1
|
Zhu K, Liu Y, Dai R, Wang X, Li J, Lin Z, Du L, Guo J, Ju Y, Zhu W, Wang L, Cao CM. p85α deficiency alleviates ischemia-reperfusion injury by promoting cardiomyocyte survival. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167318. [PMID: 38909849 DOI: 10.1016/j.bbadis.2024.167318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a prevalent cause of myocardial injury, involving a series of interconnected pathophysiological processes. However, there is currently no clinical therapy for effectively mitigating myocardial I/R injury. Here, we show that p85α protein levels increase in response to I/R injury through a comprehensive analysis of cardiac proteomics, and confirm this in the I/R-injured murine heart and failing human myocardium. Genetic inhibition of p85α in mice activates the Akt-GSK3β/Bcl-x(L) signaling pathway and ameliorates I/R-induced cardiac dysfunction, apoptosis, inflammation, and mitochondrial dysfunction. p85α silencing in cardiomyocytes alleviates hypoxia-reoxygenation (H/R) injury through activating the Akt-GSK3β/Bcl-x(L) signaling pathway, while its overexpression exacerbates the damage. Mechanistically, the interaction between MG53 and p85α triggers the ubiquitination and degradation of p85α, consequently enhancing Akt phosphorylation and ultimately having cardioprotective effects. Collectively, our findings reveal that substantial reduction of p85α and subsequently activated Akt signaling have a protective effect against cardiac I/R injury, representing an important therapeutic strategy for mitigating myocardial damage.
Collapse
Affiliation(s)
- Kun Zhu
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yangli Liu
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Rilei Dai
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xun Wang
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jingchen Li
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhiheng Lin
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Leilei Du
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Guo
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yingjiao Ju
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wenting Zhu
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chun-Mei Cao
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Wu X, Zheng X, Wen Q, Zhang Y, Tang H, Zhao L, Shi F, Li Y, Yin Z, Zou Y, Song X, Li L, Zhao X, Ye G. Swertia cincta Burkill alleviates LPS/D-GalN-induced acute liver failure by modulating apoptosis and oxidative stress signaling pathways. Aging (Albany NY) 2023; 15:5887-5916. [PMID: 37379130 PMCID: PMC10333062 DOI: 10.18632/aging.204848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Swertia cincta Burkill is widely distributed along the southwestern region of China. It is known as "Dida" in Tibetan and "Qingyedan" in Chinese medicine. It was used in folk medicine to treat hepatitis and other liver diseases. To understand how Swertia cincta Burkill extract (ESC) protects against acute liver failure (ALF), firstly, the active ingredients of ESC were identified using liquid chromatography-mass spectrometry (LC-MS), and further screening. Next, network pharmacology analyses were performed to identify the core targets of ESC against ALF and further determine the potential mechanisms. Finally, in vivo experiments as well as in vitro experiments were conducted for further validation. The results revealed that 72 potential targets of ESC were identified using target prediction. The core targets were ALB, ERBB2, AKT1, MMP9, EGFR, PTPRC, MTOR, ESR1, VEGFA, and HIF1A. Next, KEGG pathway analysis showed that EGFR and PI3K-AKT signaling pathways could have been involved in ESC against ALF. ESC exhibits hepatic protective functions via anti-inflammatory, antioxidant, and anti-apoptotic effects. Therefore, the EGFR-ERK, PI3K-AKT, and NRF2/HO-1 signaling pathways could participate in the therapeutic effects of ESC on ALF.
Collapse
Affiliation(s)
- Xinyan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Xiaomei Zheng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Qiqi Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yang Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Xinghong Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| |
Collapse
|
3
|
Lin J, Li Q, Jin T, Wang J, Gong Y, Lv Q, Wang M, Chen J, Shang M, Zhao Y, Fu G. Cardiomyocyte IL-1R2 protects heart from ischemia/reperfusion injury by attenuating IL-17RA-mediated cardiomyocyte apoptosis. Cell Death Dis 2022; 13:90. [PMID: 35087030 PMCID: PMC8795442 DOI: 10.1038/s41419-022-04533-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022]
Abstract
Myocardial ischemia reperfusion (I/R) injury is a complex process with intense inflammatory response and cardiomyocyte apoptosis. As a decoy receptor of IL-1β, Interleukin-1 receptor type 2 (IL-1R2) inhibits IL-1β signaling. However, its role in I/R injury remains unknown. Here we found that the serum levels of IL-1R2 were significantly increased in patients with acute myocardial infarction (AMI) following interventional therapy. Similarly, after myocardial I/R surgery, IL-1R2 expression was significantly increased in heart of wild-type mice. In addition, IL-1R2-deficient mice heart showed enlarged infarct size, increased cardiomyocyte apoptosis together with reduced cardiac systolic function. Following exposure to hypoxia and reoxygenation (H/R), neonatal rat ventricular myocytes (NRVM) significantly increased IL-1R2 expression relying on NF-κB activation. Consistently, IL-1R2-deficient mice increased immune cells infiltrating into heart after surgery, which was relevant with cardiac damage. Additionally, IL-1R2 overexpression in cardiomyocyte protected cardiomyocyte against apoptosis through reducing the IL-17RA expression both in vivo and in vitro. Our results indicate that IL-1R2 protects cardiomyocytes from apoptosis, which provides a therapeutic approach to turn down myocardial I/R injury.
Collapse
Affiliation(s)
- Jun Lin
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Qinfeng Li
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Tingting Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Jiacheng Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Jiawen Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China.
| | - Yanbo Zhao
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China.
