidio E Pistilli
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Randall W Bryner
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
8
|
Halvorson BD, McGuire JJ, Singh KK, Butcher JT, Lombard JH, Chantler PD, Frisbee JC. Can Myogenic Tone Protect Endothelial Function? Integrating Myogenic Activation and Dilator Reactivity for Cerebral Resistance Arteries in Metabolic Disease. J Vasc Res 2021; 58:286-300. [PMID: 33971663 PMCID: PMC8478702 DOI: 10.1159/000516088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
The obese Zucker rat (OZR) manifests multiple risk factors for impaired cerebrovascular function, including hypertension and insulin resistance although how they combine to produce integrated vascular function is unclear. As studies have suggested that myogenic activation (MA) severity for middle cerebral arteries (MCAs) may be proportional to hypertension severity, we hypothesized that MA will negatively correlate with dilator reactivity in OZR. MA of MCA from OZR was divided into low, medium, and high based on the slope of MA, while MCA reactivity and vascular metabolite bioavailability were assessed in all groups. Endothelium-dependent dilation of MCA in OZR was attenuated and correlated with the MA slope. Treatment of OZR MCA with TEMPOL (antioxidant) improved dilation in low or medium MA groups, but had less impact on high MA. Alternatively, treatment with gadolinium to normalize MA in OZR had reduced impact on dilator reactivity in MCA from low and medium MA groups, but improved responses in the high group. Treatment with both agents resulted in dilator responses that were comparable across all groups. These results suggest that, under conditions with stronger MA, endothelial function may receive some protection despite the environment, potentially from the ability of MCA to reduce wall tension despite increased pressure.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Cerebrovascular Circulation/drug effects
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Male
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/physiopathology
- Middle Cerebral Artery/drug effects
- Middle Cerebral Artery/metabolism
- Middle Cerebral Artery/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Rats, Zucker
- Vascular Resistance/drug effects
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
- Rats
Collapse
Affiliation(s)
- Brayden D. Halvorson
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - John J. McGuire
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Krishna K. Singh
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Joshua T. Butcher
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Julian H. Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul D. Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Jefferson C. Frisbee
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| |
Collapse
|
9
|
Oxidative Stress and Vascular Damage in the Context of Obesity: The Hidden Guest. Antioxidants (Basel) 2021; 10:antiox10030406. [PMID: 33800427 PMCID: PMC7999611 DOI: 10.3390/antiox10030406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The vascular system plays a central role in the transport of cells, oxygen and nutrients between different regions of the body, depending on the needs, as well as of metabolic waste products for their elimination. While the structure of different components of the vascular system varies, these structures, especially those of main arteries and arterioles, can be affected by the presence of different cardiovascular risk factors, including obesity. This vascular remodeling is mainly characterized by a thickening of the media layer as a consequence of changes in smooth muscle cells or excessive fibrosis accumulation. These vascular changes associated with obesity can trigger functional alterations, with endothelial dysfunction and vascular stiffness being especially common features of obese vessels. These changes can also lead to impaired tissue perfusion that may affect multiple tissues and organs. In this review, we focus on the role played by perivascular adipose tissue, the activation of the renin-angiotensin-aldosterone system and endoplasmic reticulum stress in the vascular dysfunction associated with obesity. In addition, the participation of oxidative stress in this vascular damage, which can be produced in the perivascular adipose tissue as well as in other components of the vascular wall, is updated.
Collapse
|
10
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
11
|
Roy TK, Secomb TW. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 2020; 28:e12673. [PMID: 33236393 DOI: 10.1111/micc.12673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill patients, which can occur even when systemic parameters, including cardiac output and arterial hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and oxygen levels. The dynamic processes of structural adaptation and flow regulation continually adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by conducted responses, which are generated and propagated by endothelial cells and signal upstream arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic measures targeted to systemic parameters may not address or may even worsen tissue oxygenation at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend on restoration of endothelial cell function, including conducted responses.
