1
|
Oberdier MT, Li J, Ambinder DI, Suzuki M, Tumarkin E, Fink S, Neri L, Zhu X, Justice CN, Vanden Hoek TL, Halperin HR. Survival and Neurologic Outcomes From Pharmacologic Peptide Administration During Cardiopulmonary Resuscitation of Pulseless Electrical Activity. J Am Heart Assoc 2024; 13:e9757. [PMID: 38934857 PMCID: PMC11255698 DOI: 10.1161/jaha.123.033371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Outcomes from cardiopulmonary resuscitation (CPR) following sudden cardiac arrest are suboptimal. Postresuscitation targeted temperature management has been shown to have benefit in subjects with sudden cardiac arrest due to ventricular fibrillation, but there are few data for outcomes from sudden cardiac arrest due to pulseless electrical activity. In addition, intra-CPR cooling is more effective than postresuscitation cooling. Physical cooling is associated with increased protein kinase B activity. Therefore, our group developed a novel peptide, TAT-PHLPP9c, which regulates protein kinase B. We hypothesized that when given during CPR, TAT-PHLPP9c would improve survival and neurologic outcomes following pulseless electrical activity arrest. METHODS AND RESULTS In 24 female pigs, pulseless electrical activity was induced by inflating balloon catheters in the right coronary and left anterior descending arteries for ≈7 minutes. Advanced life support was initiated. In 12 control animals, epinephrine was given after 1 and 3 minutes. In 12 peptide-treated animals, 7.5 mg/kg TAT-PHLPP9c was also administered at 1 and 3 minutes of CPR. The balloons were removed after 2 minutes of support. Animals were recovered and neurologically scored 24 hours after return of spontaneous circulation. Return of spontaneous circulation was more common in the peptide group, but this difference was not significant (8/12 control versus 12/12 peptide; P=0.093), while fully intact neurologic survival was significantly more common in the peptide group (0/12 control versus 11/12 peptide; P<0.00001). TAT-PHLPP9c significantly increased myocardial nicotinamide adenine dinucleotide levels. CONCLUSIONS TAT-PHLPP9c resulted in improved survival with full neurologic function after sudden cardiac arrest in a swine model of pulseless electrical activity, and the peptide shows potential as an intra-CPR pharmacologic agent.
Collapse
Affiliation(s)
| | - Jing Li
- University of Illinois – ChicagoChicagoIL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zhu X, Li J, Wang H, Gasior FM, Lee C, Lin S, Justice CN, O’Donnell JM, Vanden Hoek TL. Nicotinamide restores tissue NAD+ and improves survival in rodent models of cardiac arrest. PLoS One 2023; 18:e0291598. [PMID: 37713442 PMCID: PMC10503771 DOI: 10.1371/journal.pone.0291598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
Metabolic suppression in the ischemic heart is characterized by reduced levels of NAD+ and ATP. Since NAD+ is required for most metabolic processes that generate ATP, we hypothesized that nicotinamide restores ischemic tissue NAD+ and improves cardiac function in cardiomyocytes and isolated hearts, and enhances survival in a mouse model of cardiac arrest. Mouse cardiomyocytes were exposed to 30 min simulated ischemia and 90 min reperfusion. NAD+ content dropped 40% by the end of ischemia compared to pre-ischemia. Treatment with 100 μM nicotinamide (NAM) at the start of reperfusion completely restored the cellular level of NAD+ at 15 min of reperfusion. This rescue of NAD+ depletion was associated with improved contractile recovery as early as 10 min post-reperfusion. In a mouse model of cardiac arrest, 100 mg/kg NAM administered IV immediately after cardiopulmonary resuscitation resulted in 100% survival at 4 h as compared to 50% in the saline group. In an isolated rat heart model, the effect of NAM on cardiac function was measured for 20 min following 18 min global ischemia. Rate pressure product was reduced by 26% in the control group following arrest. Cardiac contractile function was completely recovered with NAM treatment given at the start of reperfusion. NAM restored tissue NAD+ and enhanced production of lactate and ATP, while reducing glucose diversion to sorbitol in the heart. We conclude that NAM can rapidly restore cardiac NAD+ following ischemia and enhance glycolysis and contractile recovery, with improved survival in a mouse model of cardiac arrest.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Jing Li
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Huashan Wang
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Filip M. Gasior
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Chunpei Lee
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Shaoxia Lin
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Cody N. Justice
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - J. Michael O’Donnell
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Terry L. Vanden Hoek
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| |
Collapse
|
3
|
Li J, Zhu X, Oberdier MT, Lee C, Lin S, Fink SJ, Justice CN, Qin K, Begeman AW, Damen FC, Kim H, Chen J, Cai K, Halperin HR, Vanden Hoek TL. A cell-penetrating PHLPP peptide improves cardiac arrest survival in murine and swine models. J Clin Invest 2023; 133:e164283. [PMID: 37115695 PMCID: PMC10145924 DOI: 10.1172/jci164283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/16/2023] [Indexed: 04/29/2023] Open
Abstract
Out-of-hospital cardiac arrest is a leading cause of death in the US, with a mortality rate over 90%. Preclinical studies demonstrate that cooling during cardiopulmonary resuscitation (CPR) is highly beneficial, but can be challenging to implement clinically. No medications exist for improving long-term cardiac arrest survival. We have developed a 20-amino acid peptide, TAT-PHLPP9c, that mimics cooling protection by enhancing AKT activation via PH domain leucine-rich repeat phosphatase 1 (PHLPP1) inhibition. Complementary studies were conducted in mouse and swine. C57BL/6 mice were randomized into blinded saline control and peptide-treatment groups. Following a 12-minute asystolic arrest, TAT-PHLPP9c was administered intravenously during CPR and significantly improved the return of spontaneous circulation, mean arterial blood pressure and cerebral blood flow, cardiac and neurological function, and survival (4 hour and 5 day). It inhibited PHLPP-NHERF1 binding, enhanced AKT but not PKC phosphorylation, decreased pyruvate dehydrogenase phosphorylation and sorbitol production, and increased ATP generation in heart and brain. TAT-PHLPP9c treatment also reduced plasma taurine and glutamate concentrations after resuscitation. The protective benefit of TAT-PHLPP9c was validated in a swine cardiac arrest model of ventricular fibrillation. In conclusion, TAT-PHLPP9c may improve neurologically intact cardiac arrest survival without the need for physical cooling.
