1
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
2
|
Ayala C, Luo H, Godines K, Alghuraibawi W, Ahn S, Rehwald W, Grissom WA, Vandsburger MH. Individually tailored spatial-spectral pulsed CEST MRI for ratiometric mapping of myocardial energetic species at 3T. Magn Reson Med 2023; 90:2321-2333. [PMID: 37526176 DOI: 10.1002/mrm.29801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE CEST MRI has been used to probe changes in cardiac metabolism via assessment of CEST contrast from Cr. However, B1 variation across the myocardium leads to spatially variable Cr CEST contrast in healthy myocardium. METHODS We developed a spatial-spectral (SPSP) saturation pulsed CEST protocol to compensate for B1 variation. Flip angle maps were used to individually tailor SPSP pulses comprised of a train of one-dimensional spatially selective subpulses selective along the principal B1 gradient dimension. Complete Z-spectra in the hearts of (n = 10) healthy individuals were acquired using conventional Gaussian saturation and SPSP schemes and supported by phantom studies. RESULTS In simulations, the use of SPSP pulses reduced the average SD of the effective saturation B1 values within the myocardium (n = 10) from 0.12 ± 0.02 μT to 0.05 ± 0.01 μT (p < 0.01) and reduced the average SD of Cr CEST contrast in vivo from 10.0 ± 4.3% to 6.1 ± 3.5% (p < 0.05). Results from the hearts of human subjects showed a significant reduction of CEST contrast distribution at 2 ppm, as well as amplitude, when using SPSP saturation. Corresponding phantom experiments revealed PCr-specific contrast generation at body temperature when SPSP saturation was used but combined PCr and Cr contrast generation when Gaussian saturation was used. CONCLUSION The use of SPSP saturation pulsed CEST resulted in PCr-specific contrast generation and enabled ratiometric mapping of PCr to total Cr CEST contrast in the human heart at 3T.
Collapse
Affiliation(s)
- Cindy Ayala
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Huiwen Luo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kevin Godines
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Wissam Alghuraibawi
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Sinyeob Ahn
- MR R&D Collaborations, Siemens Medical Solutions, San Francisco, California, USA
| | - Wolfgang Rehwald
- MR R&D Collaborations, Siemens Medical Solutions, Durham, North Carolina, USA
| | - William A Grissom
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Gupta A. Cardiac 31P MR spectroscopy: development of the past five decades and future vision-will it be of diagnostic use in clinics? Heart Fail Rev 2023; 28:485-532. [PMID: 36427161 DOI: 10.1007/s10741-022-10287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In the past five decades, the use of the magnetic resonance (MR) technique for cardiovascular diseases has engendered much attention and raised the opportunity that the technique could be useful for clinical applications. MR has two arrows in its quiver: One is magnetic resonance imaging (MRI), and the other is magnetic resonance spectroscopy (MRS). Non-invasively, highly advanced MRI provides unique and profound information about the anatomical changes of the heart. Excellently developed MRS provides irreplaceable and insightful evidence of the real-time biochemistry of cardiac metabolism of underpinning diseases. Compared to MRI, which has already been successfully applied in routine clinical practice, MRS still has a long way to travel to be incorporated into routine diagnostics. Considering the exceptional potential of 31P MRS to measure the real-time metabolic changes of energetic molecules qualitatively and quantitatively, how far its powerful technique should be waited before a successful transition from "bench-to-bedside" is enticing. The present review highlights the seminal studies on the chronological development of cardiac 31P MRS in the past five decades and the future vision and challenges to incorporating it for routine diagnostics of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India.
| |
Collapse
|
4
|
Abstract
The design of the energy metabolism system in striated muscle remains a major area of investigation. Here, we review our current understanding and emerging hypotheses regarding the metabolic support of muscle contraction. Maintenance of ATP free energy, so called energy homeostasis, via mitochondrial oxidative phosphorylation is critical to sustained contractile activity, and this major design criterion is the focus of this review. Cell volume invested in mitochondria reduces the space available for generating contractile force, and this spatial balance between mitochondria acontractile elements to meet the varying sustained power demands across muscle types is another important design criterion. This is accomplished with remarkably similar mass-specific mitochondrial protein composition across muscle types, implying that it is the organization of mitochondria within the muscle cell that is critical to supporting sustained muscle function. Beyond the production of ATP, ubiquitous distribution of ATPases throughout the muscle requires rapid distribution of potential energy across these large cells. Distribution of potential energy has long been thought to occur primarily through facilitated metabolite diffusion, but recent analysis has questioned the importance of this process under normal physiological conditions. Recent structural and functional studies have supported the hypothesis that the mitochondrial reticulum provides a rapid energy distribution system via the conduction of the mitochondrial membrane potential to maintain metabolic homeostasis during contractile activity. We extensively review this aspect of the energy metabolism design contrasting it with metabolite diffusion models and how mitochondrial structure can play a role in the delivery of energy in the striated muscle.