Collapse
Affiliation(s)
- Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| |
Collapse
|
12
|
Tomassoni D, Martinelli I, Moruzzi M, Micioni Di Bonaventura MV, Cifani C, Amenta F, Tayebati SK. Obesity and Age-Related Changes in the Brain of the Zucker Lepr fa/fa Rats. Nutrients 2020; 12:E1356. [PMID: 32397542 PMCID: PMC7284640 DOI: 10.3390/nu12051356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome (MetS) is an association between obesity, dyslipidemia, hyperglycemia, hypertension, and insulin resistance. A relationship between MetS and vascular dementia was hypothesized. The purpose of this work is to investigate brain microanatomy alterations in obese Zucker rats (OZRs), as a model of MetS, compared to their counterparts lean Zucker rats (LZRs). 12-, 16-, and 20-weeks-old male OZRs and LZRs were studied. General physiological parameters and blood values were measured. Immunochemical and immunohistochemical techniques were applied to analyze the brain alterations. The morphology of nerve cells and axons, astrocytes and microglia were investigated. The blood-brain barrier (BBB) changes occurring in OZRs were assessed as well using aquaporin-4 (AQP4) and glucose transporter protein-1 (GLUT1) as markers. Body weight gain, hypertension, hyperglycemia, and hyperlipidemia were found in OZRs compared to LZRs. In the frontal cortex and hippocampus, a decrease of neurons was noticeable in the older obese rats in comparison to their age-matched lean counterparts. In OZRs, a reduction of neurofilament immunoreaction and gliosis was observed. The BBB of older OZRs revealed an increased expression of AQP4 likely related to the development of edema. A down-regulation of GLUT1 was found in OZRs of 12 weeks of age, whereas it increased in older OZRs. The behavioral analysis revealed cognitive alterations in 20-week-old OZRs. Based on these results, the OZRs may be useful for understanding the mechanisms through which obesity and related metabolic alterations induce neurodegeneration.
Collapse
Affiliation(s)
- Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| | - Michele Moruzzi
- Department of Medicine, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany;
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| |
Collapse
|
13
|
|
14
|
DeVallance E, Branyan KW, Lemaster KC, Anderson R, Marshall KL, Olfert IM, Smith DM, Kelley EE, Bryner RW, Frisbee JC, Chantler PD. Exercise training prevents the perivascular adipose tissue-induced aortic dysfunction with metabolic syndrome. Redox Biol 2019; 26:101285. [PMID: 31374361 PMCID: PMC6669320 DOI: 10.1016/j.redox.2019.101285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of the study was to determine the effects of exercise training on improving the thoracic perivascular adipose tissue (tPVAT) phenotype (inflammation, oxidative stress, and proteasome function) in metabolic syndrome and its subsequent actions on aortic function. Methods Lean and obese (model of metabolic syndrome) Zucker rats (n=8/group) underwent 8-weeks of control conditions or treadmill exercise (70% of max speed, 1 h/day, 5 days/week). At the end of the intervention, the tPVAT was removed and conditioned media was made. The cleaned aorta was attached to a force transducer to assess endothelium-dependent and independent dilation in the presence or absence of tPVAT-conditioned media. tPVAT gene expression, inflammatory /oxidative phenotype, and proteasome function were assessed. Results The main findings were that Ex induced: (1) a beige-like, anti-inflammatory tPVAT phenotype; (2) a greater abundance of •NO in tPVAT; (3) a reduction in tPVAT oxidant production; and (4) an improved tPVAT proteasome function. Regarding aortic function, endothelium-dependent dilation was greater in exercised lean and obese groups vs. controls (p < 0.05). Lean control tPVAT improved aortic relaxation, whereas obese control tPVAT decreased aortic relaxation. In contrast, the obese Ex-tPVAT increased aortic dilation, whereas the lean Ex-tPVAT did not affect aortic dilation. Conclusion Overall, exercise had the most dramatic impact on the obese tPVAT reflecting a change towards an environment with less oxidant load, less inflammation and improved proteasome function. Such beneficial changes to the tPVAT micro-environment with exercise likely played a significant role in mediating the improvement in aortic function in metabolic syndrome following 8 weeks of exercise.