Collapse
Affiliation(s)
- Jing Li
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiangdong Zhu
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Matt T. Oberdier
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chunpei Lee
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shaoxia Lin
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sarah J. Fink
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cody N. Justice
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kevin Qin
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Andrew W. Begeman
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Hajwa Kim
- Center for Clinical and Translational Science
| | - Jiwang Chen
- Cardiovascular Research Center, and
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kejia Cai
- Department of Radiology, College of Medicine
| | - Henry R. Halperin
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Departments of Radiology and Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Terry L. Vanden Hoek
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Justice CN, Zhu X, Li J, O'Donnell JM, Vanden Hoek TL. Intra-ischemic hypothermia cardioprotection involves modulation of PTEN/Akt/ERK signaling and fatty acid oxidation. Physiol Rep 2023; 11:e15611. [PMID: 36807889 PMCID: PMC9938006 DOI: 10.14814/phy2.15611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/20/2023] Open
Abstract
Therapeutic hypothermia (TH) provides cardioprotection from ischemia/reperfusion (I/R) injury. However, it remains unknown how TH regulates metabolic recovery. We tested the hypothesis that TH modulates PTEN, Akt, and ERK1/2, and improves metabolic recovery through mitigation of fatty acid oxidation and taurine release. Left ventricular function was monitored continuously in isolated rat hearts subjected to 20 min of global, no-flow ischemia. Moderate cooling (30°C) was applied at the start of ischemia and hearts were rewarmed after 10 min of reperfusion. The effect of TH on protein phosphorylation and expression at 0 and 30 min of reperfusion was investigated by western blot analysis. Post-ischemic cardiac metabolism was investigated by 13 C-NMR. TH enhanced recovery of cardiac function, reduced taurine release, and enhanced PTEN phosphorylation and expression. Phosphorylation of Akt and ERK1/2 was increased at the end of ischemia but decreased at the end of reperfusion. On NMR analysis, TH-treated hearts displayed decreased fatty acid oxidation. Direct cardioprotection by moderate intra-ischemic TH is associated with decreased fatty acid oxidation, reduced taurine release, enhanced PTEN phosphorylation and expression, and enhanced activation of both Akt and ERK1/2 prior to reperfusion.
Collapse
Affiliation(s)
- Cody N. Justice
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Xiangdong Zhu
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Jing Li
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - J. Michael O'Donnell
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Terry L. Vanden Hoek
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
5
|
Su C, Xiao Y, Zhang G, Liang L, Li H, Cheng C, Jin T, Bradley J, Peberdy MA, Ornato JP, Mangino MJ, Tang W. Exogenous Nicotinamide Adenine Dinucleotide Attenuates Postresuscitation Myocardial and Neurologic Dysfunction in a Rat Model of Cardiac Arrest. Crit Care Med 2021; 50:e189-e198. [PMID: 34637412 DOI: 10.1097/ccm.0000000000005268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate the therapeutic potential and underlying mechanisms of exogenous nicotinamide adenine dinucleotide+ on postresuscitation myocardial and neurologic dysfunction in a rat model of cardiac arrest. DESIGN Thirty-eight rats were randomized into three groups: 1) Sham, 2) Control, and 3) NAD. Except for the sham group, untreated ventricular fibrillation for 6 minutes followed by cardiopulmonary resuscitation was performed in the control and NAD groups. Nicotinamide adenine dinucleotide+ (20 mg/kg) was IV administered at the onset of return of spontaneous circulation. SETTING University-affiliated research laboratory. SUBJECTS Sprague-Dawley rats. INTERVENTIONS Nicotinamide adenine dinucleotide+. MEASUREMENTS AND MAIN RESULTS Hemodynamic and myocardial function were measured at baseline and within 4 hours following return of spontaneous circulation. Survival analysis and Neurologic Deficit Score were performed up to 72 hours after return of spontaneous circulation. Adenosine triphosphate (adenosine triphosphate) level was measured in both brain and heart tissue. Mitochondrial respiratory chain function, acetylation level, and expression of Sirtuin3 and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9 (NDUFA9) in isolated mitochondrial protein from both brain and heart tissue were evaluated at 4 hours following return of spontaneous circulation. The results demonstrated that nicotinamide adenine dinucleotide+ treatment improved mean arterial pressure (at 1 hr following return of spontaneous circulation, 94.69 ± 4.25 mm Hg vs 89.57 ± 7.71 mm Hg; p < 0.05), ejection fraction (at 1 hr following return of spontaneous circulation, 62.67% ± 6.71% vs 52.96% ± 9.37%; p < 0.05), Neurologic Deficit Score (at 24 hr following return of spontaneous circulation, 449.50 ± 82.58 vs 339.50 ± 90.66; p < 0.05), and survival rate compared with that of the control group. The adenosine triphosphate level and complex I respiratory were significantly restored in the NAD group compared with those of the control group. In addition, nicotinamide adenine dinucleotide+ treatment activated the Sirtuin3 pathway, down-regulating acetylated-NDUFA9 in the isolated mitochondria protein. CONCLUSIONS Exogenous nicotinamide adenine dinucleotide+ treatment attenuated postresuscitation myocardial and neurologic dysfunction. The responsible mechanisms may involve the preservation of mitochondrial complex I respiratory capacity and adenosine triphosphate production, which involves the Sirtuin3-NDUFA9 deacetylation.