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Deletion of protein kinase B2 preserves cardiac function by blocking interleukin-6-mediated injury and restores blood pressure during angiotensin II/high-salt-diet-induced hypertension. J Hypertens 2019; 36:834-846. [PMID: 29120957 DOI: 10.1097/hjh.0000000000001613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Protein kinase B2 (AKT2) is implicated in cardiomyocyte survival during various stress conditions. However, the role of AKT2 in heart function, cardiac hypertrophy and blood pressure (BP) control during hypertension is not fully understood. Therefore, we sought to determine whether the deletion of AKT2 protects cardiac function during angiotensin II/high-salt-diet (AngII/HSD) treatment and find out the signaling pathway. METHODS Male C57BL/6J (wild type), AKT2 knockout and interleukin (IL)-6 knockout mice were fed a 4% NaCl diet for 5 weeks. In the last week, mice were split in two groups and infused subcutaneously with either vehicle or AngII (1.5 μg/h per mouse) for 1 week. Then, BP and cardiac function were assessed. Immunohistology of IL-6 and monocyte chemoattractant protein 1 was performed to detect inflammation in the heart. Masson's trichrome staining was performed to evaluate cardiac fibrosis. Heart tissue homogenates and neonatal mice cardiomyocytes were collected to analyze oxidative stress. RESULTS Compared with wild-type mice, AKT2 knockout mice maintained BP and showed better left ventricle ejection fraction, lower level of fibrosis, reduced oxidative stress, reduced IL-6 expression and less macrophage infiltration, when treated with AngII/HSD. IL-6 knockout mice treated with AngII/HSD also showed alleviated left ventricular function, fibrosis, oxidative stress and macrophage infiltration compared with wild type. CONCLUSION AKT2 deficiency prevents the development of AngII/HSD-induced hypertension, cardiac dysfunction and myocardial injury including oxidative stress, fibrosis and inflammation by suppressing IL-6 expression. These data reveal an important role of the AKT2-IL-6 pathway in mediating AngII/HSD-induced hypertension and cardiomyopathy.
Collapse
|
5
|
Lei Y, Yang Y, Zhao J, Gao H, Chen R, Bai B, Kang X, He Y, Ding L, Wei T, Fu X, Zhao L, Li X. P-AKT2/SPK1 (P-SPK1) and P-MEK/P-ERK cell signaling pathways are involved in LPS-induced macrophage migration. Am J Transl Res 2019; 11:2725-2741. [PMID: 31217849 PMCID: PMC6556672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
Macrophage recruitment to the inflammation site is essential for LPS-induced myocarditis, although the underlying mechanism remains elusive. This study was designed to examine the role of the P-AKT2/SPK1 (P-SPK1) and P-MEK/P-ERK signaling cascades in the regulation of macrophage migration and LPS-induced myocarditis. Our data revealed that (1) the P-AKT2/SPK1 (P-SPK1) and P-MEK/P-ERK signaling cascades acted separately in the regulation of macrophage migration; (2) P-AKT2/SPK1 (P-SPK1) played a relatively important role compared to P-MEK/P-ERK cell signaling in LPS-induced macrophage migration; (3) atorvastatin (ATV) inhibited macrophage migration by inhibiting P-AKT2/SPK1 (P-SPK1) cell signaling, but ATV could increase P-MEK and P-ERK protein expression; (4) ATV has a beneficial effect on LPS-induced myocarditis via inhibition of P-AKT2/SPK1-mediated macrophage recruitment, apoptosis, TNFα, IL-1β, and IL-6; (5) ATV-offered protection against LPS-induced myocarditis was eliminated from SPK1-KO mice; (6) SPK1 may play a harmful role in LPS-induced myocarditis. Taken together, our data revealed that SPK1 represents a novel regulating factor for macrophage migration and cardiac protection under LPS-induced myocarditis.
Collapse
Affiliation(s)
- Yonghong Lei
- Department of Plastic Surgery, 301 HospitalBeijing 100001, China
| | - Yanping Yang
- Department of Cardiology, Tangdu HospitalXi’an 710038, Shaanxi, China
| | - Jieqiong Zhao
- Department of Cardiology, Tangdu HospitalXi’an 710038, Shaanxi, China
| | - Haibo Gao
- Department of Cardiology, Tangdu HospitalXi’an 710038, Shaanxi, China
| | - Ruirui Chen
- Department of Cardiology, Tangdu HospitalXi’an 710038, Shaanxi, China
| | - Baobao Bai
- Department of Cardiology, Tangdu HospitalXi’an 710038, Shaanxi, China
| | - Xiaohui Kang
- Department of Cardiology, Tangdu HospitalXi’an 710038, Shaanxi, China
| | - Yong He
- Department of Cardiology, Tangdu HospitalXi’an 710038, Shaanxi, China
| | - Lu Ding
- Department of Cardiology, Tangdu HospitalXi’an 710038, Shaanxi, China
| | - Ting Wei
- Department of Cardiology, Tangdu HospitalXi’an 710038, Shaanxi, China
| | - Xiaobing Fu
- Department of Plastic Surgery, 301 HospitalBeijing 100001, China
| | - Lianyou Zhao
- Department of Cardiology, Tangdu HospitalXi’an 710038, Shaanxi, China
| | - Xue Li
- Department of Cardiology, Tangdu HospitalXi’an 710038, Shaanxi, China
| |
Collapse
|
6
|
Grisanti LA, Thomas TP, Carter RL, de Lucia C, Gao E, Koch WJ, Benovic JL, Tilley DG. Pepducin-mediated cardioprotection via β-arrestin-biased β2-adrenergic receptor-specific signaling. Theranostics 2018; 8:4664-4678. [PMID: 30279730 PMCID: PMC6160776 DOI: 10.7150/thno.26619] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022] Open
Abstract