Collapse
Affiliation(s)
- Evan DeVallance
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA
| | - Kayla W Branyan
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA
| | - Kent C Lemaster
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Ray Anderson
- Department of Biochemistry, WVU School of Medicine, Morgantown, WV, USA
| | - Kent L Marshall
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA
| | - I Mark Olfert
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA
| | - David M Smith
- Department of Biochemistry, WVU School of Medicine, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology & Pharmacology, WVU School of Medicine, Morgantown, WV, USA
| | - Randy W Bryner
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Paul D Chantler
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA; Department of Neuroscience, WVU School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
15
|
Halvorson BD, Whitehead SN, McGuire JJ, Wiseman RW, Frisbee JC. Endothelium-dependent impairments to cerebral vascular reactivity with type 2 diabetes mellitus in the Goto-Kakizaki rat. Am J Physiol Regul Integr Comp Physiol 2019; 317:R149-R159. [PMID: 31091154 DOI: 10.1152/ajpregu.00088.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent pathology associated with elevated cerebrovascular disease risk. We determined wall mechanics and vascular reactivity in ex vivo middle cerebral arteries (MCA) from male Goto-Kakizaki rats (GK; ~17 wk old) versus control Wistar Kyoto rats (WKY) to test the hypothesis that the diabetic environment in GK, in the absence of obesity and other comorbidities, leads to endothelial dysfunction and impaired vascular tone regulation. Dilation of MCA following challenge with acetylcholine and hypoxia was blunted in MCA from GK versus WKY, due to lower nitric oxide bioavailability and altered arachidonic acid metabolism, whereas myogenic activation and constrictor responses to serotonin were unchanged. MCA wall distensibility and cross-sectional area were not different between GK and WKY, suggesting that wall mechanics were unchanged at this age, supported by the determination that MCA dilation to sodium nitroprusside was also intact. With the use of ex vivo aortic rings as a bioassay, altered vascular reactivity determined in MCA was paralleled by relaxation responses in artery segments from GK, whereas measurements of vasoactive metabolite production indicated a loss of nitric oxide and prostacyclin bioavailability and an increased thromboxane A2 production with both methacholine challenge and hypoxia. These results suggest that endothelium-dependent dilator reactivity of MCA in GK is impaired with T2DM, and that this impairment is associated with the genesis of a prooxidant/pro-inflammatory condition with diabetes mellitus. The restriction of vascular impairments to endothelial function only, at this age and development, provide insight into the severity of multimorbid conditions of which T2DM is only one constituent.
Collapse
Affiliation(s)
- Brayden D Halvorson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario , London, Ontario , Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario , London, Ontario , Canada
| | - John J McGuire
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario , London, Ontario , Canada
| | - Robert W Wiseman
- Departments of Physiology and Radiology, Michigan State University , East Lansing, Michigan
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
16
|
Bordy R, Quirié A, Marie C, Wendling D, Totoson P, Demougeot C. Vascular Arginase Is a Relevant Target to Improve Cerebrovascular Endothelial Dysfunction in Rheumatoid Arthritis: Evidence from the Model of Adjuvant-Induced Arthritis. Transl Stroke Res 2019; 11:4-15. [DOI: 10.1007/s12975-019-00699-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/06/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
|
17
|
Branyan KW, Devallance ER, Lemaster KA, Skinner RC, Bryner RW, Olfert IM, Kelley EE, Frisbee JC, Chantler PD. Role of Chronic Stress and Exercise on Microvascular Function in Metabolic Syndrome. Med Sci Sports Exerc 2019; 50:957-966. [PMID: 29271845 DOI: 10.1249/mss.0000000000001531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The present study examined the effect of unpredictable chronic mild stress (UCMS) on peripheral microvessel function in healthy and metabolic syndrome (MetS) rodents and whether exercise training could prevent the vascular dysfunction associated with UCMS. METHODS Lean and obese (model of MetS) Zucker rats (LZR and OZR) were exposed to 8 wk of UCMS, exercise (Ex), UCMS + Ex, or control conditions. At the end of the intervention, gracilis arterioles (GA) were isolated and hung in a pressurized myobath to assess endothelium-dependent (EDD) and endothelium-independent (EID) dilation. Levels of nitric oxide (NO) and reactive oxygen species (ROS) were measured through 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate and dihydroethidium staining, respectively. RESULTS Compared with LZR controls, EDD and EID were lower (P = 0.0001) in LZR-UCMS. The OZR-Ex group had a higher EDD (P = 0.0001) and EID (P = 0.003) compared with OZR controls, whereas only a difference in EDD (P = 0.01) was noted between the LZR-control and LZR-Ex groups. Importantly, EDD and EID were higher in the LZR (P = 0.0001; P = 0.02) and OZR (P = 0.0001; P = 0.02) UCMS + Ex groups compared with UCMS alone. Lower NO bioavailability and higher ROS were noted in the LZR-UCMS group (P = 0.0001), but not OZR-UCMS, compared with controls. The Ex and UCMS-Ex groups had higher NO bioavailability (P = 0.0001) compared with the control and UCMS groups, but ROS levels remained high. CONCLUSIONS The comorbidity between UCMS and MetS does not exacerbate the effects of one another on GA EDD responses, but does lead to the development of other vasculopathy adaptations, which can be partially explained by alterations in NO and ROS production. Importantly, exercise training alleviates most of the negative effects of UCMS on GA function.