Collapse
Affiliation(s)
- Chenglei Su
- Department of Emergency Medicine Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA. Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Soochow, China. Departments of Internal Medicine and Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA. Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA. Department of Surgery, Virginia Commonwealth University Health System, Richmond, VA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Liang T, Gao F, Chen J. Role of PTEN-less in cardiac injury, hypertrophy and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:25. [PMID: 34337686 PMCID: PMC8326232 DOI: 10.1186/s13619-021-00087-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Cardiomyocytes are capable of coordinated contractions, which are mainly responsible for pumping blood. When cardiac stress occurs, cardiomyocytes undergo transition from physiological homeostasis to hypertrophic growth, proliferation, or apoptosis. During these processes, many cellular factors and signaling pathways participate. PTEN is a ubiquitous dual-specificity phosphatase and functions by dephosphorylating target proteins or lipids, such as PIP3, a second messenger in the PI3K/AKT signaling pathway. Downregulation of PTEN expression or inhibiting its biologic activity improves heart function, promotes cardiomyocytes proliferation, reduces cardiac fibrosis as well as dilation, and inhibits apoptosis following ischemic stress such as myocardial infarction. Inactivation of PTEN exhibits a potentially beneficial therapeutic effects against cardiac diseases. In this review, we summarize various strategies for PTEN inactivation and highlight the roles of PTEN-less in regulating cardiomyocytes during cardiac development and stress responses.
Collapse
Affiliation(s)
- Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
7
|
Zhu X, Li J, Wang H, Gasior FM, Lee C, Lin S, Zhu Z, Wang Y, Justice CN, O'Donnell JM, Vanden Hoek TL. TAT delivery of a PTEN peptide inhibitor has direct cardioprotective effects and improves outcomes in rodent models of cardiac arrest. Am J Physiol Heart Circ Physiol 2021; 320:H2034-H2043. [PMID: 33834871 DOI: 10.1152/ajpheart.00513.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown that pharmacologic inhibition of PTEN significantly increases cardiac arrest survival in a mouse model, however, this protection required pretreatment 30 min before the arrest. To improve the onset of PTEN inhibition during cardiac arrest treatment, we have designed a TAT fused cell-permeable peptide (TAT-PTEN9c) based on the C-terminal PDZ binding motif of PTEN for rapid tissue delivery and protection. Western blot analysis demonstrated that TAT-PTEN9c peptide significantly enhanced Akt activation in mouse cardiomyocytes in a concentration- and time-dependent manner. Mice were subjected to 8 min asystolic arrest followed by CPR, and 30 mice with successful CPR were then randomly assigned to receive either saline or TAT-PTEN9c treatment. Survival was significantly increased in TAT-PTEN9c-treated mice compared with that of saline control at 4 h after CPR. The treated mice had increased Akt phosphorylation at 30 min resuscitation with significantly decreased sorbitol content in heart or brain tissues and reduced release of taurine and glutamate in blood, suggesting improved glucose metabolism. In an isolated rat heart Langendorff model, direct effects of TAT-PTEN9c on cardiac function were measured for 20 min following 20 min global ischemia. Rate pressure product was reduced by >20% for both TAT vehicle and nontreatment groups following arrest. Cardiac contractile function was completely recovered with TAT-PTEN9c treatment given at the start of reperfusion. We conclude that TAT-PTEN9c enhances Akt activation and decreases glucose shunting to the polyol pathway in critical organs, thereby preventing osmotic injury and early cardiovascular collapse and death.NEW & NOTEWORTHY We have designed a cell-permeable peptide, TAT-PTEN9c, to improve cardiac arrest survival. It blocked endogenous PTEN binding to its adaptor and enhanced Akt signaling in mouse cardiomyocytes. It improved mouse survival after cardiac arrest, which is related to improved glucose metabolism and reduced glucose shunting to sorbitol in critical organs.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Jing Li
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Huashan Wang
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | | | - Chunpei Lee
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Shaoxia Lin
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Zhiyi Zhu
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Youhua Wang
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Cody N Justice
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois.,Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - J Michael O'Donnell
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | | |
Collapse
|
8
|
PTEN in prefrontal cortex is essential in regulating depression-like behaviors in mice. Transl Psychiatry 2021; 11:185. [PMID: 33771972 PMCID: PMC7998021 DOI: 10.1038/s41398-021-01312-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is an environmental risk factor for depression and causes neuronal atrophy in the prefrontal cortex (PFC) and other brain regions. It is still unclear about the molecular mechanism underlying the behavioral alterations and neuronal atrophy induced by chronic stress. We here report that phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a mediator for chronic stress-induced depression-like behaviors and neuronal atrophy in mice. One-month chronic restraint stress (CRS) up-regulated PTEN signaling pathway in the PFC of mice as indicated by increasing levels of PTEN, p-MEK, and p-ERK but decreasing levels of p-AKT. Over-expression of Pten in the PFC led to an increase of depression-like behaviors, whereas genetic inactivation or knockdown of Pten in the PFC prevented the CRS-induced depression-like behaviors. In addition, systemic administration of PTEN inhibitor was also able to prevent these behaviors. Cellular examination showed that Pten over-expression or the CRS treatment resulted in PFC neuron atrophy, and this atrophy was blocked by genetic inactivation of Pten or systemic administration of PTEN inhibitor. Furthermore, possible causal link between Pten and glucocorticoids was examined. In chronic dexamethasone (Dex, a glucocorticoid agonist) treatment-induced depression model, increased PTEN levels were observed, and depression-like behaviors and PFC neuron atrophy were attenuated by the administration of PTEN inhibitor. Our results indicate that PTEN serves as a key mediator in chronic stress-induced neuron atrophy as well as depression-like behaviors, providing molecular evidence supporting the synaptic plasticity theory of depression.