Reperfusion as a therapeutic intervention for acute myocardial infarction-induced cardiac injury itself induces further cardiomyocyte death. β-arrestin (βarr)-biased β-adrenergic receptor (βAR) activation promotes survival signaling responses in vitro; thus, we hypothesize that this pathway can mitigate cardiomyocyte death at the time of reperfusion to better preserve function. However, a lack of efficacious βarr-biased orthosteric small molecules has prevented investigation into whether this pathway relays protection against ischemic injury in vivo. We recently demonstrated that the pepducin ICL1-9, a small lipidated peptide fragment designed from the first intracellular loop of β2AR, allosterically engaged pro-survival signaling cascades in a βarr-dependent manner in vitro. Thus, in this study we tested whether ICL1-9 relays cardioprotection against ischemia/reperfusion (I/R)-induced injury in vivo. Methods: Wild-type (WT) C57BL/6, β2AR knockout (KO), βarr1KO and βarr2KO mice received intracardiac injections of either ICL1-9 or a scrambled control pepducin (Scr) at the time of ischemia (30 min) followed by reperfusion for either 24 h, to assess infarct size and cardiomyocyte death, or 4 weeks, to monitor the impact of ICL1-9 on long-term cardiac structure and function. Neonatal rat ventricular myocytes (NRVM) were used to assess the impact of ICL1-9 versus Scr pepducin on cardiomyocyte survival and mitochondrial superoxide formation in response to either serum deprivation or hypoxia/reoxygenation (H/R) in vitro and to investigate the associated mechanism(s). Results: Intramyocardial injection of ICL1-9 at the time of I/R reduced infarct size, cardiomyocyte death and improved cardiac function in a β2AR- and βarr-dependent manner, which led to improved contractile function early and less fibrotic remodeling over time. Mechanistically, ICL1-9 attenuated mitochondrial superoxide production and promoted cardiomyocyte survival in a RhoA/ROCK-dependent manner. RhoA activation could be detected in cardiomyocytes and whole heart up to 24 h post-treatment, demonstrating the stability of ICL1-9 effects on βarr-dependent β2AR signaling. Conclusion: Pepducin-based allosteric modulation of βarr-dependent β2AR signaling represents a novel therapeutic approach to reduce reperfusion-induced cardiac injury and relay long-term cardiac remodeling benefits.
Collapse
|
7
|
Liu X, Gu Y, Liu Y, Zhang M, Wang Y, Hu L. Ticagrelor attenuates myocardial ischaemia-reperfusion injury possibly through downregulating galectin-3 expression in the infarct area of rats. Br J Clin Pharmacol 2018; 84:1180-1186. [PMID: 29381821 PMCID: PMC5980592 DOI: 10.1111/bcp.13536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/22/2022] Open
Abstract
AIMS The full benefits of myocardial revascularization strategies applied to acute myocardial infarction patients might be reduced by myocardial ischaemia and reperfusion (I/R) injury. It is known that inflammation plays an important role in the pathogenesis of I/R injury and galectin-3, a known inflammatory factor, is actively involved in ischaemia-induced inflammation and fibrosis of various organs. Previous studies demonstrated that anti-platelets therapy with ticagrelor, a new P2Y12 receptor antagonist, could effectively attenuate myocardial I/R injury and I/R injury-related inflammatory responses. It remains unknown whether the cardioprotective effects of ticagrelor are also mediated by modulating myocardial galectin-3 expression. METHODS We determined the ratio of infarct area (IA)/area at risk (AAR), expression of galectin-3, TNF-α and IL-6 in infarct area of rats treated with placebo (equal volume saline per gastric gavage immediately after LAD ligation, then once daily till study end) or ticagrelor (150 mg kg-1 dissolved in saline per gastric gavage immediately after LAD ligation, then once daily till study end) at 24 h, 3 and 7 days post I (45 min)/R injury. Sham-operated rats served as control. RESULTS Our results showed that ticagrelor treatment significantly reduced IA/AAR ratio at 3 and 7 days post I/R, downregulated mRNA and protein expression of galectin-3, as well as mRNA expression of TNF-α and IL-6 in infarct area at 24 h, 3 and 7 days post I/R. CONCLUSIONS Our results suggest that the cardioprotective effects of ticagrelor might partly be mediated by downregulating galectin-3 expression in infarct area in this rat model of myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaogang Liu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| | - Ye Gu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| | - Yufeng Liu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| | - Mingjing Zhang
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| | - Yuting Wang
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| | - Liqun Hu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| |
Collapse
|
8
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
9
|
Gedik N, Krüger M, Thielmann M, Kottenberg E, Skyschally A, Frey UH, Cario E, Peters J, Jakob H, Heusch G, Kleinbongard P. Proteomics/phosphoproteomics of left ventricular biopsies from patients with surgical coronary revascularization and pigs with coronary occlusion/reperfusion: remote ischemic preconditioning. Sci Rep 2017; 7:7629. [PMID: 28794502 PMCID: PMC5550488 DOI: 10.1038/s41598-017-07883-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) by repeated brief cycles of limb ischemia/reperfusion reduces myocardial ischemia/reperfusion injury. In left ventricular (LV) biopsies from patients undergoing coronary artery bypass grafting (CABG), only the activation of signal transducer and activator of transcription 5 was associated with RIPC’s cardioprotection. We have now used an unbiased, non-hypothesis-driven proteomics and phosphoproteomics approach to analyze LV biopsies from patients undergoing CABG and from pigs undergoing coronary occlusion/reperfusion without (sham) and with RIPC. False discovery rate-based statistics identified a higher prostaglandin reductase 2 expression at early reperfusion with RIPC than with sham in patients. In pigs, the phosphorylation of 116 proteins was different between baseline and early reperfusion with RIPC and/or with sham. The identified proteins were not identical for patients and pigs, but in-silico pathway analysis of proteins with ≥2-fold higher expression/phosphorylation at early reperfusion with RIPC in comparison to sham revealed a relation to mitochondria and cytoskeleton in both species. Apart from limitations of the proteomics analysis per se, the small cohorts, the sampling/sample processing and the number of uncharacterized/unverifiable porcine proteins may have contributed to this largely unsatisfactory result.