Collapse
Affiliation(s)
- Kayla W Branyan
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Evan R Devallance
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Kent A Lemaster
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - R Christopher Skinner
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Randy W Bryner
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - I Mark Olfert
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Eric E Kelley
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Jefferson C Frisbee
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Paul D Chantler
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| |
Collapse
|
18
|
Brooks S, Branyan KW, DeVallance E, Skinner R, Lemaster K, Sheets JW, Pitzer CR, Asano S, Bryner RW, Olfert IM, Frisbee JC, Chantler PD. Psychological stress-induced cerebrovascular dysfunction: the role of metabolic syndrome and exercise. Exp Physiol 2018; 103:761-776. [PMID: 29436736 PMCID: PMC5927836 DOI: 10.1113/ep086892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/09/2018] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure. ABSTRACT Chronic unresolvable stress leads to the development of depression and cardiovascular disease. There is a high prevalence of depression with the metabolic syndrome (MetS), but to what extent the MetS concurrent with psychological stress affects cerebrovascular function is unknown. We investigated the differential effect of MetS on cerebrovascular structure/function in rats (16-17 weeks old) following 8 weeks of unpredictable chronic mild stress (UCMS) and whether exercise training could limit any cerebrovascular dysfunction. In healthy lean Zucker rats (LZR), UCMS decreased (28%, P < 0.05) ex vivo middle cerebral artery (MCA) endothelium-dependent dilatation (EDD), but changes in MCA remodelling and stiffness were not evident, though cerebral microvessel density (MVD) decreased (30%, P < 0.05). The presence of UCMS and MetS (obese Zucker rats; OZR) decreased MCA EDD (35%, P < 0.05) and dilatation to sodium nitroprusside (20%, P < 0.05), while MCA stiffness increased and cerebral MVD decreased (31%, P < 0.05), which were linked to reduced nitric oxide and increased oxidative levels. Aerobic exercise prevented UCMS impairments in MCA function and MVD in LZR, and partly restored MCA function, stiffness and MVD in OZR. Our data suggest that the benefits of exercise with UCMS were due to a reduction in oxidative stress and increased production of nitric oxide in the cerebral vessels. In conclusion, UCMS significantly impaired MCA structure and function, but the effects of UCMS were more substantial in OZR vs. LZR. Importantly, aerobic exercise when combined with UCMS prevented the MCA dysfunction through subtle shifts in nitric oxide and oxidative stress in the cerebral microvasculature.