Collapse
|
9
|
Diao MY, Zhu Y, Yang J, Xi SS, Wen X, Gu Q, Hu W. Hypothermia protects neurons against ischemia/reperfusion-induced pyroptosis via m6A-mediated activation of PTEN and the PI3K/Akt/GSK-3β signaling pathway. Brain Res Bull 2020; 159:25-31. [PMID: 32200003 DOI: 10.1016/j.brainresbull.2020.03.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 01/14/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury often leads to irreversible neuronal injury and even death, and hypothermia is the only therapeutic method that has been proven to be effective. However, the molecular mechanisms underlying the effect of hypothermia treatment on I/R injury have not been fully elucidated. In the present study, we aimed to evaluate the neuroprotective effects and mechanisms of hypothermia against hypoxia/reoxygenation (H/R)-induced neuronal damage. Primary hippocampal neurons were exposed to H/R and were then treated with hypothermia. We observed that hypothermia significantly increased cellular viability, downregulated the expression of pyroptosis-related proteins-including NLR pyrin domain containing 3 (NLRP3), apoptotic speck-like protein containing CARD (ASC), cleaved Caspase-1, and Gasdermin-D (GsdmD) p30-and reduced secretion of the pro-inflammatory cytokines, IL-1β and IL-18. Additionally, pretreatment with MCC950, a specific small-molecule inhibitor of the NLRP3 inflammasome, yielded a protective effect on cellular viability that was comparable to that of hypothermia treatment. Furthermore, hypothermia also significantly elevated the expression level of phosphatase and tensin homologous protein (PTEN) and activated the phosphorylation levels of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK-3β). These protective effects of hypothermia on pyroptosis-related proteins and pro-inflammatory cytokines were partially reversed by the specific PI3K/Akt inhibitor, LY294002. Moreover, the methylated level of PTEN mRNA was elevated in hippocampal neurons upon H/R, whereas this level remained stable in the hypothermia group. Therefore, our findings suggest that hypothermia protects neurons against neuronal H/R-induced pyroptosis, and that m6A-mediated activation of PTEN and the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/GSK-3β signaling pathway may play crucial roles during this process.
Collapse
Affiliation(s)
- Meng-Yuan Diao
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Jing Yang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Shao-Song Xi
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Xin Wen
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Qiao Gu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China.
| |
Collapse
|
10
|
Meng X, Mei L, Zhao C, Chen W, Zhang N. miR-885 mediated cardioprotection against hypoxia/reoxygenation-induced apoptosis in human cardiomyocytes via inhibition of PTEN and BCL2L11 and modulation of AKT/mTOR signaling. J Cell Physiol 2020; 235:8048-8057. [PMID: 31960416 DOI: 10.1002/jcp.29460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Ischemia/reperfusion (I/R) injury could cause the enhanced cell apoptosis of cardiomyocytes, which is one of key contributors for the development of ischemic heart disease. Recent studies emphasized the role of microRNAs (miRNAs) in regulating cardiomyocyte apoptosis. The study planned to elucidate the molecular actions of miR-885 on mediating human cardiomyocytes (HCMs) apoptosis induced by hypoxia/reoxygenation (H/R) and to explore the potential molecular mechanisms. The present data revealed that H/R stimulation inhibited HCM viability and potentiated HCM apoptosis, and more importantly, the expression of miR-885 in HCMs was markedly repressed after H/R stimulation. Further experimental examinations demonstrated that overexpression of miR-885 attenuated H/R-induced increased in HCM apoptotic rates, while miR-885 knockdown impaired HCM viability and increased HCM apoptotic rates. Moreover, the mechanistic studies showed that miR-885 inversely regulated the expression of phosphatase and tensin homolog (PTEN) and BCL2 like 11 (BCL2L11) in HCMs, and enforced expression of PTEN and BCL2L11 partially antagonized the protective actions of miR-885 overexpression on H/R-induced HCM injury. Moreover, H/R suppressed AKT/mTOR signaling, which was attenuated by miR-885 overexpression in HCMs. In conclusion, the present study for the first time showed the downregulation of miR-885 induced by H/R in HCMs, and provided the evidence that miR-885 attenuated H/R-induced cell apoptosis via inhibiting PTEN and BLC2L11 and modulation of AKT/mTOR signaling in HCMs.