Collapse
Affiliation(s)
- Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Marcus Krüger
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Eva Kottenberg
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Elke Cario
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Heinz Jakob
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.
| |
Collapse
|
10
|
AKT2 Blocks Nucleus Translocation of Apoptosis-Inducing Factor (AIF) and Endonuclease G (EndoG) While Promoting Caspase Activation during Cardiac Ischemia. Int J Mol Sci 2017; 18:ijms18030565. [PMID: 28272306 PMCID: PMC5372581 DOI: 10.3390/ijms18030565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 02/04/2023] Open
Abstract
The AKT (protein kinase B, PKB) family has been shown to participate in diverse cellular processes, including apoptosis. Previous studies demonstrated that protein kinase B2 (AKT2−/−) mice heart was sensitized to apoptosis in response to ischemic injury. However, little is known about the mechanism and apoptotic signaling pathway. Here, we show that AKT2 inhibition does not affect the development of cardiomyocytes but increases cell death during cardiomyocyte ischemia. Caspase-dependent apoptosis of both the extrinsic and intrinsic pathway was inactivated in cardiomyocytes with AKT2 inhibition during ischemia, while significant mitochondrial disruption was observed as well as intracytosolic translocation of cytochrome C (Cyto C) together with apoptosis-inducing factor (AIF) and endonuclease G (EndoG), both of which are proven to conduct DNA degradation in a range of cell death stimuli. Therefore, mitochondria-dependent cell death was investigated and the results suggested that AIF and EndoG nucleus translocation causes cardiomyocyte DNA degradation during ischemia when AKT2 is blocked. These data are the first to show a previous unrecognized function and mechanism of AKT2 in regulating cardiomyocyte survival during ischemia by inducing a unique mitochondrial-dependent DNA degradation pathway when it is inhibited.
Collapse
|
11
|
Abstract
Heart failure is associated with generalized insulin resistance. Moreover, insulin-resistant states such as type 2 diabetes mellitus and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes mellitus alters the systemic and neurohumoral milieu, leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead box O transcriptional signaling or glucose transport, which may also impair cardiac metabolism, structure, and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed.
Collapse
Affiliation(s)
- Christian Riehle
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - E Dale Abel
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
12
|
Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction. Sci Rep 2016; 6:22363. [PMID: 26932297 PMCID: PMC4773762 DOI: 10.1038/srep22363] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/12/2016] [Indexed: 01/10/2023] Open
Abstract
Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.
Collapse
|
13
|
Protti A, Mongue-Din H, Mylonas KJ, Sirker A, Sag CM, Swim MM, Maier L, Sawyer G, Dong X, Botnar R, Salisbury J, Gray GA, Shah AM. Bone marrow transplantation modulates tissue macrophage phenotype and enhances cardiac recovery after subsequent acute myocardial infarction. J Mol Cell Cardiol 2016; 90:120-8. [PMID: 26688473 PMCID: PMC4727788 DOI: 10.1016/j.yjmcc.2015.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bone marrow transplantation (BMT) is commonly used in experimental studies to investigate the contribution of BM-derived circulating cells to different disease processes. During studies investigating the cardiac response to acute myocardial infarction (MI) induced by permanent coronary ligation in mice that had previously undergone BMT, we found that BMT itself affects the remodelling response. METHODS AND RESULTS Compared to matched naive mice, animals that had previously undergone BMT developed significantly less post-MI adverse remodelling, infarct thinning and contractile dysfunction as assessed by serial magnetic resonance imaging. Cardiac rupture in male mice was prevented. Histological analysis showed that the infarcts of mice that had undergone BMT had a significantly higher number of inflammatory cells, surviving cardiomyocytes and neovessels than control mice, as well as evidence of significant haemosiderin deposition. Flow cytometric and histological analyses demonstrated a higher number of alternatively activated (M2) macrophages in myocardium of the BMT group compared to control animals even before MI, and this increased further in the infarcts of the BMT mice after MI. CONCLUSIONS The process of BMT itself substantially alters tissue macrophage phenotype and the subsequent response to acute MI. An increase in alternatively activated macrophages in this setting appears to enhance cardiac recovery after MI.