Collapse
Affiliation(s)
- Brian Glancy
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| | - Robert S Balaban
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| |
Collapse
|
5
|
Role of metabolomics in identifying cardiac hypertrophy: an overview of the past 20 years of development and future perspective. Expert Rev Mol Med 2021; 23:e8. [PMID: 34376261 DOI: 10.1017/erm.2021.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy (CH) is an augmentation of either the right ventricular or the left ventricular mass in order to compensate for the increase of work load on the heart. Metabolic abnormalities lead to histological changes of cardiac myocytes and turn into CH. The molecular mechanisms that lead to initiate CH have been of widespread concern, hence the development of the new field of research, metabolomics: one 'omics' approach that can reveal comprehensive information of the paradigm shift of metabolic pathways network in contrast to individual enzymatic reaction-based metabolites, have attempted and until now only 19 studies have been conducted using experimental animal and human specimens. Nuclear magnetic resonance spectroscopy and mass spectrometry-based metabolomics studies have found that CH is a metabolic disease and is mainly linked to the harmonic imbalance of glycolysis, citric acid cycle, amino acids and lipid metabolism. The current review will summarise the main outcomes of the above mentioned 19 studies that have expanded our understanding of the molecular mechanisms that may lead to CH and eventually to heart failure.
Collapse
|
6
|
Cardiac 1H MR spectroscopy: development of the past five decades and future perspectives. Heart Fail Rev 2021; 26:839-859. [PMID: 33409666 DOI: 10.1007/s10741-020-10059-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 01/01/2023]
Abstract
Continued advances in laboratory medicine are required to realize the potential of individualized medicine to impact common cardiovascular diseases. Magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques have advanced over recent years and offer unique, powerful insights into cardiac anatomic and metabolic changes, respectively, occurring in both nascent and advanced heart disease. Although numerous MRI-based in vivo diagnostics are already used in routine clinical practice and more are anticipated, MRS has been less incorporated into routine clinical practice. Given the ability of 1H MRS to identify and quantify specific molecules with high sensitivity and specificity, its potential utility should be successfully transition from "bench-to-bedside" is tantalizing. The present review will highlight the development of 1H MRS techniques for cardiac applications, observations in seminal studies with 1H MRS, and the prospects and challenges for widespread application in patients with cardiovascular disease.
Collapse
|
7
|
Rutledge C, Cater G, McMahon B, Guo L, Nouraie SM, Wu Y, Villanueva F, Kaufman BA. Commercial 4-dimensional echocardiography for murine heart volumetric evaluation after myocardial infarction. Cardiovasc Ultrasound 2020; 18:9. [PMID: 32164714 PMCID: PMC7068892 DOI: 10.1186/s12947-020-00191-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Traditional preclinical echocardiography (ECHO) modalities, including 1-dimensional motion-mode (M-Mode) and 2-dimensional long axis (2D-US), rely on geometric and temporal assumptions about the heart for volumetric measurements. Surgical animal models, such as the mouse coronary artery ligation (CAL) model of myocardial infarction, result in morphologic changes that do not fit these geometric assumptions. New ECHO technology, including 4-dimensional ultrasound (4D-US), improves on these traditional models. This paper aims to compare commercially available 4D-US to M-mode and 2D-US in a mouse model of CAL. METHODS 37 mice underwent CAL surgery, of which 32 survived to a 4 week post-operative time point. ECHO was completed at baseline, 1 week, and 4 weeks after CAL. M-mode, 2D-US, and 4D-US were taken at each time point and evaluated by two separate echocardiographers. At 4 weeks, a subset (n = 12) of mice underwent cardiac magnetic resonance (CMR) imaging to serve as a reference standard. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were compared among imaging modalities. Hearts were also collected for histologic evaluation of scar size (n = 16) and compared to ECHO-derived wall motion severity index (WMSI) and global longitudinal strain as well as gadolinium-enhanced CMR to compare scar assessment modalities. RESULTS 4D-US provides close agreement of ESV (Bias: -2.55%, LOA: - 61.55 to 66.66) and EF (US Bias: 11.23%, LOA - 43.10 to 102.8) 4 weeks after CAL when compared to CMR, outperforming 2D-US and M-mode estimations. 4D-US has lower inter-user variability as measured by intraclass correlation (ICC) in the evaluation of EDV (0.91) and ESV (0.93) when compared to other modalities. 4D-US also allows for rapid assessment of WMSI, which correlates strongly with infarct size by histology (r = 0.77). CONCLUSION 4D-US outperforms M-Mode and 2D-US for volumetric analysis 4 weeks after CAL and has higher inter-user reliability. 4D-US allows for rapid calculation of WMSI, which correlates well with histologic scar size.