Collapse
Affiliation(s)
- Xin Meng
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Mei
- Department of Blood Transfusion, Ankang Central Hospital, Ankang, China
| | - Chedong Zhao
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Chen
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Zhang
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Akt1-mediated CPR cooling protection targets regulators of metabolism, inflammation and contractile function in mouse cardiac arrest. PLoS One 2019; 14:e0220604. [PMID: 31398213 PMCID: PMC6688812 DOI: 10.1371/journal.pone.0220604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/21/2019] [Indexed: 12/31/2022] Open
Abstract
Therapeutic hypothermia initiated during cardiopulmonary resuscitation (CPR) in pre-clinical studies appears to be highly protective against sudden cardiac arrest injury. Given the challenges to implementing CPR cooling clinically, insights into its critical mechanisms of protection could guide development of new CPR drugs that mimic hypothermia effects without the need for physical cooling. Here, we used Akt1-deficient mice that lose CPR hypothermia protection to identify hypothermia targets. Adult female C57BL/6 mice (Akt1+/+ and Akt1+/-) underwent 8 min of KCl-induced asystolic arrest and were randomized to receive hypothermia (30 ± 0.5°C) or normothermia. Hypothermia was initiated during CPR and extended for 1 h after resuscitation. Neurologically scored survival was measured at 72 h. Other outcomes included mean arterial pressure and target measures in heart and brain related to contractile function, glucose utilization and inflammation. Compared to northothermia, hypothermia improved both 2h mean arterial pressure and 72h neurologically intact survival in Akt1+/+ mice but not in Akt1+/- mice. In Akt1+/+ mice, hypothermia increased Akt and GSK3β phosphorylation, pyruvate dehydrogenase activation, and NAD+ and ATP production while decreasing IκBα degradation and NF-κB activity in both heart and brain at 30 min after CPR. It also increased phospholamban phosphorylation in heart tissue. Further, hypothermia reduced metabolic and inflammatory blood markers lactate and Pre-B cell Colony Enhancing Factor. Despite hypothermia treatment, all these effects were reversed in Akt1+/- mice. Taken together, drugs that target Akt1 and its effectors may have the potential to mimic hypothermia-like protection to improve sudden cardiac arrest survival when administered during CPR.
Collapse
|
12
|
Johnson TA, Singla DK. PTEN inhibitor VO-OHpic attenuates inflammatory M1 macrophages and cardiac remodeling in doxorubicin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 2018; 315:H1236-H1249. [PMID: 30095997 PMCID: PMC6297808 DOI: 10.1152/ajpheart.00121.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Doxorubicin (Doxo) is an effective agent commonly used in cancer therapeutics. Unfortunately, Doxo treatment can stimulate cardiomyopathy and subsequent heart failure, limiting the use of this drug. The role of phosphatase and tensin homolog (PTEN) in apoptosis has been documented in Doxo-induced cardiomyopathy (DIC) and heart failure models. However, whether direct inhibition of PTEN attenuates apoptosis, cardiac remodeling, and inflammatory M1 macrophages in the DIC model remains elusive. Therefore, the present study was designed to understand the effects of VO-OHpic (VO), a potent inhibitor of PTEN, in reducing apoptosis and cardiac remodeling. At day 56, echocardiography was performed, which showed that VO treatment significantly ( P < 0.05) improved heart function. Immunohistochemistry, TUNEL, and histological staining were used to determine apoptosis, proinflammatory M1 macrophages, anti-inflammatory M2 macrophages, and cardiac remodeling. Our data show a significant increase in apoptosis, hypertrophy, fibrosis, and proinflammatory M1 macrophages with Doxo treatment, whereas VO treatment significantly reduced apoptosis, adverse cardiac remodeling, and proinflammatory M1 macrophages significantly ( P < 0.05) compared with the Doxo-treated group. Western blot analysis confirmed the reduction of phosphorylated PTEN and increase in phosphorylated AKT protein expression in the Doxo + VO-treated group. Moreover, VO administration increased anti-inflammatory M2 macrophages. Collectively, our data suggest that VO treatment attenuates apoptosis and adverse cardiac remodeling, a process that is mediated through the PTEN/AKT pathway, resulting in improved heart function in DIC. NEW & NOTEWORTHY Doxorubicin-induced cardiomyopathy (DIC) is still a major issue in patients with cancer. These novel findings on the phosphatase and tensin homolog inhibitor VO-OHpic in DIC is the first report, as per the best of our knowledge, that VO-OHpic significantly decreases apoptosis, fibrosis, hypertrophy, adverse cardiac remodeling, and proinflammatory M1 macrophages and increases anti-inflammatory M2 macrophages along with significantly improved cardiac function. VO-OHpic could be a future therapeutic agent for patients with DIC.