Collapse
Affiliation(s)
- Andrea Protti
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK; Division of Imaging Sciences and Bioengineering, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Heloise Mongue-Din
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Katie J Mylonas
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queens Medical Research Institute, Edinburgh, UK
| | - Alexander Sirker
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Can Martin Sag
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK; Department of Cardiology, Universitätsklinikum Regensburg, Germany
| | - Megan M Swim
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queens Medical Research Institute, Edinburgh, UK
| | - Lars Maier
- Department of Cardiology, Universitätsklinikum Regensburg, Germany
| | - Greta Sawyer
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Xuebin Dong
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Rene Botnar
- Division of Imaging Sciences and Bioengineering, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Jon Salisbury
- Department of Histopathology, King's College Hospital, London, UK
| | - Gillian A Gray
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queens Medical Research Institute, Edinburgh, UK
| | - Ajay M Shah
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
| |
Collapse
|
14
|
Cardioprotection by PI3K-mediated signaling is required for anti-arrhythmia and myocardial repair in response to ischemic preconditioning in infarcted pig hearts. J Transl Med 2015; 95:860-71. [PMID: 26006021 DOI: 10.1038/labinvest.2015.64] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/08/2022] Open
Abstract
Although the phosphatidyl-inositol-3-kinase (PI3K)/Akt pathway is essential for conferring cardioprotection in response to ischemic preconditioning (IP), the role of PI3K/Akt signaling in the infarcted heart for mediating the anti-arrhythmic effects in response to IP remains unclear. We explored the involvement of PI3K/Akt in the IP-like effect of connexin 43 and proangiogenic factors with particular regard to its role in protecting against ischemia-induced arrhythmia, heart failure, and myocardial remodeling. Groups of pigs were administered phosphate-buffered saline (PBS) or LY294002 solution. Before induction of myocardial infarction (MI), pigs were grouped according to whether or not they underwent IP. Next, all animals underwent MI induction by ligation of the left anterior descending (LAD) coronary artery. Myocardial tissues from the pig hearts at 7 days after MI were used to assess myocardium myeloperoxidase and reaction oxygen species, infarct size, collagen content, blood vascular density, expression of Akt, connexin 43, and proangiogenic growth factors, using spectrophotometer, histology, immunohistochemistry, real-time RT-PCR, and western blot. At 7 days after MI, IP significantly reduced animal mortality and malignant ventricular arrhythmia, myocardial inflammation, infarct size, and collagen content, and improved cardiac function and remodeling; use of the PI3K inhibitor LY294002 diminished these effects. In parallel with a decline in Akt expression and phosphorylation by MI, LY294002 injection resulted in significant suppression of connexin 43 and proangiogenic factor expression, and a reduction of angiogenesis and collateral circulation. These findings demonstrate that the cardioprotective effects of IP on antiventricular arrhythmia and myocardial repair occur through upregulation of PI3K/Akt-mediated connexin 43 and growth factor signaling.
Collapse
|
15
|
Babaev VR, Hebron KE, Wiese CB, Toth CL, Ding L, Zhang Y, May JM, Fazio S, Vickers KC, Linton MF. Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice. J Lipid Res 2014; 55:2296-308. [PMID: 25240046 PMCID: PMC4617132 DOI: 10.1194/jlr.m050633] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−→Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−→Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−→Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−→Ldlr−/− mice. Importantly, Akt2−/−→Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis.
Collapse
Affiliation(s)
- Vladimir R Babaev
- Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Katie E Hebron
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Carrie B Wiese
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Cynthia L Toth
- Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Lei Ding
- Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Youmin Zhang
- Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - James M May
- Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sergio Fazio
- Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kasey C Vickers
- Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - MacRae F Linton
- Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
16
|
Sun W, Miao X, Zhou S, Zhang L, Epstein PN, Mellen N, Zheng Y, Fu Y, Wang Y, Cai L. Zinc rescue of Akt2 gene deletion-linked murine cardiac dysfunction and pathological changes is metallothionein-dependent. J Mol Cell Cardiol 2014; 74:88-97. [PMID: 24819347 DOI: 10.1016/j.yjmcc.2014.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
We have demonstrated that zinc supplementation provides cardiac protection from diabetes in mice, but its underlying mechanism remains unclear. Since zinc mimics the function of insulin, it may provide benefit to the heart via stimulating Akt-mediated glucose metabolism. Akt2 plays an important role in cardiac glucose metabolism and mice with Akt2 gene deletion (Akt2-KO) exhibit a type 2 diabetes phenotype; therefore, we assumed that no cardiac protection by zinc supplementation from diabetes would be observed in Akt2-KO mice. Surprisingly, despite Akt2 gene deletion, zinc supplementation provided protection against cardiac dysfunction and other pathological changes in Akt2-KO mice, which were accompanied by significant decreases in Akt and GSK-3β phosphorylation. Correspondingly, glycogen synthase phosphorylation and hexokinase II and PGC-1α expression, all involved in the regulation of glucose metabolism, were significantly altered in diabetic hearts, along with a significantly increased expression of Akt negative regulators: PTEN, PTP1B, and TRB3. All these molecular, pathological, and functional changes were significantly prevented by 3-month zinc supplementation. Furthermore, the stimulation of Akt-mediated glucose metabolic kinases or enzymes by zinc treatment was metallothionein-dependent since it could not be observed in metallothionein-knockout mice. These results suggest that zinc preserves cardiac function and structure in Akt2-KO mice presumably due to its insulin mimetic effect on cardiac glucose-metabolism. The cardioprotective effects of zinc are metallothionein-dependent. This is very important since zinc supplementation may be required for patients with Akt2 gene deficiency or insulin resistance.
Collapse
Affiliation(s)
- Weixia Sun
- The First Hospital of Jilin University, Jilin 130021, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Xiao Miao
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; The Second Hospital of Jilin University, Jilin 130041, China
| | - Shanshan Zhou
- The First Hospital of Jilin University, Jilin 130021, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Li Zhang
- The First Hospital of Jilin University, Jilin 130021, China
| | - Paul N Epstein
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA
| | - Nicholas Mellen
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Yang Zheng
- The First Hospital of Jilin University, Jilin 130021, China
| | - Yaowen Fu
- The First Hospital of Jilin University, Jilin 130021, China
| | - Yuehui Wang
- The First Hospital of Jilin University, Jilin 130021, China.