Collapse
Affiliation(s)
- Steven Brooks
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Kayla W Branyan
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Evan DeVallance
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Roy Skinner
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Kent Lemaster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - J Whitney Sheets
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Christopher R Pitzer
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Shinichi Asano
- Department of Health and Human Performance, Fairmont State University, WV, USA
| | - Randall W Bryner
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
- Center for Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
- Center for Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
19
|
Burrage E, Marshall KL, Santanam N, Chantler PD. Cerebrovascular dysfunction with stress and depression. Brain Circ 2018; 4:43-53. [PMID: 30276336 PMCID: PMC6126243 DOI: 10.4103/bc.bc_6_18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of adequate tissue perfusion through a dense network of cerebral microvessels is critical for the perseveration of normal brain function. Regulation of the cerebral blood flow has to ensure adequate delivery of nutrients and oxygen with moment-to-moment adjustments to avoid both hypo- and hyper-perfusion of the brain tissue. Even mild impairments of cerebral blood flow regulation can have significant implications on brain function. Evidence suggests that chronic stress and depression elicits multifaceted functional impairments to the cerebral microcirculation, which plays a critical role in brain health and the pathogenesis of stress-related cognitive impairment and cerebrovascular events. Identifying the functional and structural changes to the brain that are induced by stress is crucial for achieving a realistic understanding of how related illnesses, which are highly disabling and with a large economic cost, can be managed or reversed. This overview discusses the stress-induced alterations in neurovascular coupling with specific attention to cerebrovascular regulation (endothelial dependent and independent vasomotor function, microvessel density). The pathophysiological consequences of cerebral microvascular dysfunction with stress and depression are explored.
Collapse
Affiliation(s)
- Emily Burrage
- Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV, USA
| | - Kent L. Marshall
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Paul D. Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
20
|
Frisbee SJ, Singh SS, Jackson DN, Lemaster KA, Milde SA, Shoemaker JK, Frisbee JC. Beneficial Pleiotropic Antidepressive Effects of Cardiovascular Disease Risk Factor Interventions in the Metabolic Syndrome. J Am Heart Assoc 2018; 7:e008185. [PMID: 29581223 PMCID: PMC5907597 DOI: 10.1161/jaha.117.008185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/01/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although the increased prevalence and severity of clinical depression and elevated cardiovascular disease risk represent 2 vexing public health issues, the growing awareness of their combined presentation compounds the challenge. The obese Zucker rat, a model of the metabolic syndrome, spontaneously develops significant depressive symptoms in parallel with the progression of the metabolic syndrome and, thus, represents a compelling model for study. The primary objective was to assess the impact on both cardiovascular outcomes, specifically vascular structure and function, and depressive symptoms in obese Zucker rats after aggressive treatment for cardiovascular disease risk factors with long-term exercise or targeted pharmacological interventions. METHODS AND RESULTS We chronically treated obese Zucker rats with clinically relevant interventions against cardiovascular disease risk factors to determine impacts on vascular outcomes and depressive symptom severity. While most of the interventions (chronic exercise, anti-hypertensive, the interventions (long-term exercise, antihypertensive, antidyslipidemia, and antidiabetic) were differentially effective at improving vascular outcomes, only those that also resulted in a significant improvement to oxidant stress, inflammation, arachidonic acid metabolism (prostacyclin versus thromboxane A2), and their associated sequelae were effective at also blunting depressive symptom severity. Using multivariable analyses, discrimination between the effectiveness of treatment groups to maintain behavioral outcomes appeared to be dependent on breaking the cycle of inflammation and oxidant stress, with the associated outcomes of improving endothelial metabolism and both cerebral and peripheral vascular structure and function. CONCLUSIONS This initial study provides a compelling framework from which to further interrogate the links between cardiovascular disease risk factors and depressive symptoms and suggests mechanistic links and potentially effective avenues for intervention.