Collapse
Affiliation(s)
- Taylor A Johnson
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida
| |
Collapse
|
13
|
Cheng Y, Sun T, Yin C, Wang S, Li Z, Tao Y, Zhang J, Li Z, Zhang H. Downregulation of PTEN by sodium orthovanadate protects the myocardium against ischemia/reperfusion injury after chronic atorvastatin treatment. J Cell Biochem 2018; 120:3709-3715. [PMID: 30368869 DOI: 10.1002/jcb.27651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
Acute statin treatment has been reported to be critical in protecting the cardiac cells against ischemia/reperfusion injury by activating PI3K/Akt signal pathway. In vitro rat myocardial ischemia/reperfusion model, chronic statin treatment led to upregulation of phosphatase and tensin homolog (PTEN). This has been potentially indicated the correlation in PTEN and protective effect of statin on myocardium. In this current study, we evaluated the role of sodium orthovanadate a nonspecific inhibitor to PTEN and its correlation with atorvastatin on protecting myocardium against ischemia/reperfusion injury. We found a long-term statin treatment could increase the PTEN level, and this process was counteracted in the presence of sodium orthovanadate. However, the phosphotyrosine level was not affected by this statin. Besides, this process was mediated by Akt signaling since phosphorylated Akt level was altered by statin and sodium orthovanadate treatment. In a conclusion, this study showed a potential mechanism underlying PTEN-induced attenuation in long-term statin's therapeutic effect, which provided the new insight into the synergic role of PTEN and atorvastatin in protecting cardiac cells against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yutong Cheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tao Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengqian Yin
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Su Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhao Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ying Tao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jingmei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhizhong Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongju Zhang
- Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
14
|
Li Z, Cheng Z, Haifeng Y, Chen M, Li L. PTEN signaling inhibitor VO-OHpic improves cardiac myocyte survival by mediating apoptosis resistance in vitro. Biomed Pharmacother 2018; 103:1217-1222. [PMID: 29864901 DOI: 10.1016/j.biopha.2018.04.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a server disease effecting a large population worldwide. The pathophysiological process of ischemic/reperfusion (I/R) plays an important role for heart tissue damage. VO-OHpic, a PTEN inhibitor, has been demonstrated to be cardiac protective in sudden cardiac arrest models, but its role in AMI remains unclear. METHODS An isolated AMI model was induced by dissecting the rat heart in a Langendorff system. Cardiac myocytes were extracted and induced ischemia in vitro. VO-OHpic was added into the above systems. The area of infarcted tissue in the heart was measured. Cardiac myocyte apoptosis was assessed by flow cytometry. Activation of Akt and GSK3β was quantified by flow cytometry. IL-10 levels were determined by ELISA. RESULTS VO-OHpic reduced infarcted areas in the isolated heart, and improved cultured cardiac myocyte survival. VO-OHpic induced apoptosis resistance in cardiac myocytes. Akt-GSK3β signaling was activated by VO-OHpic administration. IL-10 levels in the medium were elevated by VO-OHpic. CONCLUSION VO-OHpic protects heart tissue by apoptosis resistance via activating Akt-GSK3β signaling and increasing IL-10 levels.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Zhenfeng Cheng
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Yu Haifeng
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Mengting Chen
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Lifang Li
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China.
| |
Collapse
|
15
|
Baicalein Rescues Delayed Cooling via Preservation of Akt Activation and Akt-Mediated Phospholamban Phosphorylation. Int J Mol Sci 2018; 19:ijms19040973. [PMID: 29587364 PMCID: PMC5979521 DOI: 10.3390/ijms19040973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
Cooling reduces the ischemia/reperfusion (I/R) injury seen in sudden cardiac arrest (SCA) by decreasing the burst of reactive oxygen species (ROS). Its cardioprotection is diminished when delay in reaching the target temperature occurs. Baicalein, a flavonoid derived from the root of Scutellaria baicalensis Georgi, possesses antioxidant properties. Therefore, we hypothesized that baicalein can rescue cooling cardioprotection when cooling is delayed. Two murine cardiomyocyte models, an I/R model (90 min ischemia/3 h reperfusion) and stunning model (30 min ischemia/90 min reperfusion), were used to assess cell survival and contractility, respectively. Cooling (32 °C) was initiated either during ischemia or during reperfusion. Cell viability and ROS generation were measured. Cell contractility was evaluated by real-time phase-contrast imaging. Our results showed that cooling reduced cell death and ROS generation, and this effect was diminished when cooling was delayed. Baicalein (25 µM), given either at the start of reperfusion or start of cooling, resulted in a comparable reduction of cell death and ROS production. Baicalein improved phospholamban phosphorylation, contractility recovery, and cell survival. These effects were Akt-dependent. In addition, no synergistic effect was observed with the combined treatments of cooling and baicalein. Our data suggest that baicalein may serve as a novel adjunct therapeutic strategy for SCA resuscitation.
Collapse
|
16
|
Pulido R. PTEN Inhibition in Human Disease Therapy. Molecules 2018; 23:molecules23020285. [PMID: 29385737 PMCID: PMC6017825 DOI: 10.3390/molecules23020285] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor PTEN is a major homeostatic regulator, by virtue of its lipid phosphatase activity against phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], which downregulates the PI3K/AKT/mTOR prosurvival signaling, as well as by its protein phosphatase activity towards specific protein targets. PTEN catalytic activity is crucial to control cell growth under physiologic and pathologic situations, and it impacts not only in preventing tumor cell survival and proliferation, but also in restraining several cellular regeneration processes, such as those associated with nerve injury recovery, cardiac ischemia, or wound healing. In these conditions, inhibition of PTEN catalysis is being explored as a potentially beneficial therapeutic intervention. Here, an overview of human diseases and conditions in which PTEN inhibition could be beneficial is presented, together with an update on the current status of specific small molecule inhibitors of PTEN enzymatic activity, their use in experimental models, and their limitations as research or therapeutic drugs.