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA.
| |
Collapse
|
17
|
Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res 2014; 114:368-78. [PMID: 24436432 DOI: 10.1161/circresaha.113.300536] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiac hypertrophy is a multifactorial disease characterized by multiple molecular alterations. One of these alterations is change in the activity of Akt, which plays a central role in regulating a variety of cellular processes ranging from cell survival to aging. Akt activation is mainly achieved by its binding to phosphatidylinositol (3,4,5)-triphosphate. This results in a conformational change that exposes the kinase domain of Akt for phosphorylation and activation by its upstream kinase, 3-phosphoinositide-dependent protein kinase 1, in the cell membrane. Recent studies have shown that sirtuin isoforms, silent information regulator (SIRT) 1, SIRT3, and SIRT6, play an essential role in the regulation of Akt activation. Although SIRT1 deacetylates Akt to promote phosphatidylinositol (3,4,5)-triphosphate binding and activation, SIRT3 controls reactive oxygen species-mediated Akt activation, and SIRT6 transcriptionally represses Akt at the level of chromatin. In the first part of this review, we discuss the mechanisms by which sirtuins regulate Akt activation and how they influence other post-translational modifications of Akt. In the latter part of the review, we summarize the implications of sirtuin-dependent regulation of Akt signaling in the control of major cellular processes such as cellular growth, angiogenesis, apoptosis, autophagy, and aging, which are involved in the initiation and progression of several diseases.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- From Center of Cardiac Cell Biology and Therapeutics, Committee on Molecular Medicine, University of Chicago, Chicago, IL
| | | | | |
Collapse
|
18
|
Miller BA, Hoffman NE, Merali S, Zhang XQ, Wang J, Rajan S, Shanmughapriya S, Gao E, Barrero CA, Mallilankaraman K, Song J, Gu T, Hirschler-Laszkiewicz I, Koch WJ, Feldman AM, Madesh M, Cheung JY. TRPM2 channels protect against cardiac ischemia-reperfusion injury: role of mitochondria. J Biol Chem 2014; 289:7615-29. [PMID: 24492610 DOI: 10.1074/jbc.m113.533851] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca(2+) uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca(2+) uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca(2+) uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels.
Collapse
|
19
|
Wang J, Song J, Gao E, Zhang XQ, Gu T, Yu D, Koch WJ, Feldman AM, Cheung JY. Induced overexpression of phospholemman S68E mutant improves cardiac contractility and mortality after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2014; 306:H1066-77. [PMID: 24486513 DOI: 10.1152/ajpheart.00861.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholemman (PLM), when phosphorylated at Ser(68), inhibits cardiac Na+ / Ca2+ exchanger 1 (NCX1) and relieves its inhibition on Na+ -K+ -ATPase. We have engineered mice in which expression of the phosphomimetic PLM S68E mutant was induced when dietary doxycycline was removed at 5 wk. At 8-10 wk, compared with noninduced or wild-type hearts, S68E expression in induced hearts was ∼35-75% that of endogenous PLM, but protein levels of sarco(endo)plasmic reticulum Ca2+ -ATPase, α1- and α2-subunits of Na+ -K+ -ATPase, α1c-subunit of L-type Ca2+ channel, and phosphorylated ryanodine receptor were unchanged. The NCX1 protein level was increased by ∼47% but the NCX1 current was depressed by ∼34% in induced hearts. Isoproterenol had no effect on NCX1 currents but stimulated Na+ -K+ -ATPase currents equally in induced and noninduced myocytes. At baseline, systolic intracellular Ca2+ concentrations ([Ca2+]i), sarcoplasmic reticulum Ca2+ contents, and [Ca(2+)]i transient and contraction amplitudes were similar between induced and noninduced myocytes. Isoproterenol stimulation resulted in much higher systolic [Ca2+]i, sarcoplasmic reticulum Ca2+ content, and [Ca2+]i transient and contraction amplitudes in induced myocytes. Echocardiography and in vivo close-chest catheterization demonstrated similar baseline myocardial function, but isoproterenol induced a significantly higher +dP/dt in induced compared with noninduced hearts. In contrast to the 50% mortality observed in mice constitutively overexpressing the S68E mutant, induced mice had similar survival as wild-type and noninduced mice. After ischemia-reperfusion, despite similar areas at risk and left ventricular infarct sizes, induced mice had significantly higher +dP/dt and -dP/dt and lower perioperative mortality compared with noninduced mice. We propose that phosphorylated PLM may be a novel therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wan E, Yeap XY, Dehn S, Terry R, Novak M, Zhang S, Iwata S, Han X, Homma S, Drosatos K, Lomasney J, Engman DM, Miller SD, Vaughan DE, Morrow JP, Kishore R, Thorp EB. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res 2013; 113:1004-12. [PMID: 23836795 PMCID: PMC3840464 DOI: 10.1161/circresaha.113.301198] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Efficient clearance of apoptotic cells (efferocytosis) is a prerequisite for inflammation resolution and tissue repair. After myocardial infarction, phagocytes are recruited to the heart and promote clearance of dying cardiomyocytes. The molecular mechanisms of efferocytosis of cardiomyocytes and in the myocardium are unknown. The injured heart provides a unique model to examine relationships between efferocytosis and subsequent inflammation resolution, tissue remodeling, and organ function. OBJECTIVE We set out to identify mechanisms of dying cardiomyocyte engulfment by phagocytes and, for the first time, to assess the causal significance of disrupting efferocytosis during myocardial infarction. METHODS AND RESULTS In contrast to other apoptotic cell receptors, macrophage myeloid-epithelial-reproductive tyrosine kinase was necessary and sufficient for efferocytosis of cardiomyocytes ex vivo. In mice, Mertk was specifically induced in Ly6c(LO) myocardial phagocytes after experimental coronary occlusion. Mertk deficiency led to an accumulation of apoptotic cardiomyocytes, independently of changes in noncardiomyocytes, and a reduced index of in vivo efferocytosis. Importantly, suppressed efferocytosis preceded increases in myocardial infarct size and led to delayed inflammation resolution and reduced systolic performance. Reduced cardiac function was reproduced in chimeric mice deficient in bone marrow Mertk; reciprocal transplantation of Mertk(+/+) marrow into Mertk(-/-) mice corrected systolic dysfunction. Interestingly, an inactivated form of myeloid-epithelial-reproductive tyrosine kinase, known as solMER, was identified in infarcted myocardium, implicating a natural mechanism of myeloid-epithelial-reproductive tyrosine kinase inactivation after myocardial infarction. CONCLUSIONS These data collectively and directly link efferocytosis to wound healing in the heart and identify Mertk as a significant link between acute inflammation resolution and organ function.