Collapse
Affiliation(s)
- Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sarah S Singh
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kent A Lemaster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Samantha A Milde
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
DeVallance E, Branyan KW, Lemaster K, Olfert IM, Smith DM, Pistilli EE, Frisbee JC, Chantler PD. Aortic dysfunction in metabolic syndrome mediated by perivascular adipose tissue TNFα- and NOX2-dependent pathway. Exp Physiol 2018; 103:590-603. [PMID: 29349831 DOI: 10.1113/ep086818] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Tumour necrosis factor-α (TNFα) has been shown to impair vascular function, but the impact of thoracic aorta perivascular adipose tissue (tPVAT)-derived TNFα on tPVAT and aortic function in metabolic syndrome is unknown. What is the main finding and its importance? Release of TNFα by tPVAT causes production of reactive oxygen species in tPVAT through activation of an NADPH-oxidase 2 (NOX2)-dependent pathway, activates production of aortic reactive oxygen species and mediates aortic stiffness, potentially through matrix metalloproteinase 9 activity. Neutralization of TNFα and/or inhibition of NOX2 blocks the tPVAT-induced impairment of aortic function. These data partly implicate tPVAT NOX2 and TNFα in mediating the vascular pathology of metabolic syndrome. ABSTRACT Perivascular adipose tissue (PVAT) is recognized for its vasoactive effects, but it is unclear how metabolic syndrome impacts thoracic aorta (t)PVAT and the subsequent effect on functional and structural aortic stiffness. Thoracic aorta and tPVAT were removed from 16- to 17-week-old lean (LZR, n = 16) and obese Zucker rats (OZR, n = 16). The OZR presented with aortic endothelial dysfunction, assessed by wire myography, and increased aortic stiffness, assessed by elastic modulus. The OZR tPVAT exudate further exacerbated the endothelial dysfunction, reducing nitric oxide and endothelium-dependent relaxation (P < 0.05). Additionally, OZR tPVAT exudate had increased MMP9 activity (P < 0.05) and further increased the elastic modulus of the aorta after 72 h of co-culture (P < 0.05). We found that the observed aortic dysfunction caused by OZR tPVAT was mediated through increased production and release of tumour necrosis factor-α (TNFα; P < 0.01), which was dependent on tPVAT NADPH-oxidase 2 (NOX2) activity. The OZR tPVAT release of reactive oxygen species and subsequent aortic dysfunction were inhibited by TNFα neutralization and/or inhibition of NOX2. Additionally, we found that OZR tPVAT had reduced activity of the active sites of the 20S proteasome (P < 0.05) and reduced superoxide dismutase activity (P < 0.01). In conclusion, metabolic syndrome causes tPVAT dysfunction through an interplay between TNFα and NOX2 that leads to tPVAT-mediated aortic stiffness by activation of aortic reactive oxygen species and increased MMP9 activity.
Collapse
Affiliation(s)
- Evan DeVallance
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kayla W Branyan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kent Lemaster
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - David M Smith
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Emidio E Pistilli
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
22
|
Brooks SD, Hileman SM, Chantler PD, Milde SA, Lemaster KA, Frisbee SJ, Shoemaker JK, Jackson DN, Frisbee JC. Protection from chronic stress- and depressive symptom-induced vascular endothelial dysfunction in female rats is abolished by preexisting metabolic disease. Am J Physiol Heart Circ Physiol 2018; 314:H1085-H1097. [PMID: 29451819 DOI: 10.1152/ajpheart.00648.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While it is known that chronic stress and clinical depression are powerful predictors of poor cardiovascular outcomes, recent clinical evidence has identified correlations between the development of metabolic disease and depressive symptoms, creating a combined condition of severely elevated cardiovascular disease risk. In this study, we used the obese Zucker rat (OZRs) and the unpredictable chronic mild stress (UCMS) model to determine the impact of preexisting metabolic disease on the relationship between chronic stress/depressive symptoms and vascular function. Additionally, we determined the impact of metabolic syndrome on sex-based protection from chronic stress/depressive effects on vascular function in female lean Zucker rats (LZRs). In general, vasodilator reactivity was attenuated under control conditions in OZRs compared with LZRs. Although still impaired, conduit arterial and resistance arteriolar dilator reactivity under control conditions in female OZRs was superior to that in male or ovariectomized (OVX) female OZRs, largely because of better maintenance of vascular nitric oxide and prostacyclin levels. However, imposition of metabolic syndrome in combination with UCMS in OZRs further impaired dilator reactivity in both vessel subtypes to a similarly severe extent and abolished any protective effect in female rats compared with male or OVX female rats. The loss of vascular protection in female OZRs with UCMS was reflected in vasodilator metabolite levels, which closely matched those in male and OVX female OZRs subjected to UCMS. These results suggest that presentation of metabolic disease in combination with depressive symptoms can overwhelm the vasoprotection identified in female rats and, thereby, may reflect a severe impairment to normal endothelial function. NEW & NOTEWORTHY This study addresses the protection from chronic stress- and depression-induced vascular dysfunction identified in female compared with male or ovariectomized female rats. We determined the impact of preexisting metabolic disease, a frequent comorbidity of clinical depression in humans, on that vascular protection. With preexisting metabolic syndrome, female rats lost all protection from chronic stress/depressive symptoms and became phenotypically similar to male and ovariectomized female rats, with comparably poor vasoactive dilator metabolite profiles.