Collapse
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
17
|
Camara H, da Silva Junior ED, Garcia AG, Jurkiewicz A, Rodrigues JQD. Cardiac arrest induced by muscarinic or adenosine receptors agonists is reversed by DPCPX through double mechanism. Eur J Pharmacol 2018; 819:9-15. [PMID: 28974348 DOI: 10.1016/j.ejphar.2017.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
In the right atrium (RA), adenosine and acetylcholine inhibit the pacemaker function of the sinoatrial node and induce cardiac arrest. Pre-incubation of receptor antagonists is known to inhibit the cardiac arrest induced by these agonists; however, the effect of antagonist administration after established cardiac arrest has not been described. Therefore, we assessed whether specific receptor antagonists could revert cardiac arrest induced by adenosine and muscarinic receptors activation. RA isolated from adults Wistar rats were mounted in an organ bath containing Krebs solution. Cardiac arrest was induced by adenosine or ATP (1mM), the A1 adenosine receptor agonist CPA (0.1-1µM), and muscarinic receptor agonists, carbachol (0.3-1µM) and acetylcholine (1mM). After establishing the cardiac arrest, the A1 adenosine receptor antagonist DPCPX (0.3-30µM), the muscarinic receptor antagonist atropine (10nM to 100µM) or the phosphodiesterase inhibitor IBMX (10-300µM) were incubated in order to check for the return of spontaneous contractions. DPCPX reversed the cardiac arrest induced by adenosine, ATP and CPA. In addition, atropine reversed the cardiac arrest induced by carbachol. Unexpectedly, DPCPX also reversed the cardiac arrest induced by carbachol. Similarly to DPCPX, the phosphodiesterase inhibitor IBMX reversed the cardiac arrest induced by adenosine, CPA and carbachol. The antagonism of adenosine and acetylcholine receptors activation, as well as phosphodiesterase inhibition, are able to revert cardiac arrest. DPCPX restore spontaneous contractions via the selective antagonism of A1 adenosine receptor and through a secondary mechanism likely related to phosphodiesterase inhibition.
Collapse
Affiliation(s)
- Henrique Camara
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Antônio G Garcia
- Instituto Teófilo Hernando, Universidad Autonoma de Madrid, Madrid, Spain
| | - Aron Jurkiewicz
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
| | | |
Collapse
|
18
|
Li J, Chang WT, Li CQ, Lee C, Huang HH, Hsu CW, Chen WJ, Zhu X, Wang CZ, Vanden Hoek TL, Shao ZH. Baicalein Preventive Treatment Confers Optimal Cardioprotection by PTEN/Akt/NO Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:987-1001. [PMID: 28760044 DOI: 10.1142/s0192415x17500525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Baicalein is a flavonoid with excellent oxidant scavenging capability. It has been reported to protect against a variety of oxidative injuries including ischemia/reperfusion (I/R). However, the optimal treatment strategy for I/R injury and the protective mechanisms are not fully understood. In this study we employed an established chick cardiomyocyte model of I/R and investigated the effects of three baicalein treatment strategies on reactive oxygen species (ROS) scavenging, nitric oxide (NO) production and cell viability. The molecular signaling pathways were also explored. Compared to the I/R control (cell death 52.2[Formula: see text][Formula: see text][Formula: see text]2.0%), baicalein preventive treatment (25[Formula: see text][Formula: see text]M, pretreated for 72[Formula: see text]h and continued through I/R) conferred the best protection (19.5[Formula: see text][Formula: see text][Formula: see text]3.9%, [Formula: see text]), followed by I/R treatment (treated during I/R) and reperfusion treatment (treated at reperfusion only). Preventive and I/R treatments almost completely abolished ROS generation during both ischemic and reperfusion phases, and increased NO production and Akt phosphorylation. Reperfusion treatment reduced the ROS burst in the early reperfusion phase only, and had no effect on NO production and Akt activation. Further, the phosphorylation of phosphatase and tensin homolog (PTEN), a phosphatase negatively regulating Akt activation, was significantly increased by baicalein preventive treatment and slightly by the I/R treatment. PTEN protein expression was reduced in the same trend accordingly. Baicalein reperfusion treatment had no effects on PTEN phosphorylation and expression. Our results indicate that baicalein preventive treatment confers optimal cardioprotection against I/R injury, and this protection involves effective oxidant scavenging and the activation of PTEN/Akt/NO pathway.