Collapse
Affiliation(s)
- Elaine Wan
- From the Department of Pathology, Microbiology and Immunology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Choi KY, Ahn YH, Ahn HW, Cho YJ, Hong SH. Involvement of Akt2/protein kinase B β (PKBβ) in the 8-Cl-cAMP-induced cancer cell growth inhibition. J Cell Physiol 2013; 228:890-902. [PMID: 23018889 DOI: 10.1002/jcp.24240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/24/2012] [Indexed: 01/01/2023]
Abstract
8-chloro-cyclic AMP (8-Cl-cAMP), which induces differentiation, growth inhibition, and apoptosis in various cancer cells, has been investigated as a putative anti-cancer drug. However, the exact mechanism of 8-Cl-cAMP functioning in cancer cells is not fully understood. Akt/protein kinase B (PKB) genes (Akt1, Akt2, and Akt3) encode enzymes belonging to the serine/threonine-specific protein kinase family. It has been suggested that Akt/PKB enhances cell survival by inhibiting apoptosis. Recently, we showed that 8-Cl-cAMP and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibited cancer cell growth through the activation of AMPK and p38 MAPK. Therefore, we anticipated that the phosphorylation of Akt/PKB would be decreased upon treatment with 8-Cl-cAMP. However, treatment with 8-Cl-cAMP and AICAR induced the phosphorylation of Akt/PKB, which was inhibited by ABT702 (an adenosine kinase inhibitor) and NBTI (an adenosine transporter inhibitor). Furthermore, whereas Compound C (an AMPK inhibitor), AMPK-DN (AMPK-dominant negative) mutant, and SB203580 (a p38 MAPK inhibitor) did not block the 8-Cl-cAMP-induced phosphorylation of Akt/PKB, TCN (an Akt1/2/3 specific inhibitor) and an Akt2/PKBβ-targeted siRNA inhibited the 8-Cl-cAMP- and AICAR-mediated phosphorylation of AMPK and p38 MAPK. TCN also reversed the growth inhibition mediated by 8-Cl-cAMP and AICAR. Moreover, an Akt1/PKBα-targeted siRNA did not reduce the phosphorylation of AMPK and p38 MAPK after treatment with 8-Cl-cAMP. These results suggest that Akt2/PKBβ activation promotes the phosphorylation of AMPK and p38 MAPK during the 8-Cl-cAMP- and AICAR-induced growth inhibition.
Collapse
Affiliation(s)
- Ki Young Choi
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
22
|
Patel OV, Wilson WB, Qin Z. Production of LPS-induced inflammatory mediators in murine peritoneal macrophages: neocuproine as a broad inhibitor and ATP7A as a selective regulator. Biometals 2013; 26:415-25. [DOI: 10.1007/s10534-013-9624-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/27/2013] [Indexed: 11/28/2022]
|
23
|
Inflammatory mediator profiling reveals immune properties of chemotactic gradients and macrophage mediator production inhibition during thioglycollate elicited peritoneal inflammation. Mediators Inflamm 2013; 2013:931562. [PMID: 23606798 PMCID: PMC3628185 DOI: 10.1155/2013/931562] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/17/2013] [Accepted: 02/24/2013] [Indexed: 11/17/2022] Open
Abstract
Understanding of spatiotemporal profiling of inflammatory mediators and their associations with MΦ accumulation is crucial to elucidate the complex immune properties. Here, we used murine thioglycollate elicited peritonitis to determine concentrations of 23 inflammatory mediators in peritoneal exudates and plasma before (day 0) and after (days 1 and 3) thioglycollate administration to peritoneal cavities; these mediators included TNF-α, FGF-9, IFN-γ, IP-10, RANTES, IL-1α, IL-6, IL-7, IL-10, IL-11, IL-12p70, IL-17A, lymphotactin, OSM, KC/GRO, SCF, MIP-1β, MIP-2, TIMP-1, VEGF-A, MCP-1, MCP-3, and MCP-5. Our results showed that concentrations of most mediators in exudates and plasma reached peak levels on day 1 and were significantly reduced on day 3. Conversely, MΦ numbers started to increase on day 1 and reached peak levels on day 3. Moreover, LPS treatment in vitro significantly induced mediator productions in cell culture media and lysates from MΦ isolated on day 3. Our results also showed that on day 0, concentrations of many mediators in plasma were higher than those in exudates, whereas on day 1, the trend was reversed. Overall, the findings from thioglycollate elicited peritonitis reveal that reversible chemotactic gradients between peritoneal exudates and blood exist in basal and inflamed conditions and the inflammatory mediator production in vivo is disassociated with macrophage accumulation during inflammation resolution.