Collapse
Affiliation(s)
- Steven D Brooks
- Department of Physiology and Pharmacology, West Virginia University , Morgantown, West Virginia
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University , Morgantown, West Virginia
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University , Morgantown, West Virginia
| | - Samantha A Milde
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Kent A Lemaster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - J Kevin Shoemaker
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
23
|
Tai ELM, Kueh YC, Wan Hitam WH, Wong TY, Shatriah I. Comparison of retinal vascular geometry in obese and non-obese children. PLoS One 2018; 13:e0191434. [PMID: 29389952 PMCID: PMC5794084 DOI: 10.1371/journal.pone.0191434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/04/2018] [Indexed: 11/19/2022] Open
Abstract
Purpose Childhood obesity is associated with adult cardiometabolic disease. We postulate that the underlying microvascular dysfunction begins in childhood. We thus aimed to compare retinal vascular parameters between obese and non-obese children. Methods This was a cross-sectional study involving 166 children aged 6 to 12 years old in Malaysia. Ocular examination, biometry, retinal photography, blood pressure and body mass index measurement were performed. Participants were divided into two groups; obese and non-obese. Retinal vascular parameters were measured using validated software. Results Mean age was 9.58 years. Approximately 51.2% were obese. Obese children had significantly narrower retinal arteriolar caliber (F(1,159) = 6.862, p = 0.010), lower arteriovenous ratio (F(1,159) = 17.412, p < 0.001), higher venular fractal dimension (F(1,159) = 4.313, p = 0.039) and higher venular curvature tortuosity (F(1,158) = 5.166, p = 0.024) than non-obese children, after adjustment for age, gender, blood pressure and axial length. Conclusions Obese children have abnormal retinal vascular geometry. These findings suggest that childhood obesity is characterized by early microvascular abnormalities that precede development of overt disease. Further research is warranted to determine if these parameters represent viable biomarkers for risk stratification in obesity.
Collapse
Affiliation(s)
- Evelyn Li Min Tai
- Department of Ophthalmology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail: (ELMT); (YCK); (IS)
| | - Yee Cheng Kueh
- Unit of Biostatistics & Research Methodology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail: (ELMT); (YCK); (IS)
| | - Wan-Hazabbah Wan Hitam
- Department of Ophthalmology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- DUKE-NUS Medical School, Singapore, Singapore
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Ismail Shatriah
- Department of Ophthalmology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail: (ELMT); (YCK); (IS)
| |
Collapse
|
24
|
Sorop O, Olver TD, van de Wouw J, Heinonen I, van Duin RW, Duncker DJ, Merkus D. The microcirculation: a key player in obesity-associated cardiovascular disease. Cardiovasc Res 2017; 113:1035-1045. [DOI: 10.1093/cvr/cvx093] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
|
25
|
Letra L, Sena C. Cerebrovascular Disease: Consequences of Obesity-Induced Endothelial Dysfunction. ADVANCES IN NEUROBIOLOGY 2017; 19:163-189. [PMID: 28933065 DOI: 10.1007/978-3-319-63260-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the well-known global impact of overweight and obesity in the incidence of cerebrovascular disease, many aspects of this association are still inconsistently defined. In this chapter we aim to present a critical review on the links between obesity and both ischemic and hemorrhagic stroke and discuss its influence on functional outcomes, survival, and current treatments to acute and chronic stroke. The role of cerebrovascular endothelial function and respective modulation is also described as well as its laboratory and clinical assessment. In this context, the major contributing mechanisms underlying obesity-induced cerebral endothelial function (adipokine secretion, insulin resistance, inflammation, and hypertension) are discussed. A special emphasis is given to the participation of adipokines in the pathophysiology of stroke, namely adiponectin, leptin, resistin, apelin, and visfatin.