Collapse
Affiliation(s)
- Jing Li
- * Institute of Precision Medicine, Jining Medical University, Jining 272067, China.,† Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Wei-Tien Chang
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA.,‡ Department of Emergency Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Chang-Qing Li
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Chunpei Lee
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Hsien-Hao Huang
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA.,§ Department of Emergency Medicine, Taipei Veterans General Hospital and Emergency Medicine, College of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Chin-Wan Hsu
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA.,¶ Department of Emergency Medicine, School of Medicine, College of Medicine; Department of Emergency and Critical Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Wen-Jone Chen
- ‡ Department of Emergency Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Xiangdong Zhu
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Terry L Vanden Hoek
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Zuo-Hui Shao
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
19
|
Piao L, Fang YH, Kubler MM, Donnino MW, Sharp WW. Enhanced pyruvate dehydrogenase activity improves cardiac outcomes in a murine model of cardiac arrest. PLoS One 2017; 12:e0185046. [PMID: 28934276 PMCID: PMC5608301 DOI: 10.1371/journal.pone.0185046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/04/2017] [Indexed: 11/19/2022] Open
Abstract
Rationale Post-ischemic changes in cellular metabolism alter myocardial and neurological function. Pyruvate dehydrogenase (PDH), the limiting step in mitochondrial glucose oxidation, is inhibited by increased expression of PDH kinase (PDK) during ischemia/reperfusion injury. This results in decreased utilization of glucose to generate cellular ATP. Post-cardiac arrest (CA) hypothermia improves outcomes and alters metabolism, but its influence on PDH and PDK activity following CA are unknown. We hypothesized that therapeutic hypothermia (TH) following CA is associated with the inhibition of PDK activity and increased PDH activity. We further hypothesized that an inhibitor of PDK activity, dichloroacetate (DCA), would improve PDH activity and post-CA outcomes. Methods and results Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent a 12-minute KCl-induced CA followed by cardiopulmonary resuscitation. Compared to normothermic (37°C) CA controls, administering TH (30°C) improved overall survival (72-hour survival rate: 62.5% vs. 28.6%, P<0.001), post-resuscitation myocardial function (ejection fraction: 50.9±3.1% vs. 27.2±2.0%, P<0.001; aorta systolic pressure: 132.7±7.3 vs. 72.3±3.0 mmHg, P<0.001), and neurological scores at 72-hour post CA (9.5±1.3 vs. 5.4±1.3, P<0.05). In both heart and brain, CA increased lactate concentrations (1.9-fold and 3.1-fold increase, respectively, P<0.01), decreased PDH enzyme activity (24% and 50% reduction, respectively, P<0.01), and increased PDK protein expressions (1.2-fold and 1.9-fold, respectively, P<0.01). In contrast, post-CA treatment with TH normalized lactate concentrations (P<0.01 and P<0.05) and PDK expressions (P<0.001 and P<0.05), while increasing PDH activity (P<0.01 and P<0.01) in both the heart and brain. Additionally, treatment with DCA (0.2 mg/g body weight) 30 min prior to CA improved both myocardial hemodynamics 2 hours post-CA (aortic systolic pressure: 123±3 vs. 96±4 mmHg, P<0.001) and 72-hour survival rates (50% vs. 19%, P<0.05) in normothermic animals. Conclusions Enhanced PDH activity in the setting of TH or DCA administration is associated with improved post-CA resuscitation outcomes. PDH is a promising therapeutic target for improving post-CA outcomes.
Collapse
Affiliation(s)
- Lin Piao
- Section of Emergency Medicine; Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yong-Hu Fang
- Section of Emergency Medicine; Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Manfred M. Kubler
- Section of Emergency Medicine; Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Michael W. Donnino
- Departments of Emergency Medicine and Internal Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Willard W. Sharp
- Section of Emergency Medicine; Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
20
|
Tae HJ, Kang IJ, Lee TK, Cho JH, Lee JC, Shin MC, Kim YS, Cho JH, Kim JD, Ahn JH, Park JH, Kim IS, Lee HA, Kim YH, Won MH, Lee YJ. Neuronal injury and tumor necrosis factor-alpha immunoreactivity in the rat hippocampus in the early period of asphyxia-induced cardiac arrest under normothermia. Neural Regen Res 2017; 12:2007-2013. [PMID: 29323039 PMCID: PMC5784348 DOI: 10.4103/1673-5374.221157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Low survival rate occurs in patients who initially experience a spontaneous return of circulation after cardiac arrest (CA). In this study, we induced asphyxial CA in adult male Sprague-Daley rats, maintained their body temperature at 37 ± 0.5°C, and then observed the survival rate during the post-resuscitation phase. We examined neuronal damage in the hippocampus using cresyl violet (CV) and Fluore-Jade B (F-J B) staining, and pro-inflammatory response using ionized calcium-binding adapter molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), and tumor necrosis factor-alpha (TNF-α) immunohistochemistry in the hippocampus after asphyxial CA in rats under normothermia. Our results show that the survival rate decreased gradually post-CA (about 63% at 6 hours, 37% at 1 day, and 8% at 2 days post-CA). Rats were sacrificed at these points in time post-CA, and no neuronal damage was found in the hippocampus until 1 day post-CA. However, some neurons in the stratum pyramidale of the CA region in the hippocampus were dead 2 days post-CA. Iba-1 immunoreactive microglia in the CA1 region did not change until 1 day post-CA, and they were activated (enlarged cell bodies with short and thicken processes) in all layers 2 days post-CA. Meanwhile, GFAP-immunoreactive astrocytes did not change significantly until 2 days post-CA. TNF-α immunoreactivity decreased significantly in neurons of the stratum pyramidale in the CA1 region 6 hours post-CA, decreased gradually until 1 day post-CA, and increased significantly again 2 days post-CA. These findings suggest that low survival rate of normothermic rats in the early period of asphyxia-induced CA is related to increased TNF-α immunoreactivity, but not to neuronal damage in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, South Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yoon Sung Kim
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon; Department of Emergency Medicine, Samcheok Medical Center, Samcheok, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - In-Shik Kim
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Young Joo Lee
- Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul, South Korea
| |
Collapse
|