Collapse
|
24
|
Miller BA, Wang J, Hirschler-Laszkiewicz I, Gao E, Song J, Zhang XQ, Koch WJ, Madesh M, Mallilankaraman K, Gu T, Chen SJ, Keefer K, Conrad K, Feldman AM, Cheung JY. The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2013; 304:H1010-22. [PMID: 23376831 DOI: 10.1152/ajpheart.00906.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The second member of the transient receptor potential-melastatin channel family (TRPM2) is expressed in the heart and vasculature. TRPM2 channels were expressed in the sarcolemma and transverse tubules of adult left ventricular (LV) myocytes. Cardiac TRPM2 channels were functional since activation with H2O2 resulted in Ca(2+) influx that was dependent on extracellular Ca(2+), was significantly higher in wild-type (WT) myocytes compared with TRPM2 knockout (KO) myocytes, and inhibited by clotrimazole in WT myocytes. At rest, there were no differences in LV mass, heart rate, fractional shortening, and +dP/dt between WT and KO hearts. At 2-3 days after ischemia-reperfusion (I/R), despite similar areas at risk and infarct sizes, KO hearts had lower fractional shortening and +dP/dt compared with WT hearts. Compared with WT I/R myocytes, expression of the Na(+)/Ca(2+) exchanger (NCX1) and NCX1 current were increased, expression of the α1-subunit of Na(+)-K(+)-ATPase and Na(+) pump current were decreased, and action potential duration was prolonged in KO I/R myocytes. Post-I/R, intracellular Ca(2+) concentration transients and contraction amplitudes were equally depressed in WT and KO myocytes. After 2 h of hypoxia followed by 30 min of reoxygenation, levels of ROS were significantly higher in KO compared with WT LV myocytes. Compared with WT I/R hearts, oxygen radical scavenging enzymes (SODs) and their upstream regulators (forkhead box transcription factors and hypoxia-inducible factor) were lower, whereas NADPH oxidase was higher, in KO I/R hearts. We conclude that TRPM2 channels protected hearts from I/R injury by decreasing generation and enhancing scavenging of ROS, thereby reducing I/R-induced oxidative stress.
Collapse
Affiliation(s)
- Barbara A Miller
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Klement GL, Goukassian D, Hlatky L, Carrozza J, Morgan JP, Yan X. Cancer Therapy Targeting the HER2-PI3K Pathway: Potential Impact on the Heart. Front Pharmacol 2012; 3:113. [PMID: 22754526 PMCID: PMC3384262 DOI: 10.3389/fphar.2012.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/24/2012] [Indexed: 01/22/2023] Open
Abstract
The HER2-PI3K pathway is the one of the most mutated pathways in cancer. Several drugs targeting the major kinases of this pathway have been approved by the Food and Drug Administration and many are being tested in clinical trials for the treatment of various cancers. However, the HER2-PI3K pathway is also pivotal for maintaining the physiological function of the heart, especially in the presence of cardiac stress. Clinical studies have shown that in patients treated with doxorubicin concurrently with Trastuzumab, a monoclonal antibody that blocks the HER2 receptor, the New York Heart Association class III/IV heart failure was significantly increased compared to those who were treated with doxorubicin alone (16 vs. 3%). Studies in transgenic mice have also shown that other key kinases of this pathway, such as PI3Kα, PDK1, Akt, and mTOR, are important for protecting the heart from ischemia-reperfusion and aortic stenosis induced cardiac dysfunction. Studies, however, have also shown that inhibition of PI3Kγ improve cardiac function of a failing heart. In addition, results from transgenic mouse models are not always consistent with the outcome of the pharmacological inhibition of this pathway. Here, we will review these findings and discuss how we can address the cardiac side-effects caused by inhibition of this important pathway in both cancer and cardiac biology.
Collapse
Affiliation(s)
- Giannoula L Klement
- Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
26
|
Montecucco F, Braunersreuther V, Viviani GL, Lenglet S, Mach F. Update on the Pathophysiological Role of Intracellular Signaling Pathways in Atherosclerotic Plaques and Ischemic Myocardium. ACTA ACUST UNITED AC 2012; 7:104-110. [PMID: 22754427 PMCID: PMC3382259 DOI: 10.2174/157436212800376663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 01/02/2023]
Abstract
Acute atherosclerotic complications, such as myocardial infarction, are often provoked by the rupture of an atherosclerotic plaque and the subsequent thrombotic occlusion of the arterial lumen, which interrupts the blood flow and renders ischemic the downstream peripheral tissue. Several inflammatory mediators (including cytokines, chemokines and matrix metalloproteases) have been shown to orchestrate common pathophysiological mechanisms regulating both plaque vulnerability and myocardial injury. In particular, the selective activation of certain protective intracellular signaling pathways might represent a promising target to reduce the dramatic consequences of an ischemic cardiac event. In the present review we will update evidence on the active role of intracellular kinase cascades (such as mitogen-activated protein kinases [MAPKs], Akt, Janus kinase [JAK]-signal transducer and activator of transcription [STAT]) to reduce the global patient vulnerability for acute myocardial infarction.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|