Collapse
Affiliation(s)
- Liliana Letra
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,Neurology Department, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal.
| | - Cristina Sena
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Bischoff SJ, Schmidt M, Lehmann T, Irintchev A, Schubert H, Jung C, Schwab M, Huber O, Matziolis G, Schiffner R. Increase of cortical cerebral blood flow and further cerebral microcirculatory effects of Serelaxin in a sheep model. Am J Physiol Heart Circ Physiol 2016; 311:H613-20. [PMID: 27402664 DOI: 10.1152/ajpheart.00118.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/02/2016] [Indexed: 12/17/2022]
Abstract
Serelaxin, recombinant human relaxin-2, modulates endothelial vasodilatory functionality and is under evaluation for treatment of acute heart failure. Little is known about acute effects on cerebral perfusion. We tested the hypothesis that Serelaxin might also have effects on the cerebral microcirculation in a sheep model, which resembles human brain structure quite well. We used laser Doppler flowmetry and sidestream dark-field (SDF) imaging techniques, which are reliable tools to continuously assess dynamic changes in cerebral perfusion. Laser Doppler flowmetry shows that bolus injection of 30 μg Serelaxin/kg body wt induces an increase (P = 0.006) to roughly 150% of cortical cerebral blood flow (CBF), whereas subcortical CBF remains unchanged (P = 0.688). The effects on area-dependent CBF were significantly different after the bolus injection (P = 0.042). Effects on cortical CBF were further confirmed by SDF imaging. The bolus injection of Serelaxin increased total vessel density to 127% (P = 0.00046), perfused vessel density to 145% (P = 0.024), and perfused capillary density to 153% (P = 0.024). Western blotting confirmed the expression of relaxin receptors RXFP1 and truncated RXFP2-variants in the respective brain regions, suggesting a possible contribution of RXFP1 on the effects of Serelaxin. In conclusion, the injection of a high dose of Serelaxin exerts quick effects on the cerebral microcirculation. Therefore, Serelaxin might be suitable to improve cortical microcirculation and exert neuroprotective effects in clinically relevant scenarios that involve cortical hypoperfusion. These findings need to be confirmed in relevant experimental settings involving cerebral cortical hypoperfusion and can possibly be translated into clinical practice.
Collapse
Affiliation(s)
- Sabine J Bischoff
- Institute for Laboratory Animal Science and Welfare, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer Sciences and Documentation Science, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Andrey Irintchev
- Department of Otorhinolaryngology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Harald Schubert
- Institute for Laboratory Animal Science and Welfare, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany; and
| | - Otmar Huber
- Institute for Biochemistry II, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Georg Matziolis
- Orthopaedic Department, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - René Schiffner
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany; and Orthopaedic Department, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
27
|
Huang TH, Ables GP. Dietary restrictions, bone density, and bone quality. Ann N Y Acad Sci 2016; 1363:26-39. [PMID: 26881697 DOI: 10.1111/nyas.13004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR), protein restriction (PR), and specific amino acid restriction (e.g., methionine restriction (MR)) are different dietary interventions that have been confirmed with regard to their comprehensive benefits to metabolism and health. Based on bone densitometric measurements, weight loss induced by dietary restriction is known to be accompanied by reduced areal bone mineral density, bone mass, and/or bone size, and it is considered harmful to bone health. However, because of technological advancements in bone densitometric instruments (e.g., high-resolution X-ray tomography), dietary restrictions have been found to cause a reduction in bone mass/size rather than volumetric bone mineral density. Furthermore, when considering bone quality, bone health consists of diverse indices that cannot be fully represented by densitometric measurements alone. Indeed, there is evidence that moderate dietary restrictions do not impair intrinsic bone material properties, despite the reduction in whole-bone strength because of a smaller bone size. In the present review, we integrate research evidence from traditional densitometric measurements, metabolic status assays (e.g., energy metabolism, oxidative stresses, and inflammatory responses), and biomaterial analyses to provide revised conclusions regarding the effects of CR, PR, and MR on the skeleton.
Collapse
Affiliation(s)
- Tsang-hai Huang
- Laboratory of Exercise, Nutrition and Bone Biology, Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Cold Spring-on-Hudson, New York
| |
Collapse
|