Collapse
Affiliation(s)
- Cody Rutledge
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Cater
- Division of Cardiology, Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brenda McMahon
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lanping Guo
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seyed Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Flordeliza Villanueva
- Division of Cardiology, Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Brett A Kaufman
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Braganza A, Annarapu GK, Shiva S. Blood-based bioenergetics: An emerging translational and clinical tool. Mol Aspects Med 2020; 71:100835. [PMID: 31864667 PMCID: PMC7031032 DOI: 10.1016/j.mam.2019.100835] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
Accumulating studies demonstrate that mitochondrial genetics and function are central to determining the susceptibility to, and prognosis of numerous diseases across all organ systems. Despite this recognition, mitochondrial function remains poorly characterized in humans primarily due to the invasiveness of obtaining viable tissue for mitochondrial studies. Recent studies have begun to test the hypothesis that circulating blood cells, which can be obtained by minimally invasive methodology, can be utilized as a biomarker of systemic bioenergetic function in human populations. Here we present the available methodologies for assessing blood cell bioenergetics and review studies that have applied these techniques to healthy and disease populations. We focus on the validation of this methodology in healthy subjects, as well as studies testing whether blood cell bioenergetics are altered in disease, correlate with clinical parameters, and compare with other methodology for assessing human mitochondrial function. Finally, we present the challenges and goals for the development of this emerging approach into a tool for translational research and personalized medicine.
Collapse
Affiliation(s)
- Andrea Braganza
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Gowtham K Annarapu
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Bauer TM, Giles AV, Sun J, Femnou A, Covian R, Murphy E, Balaban RS. Perfused murine heart optical transmission spectroscopy using optical catheter and integrating sphere: Effects of ischemia/reperfusion. Anal Biochem 2019; 586:113443. [PMID: 31539522 DOI: 10.1016/j.ab.2019.113443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022]
Abstract
Tissue transmission optical absorption spectroscopy provides dynamic information on metabolism and function. Murine genetic malleability makes it a major model for heart research. The diminutive size of the mouse heart makes optical transmission studies challenging. Using a perfused murine heart center mounted in an integrating sphere for light collection with a ventricular cavity optical catheter as an internal light source provided an effective method of optical data collection in this model. This approach provided high signal to noise optical spectra which when fit with model spectra provided information on tissue oxygenation and redox state. This technique was applied to the study of cardiac ischemia and ischemia reperfusion which generates extreme heart motion, especially during the ischemic contracture. The integrating sphere reduced motion artifacts associated with a fixed optical pickup and methods were developed to compensate for changes in tissue thickness. During ischemia, rapid decreases in myoglobin oxygenation occurred along with increases in cytochrome reduction levels. Surprisingly, when ischemic contracture occurred, myoglobin remained fully deoxygenated, while the cytochromes became more reduced consistent with a further, and critical, reduction of mitochondrial oxygen tension during ischemic contraction. This optical arrangement is an effective method of monitoring murine heart metabolism.
Collapse
Affiliation(s)
- Tyler M Bauer
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Abigail V Giles
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Junhui Sun
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Armel Femnou
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Raul Covian
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Robert S Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
10
|
Molecular imaging of cardiac remodelling after myocardial infarction. Basic Res Cardiol 2018; 113:10. [PMID: 29344827 PMCID: PMC5772148 DOI: 10.1007/s00395-018-0668-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/17/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
Myocardial infarction and subsequent heart failure is a major health burden associated with significant mortality and morbidity in western societies. The ability of cardiac tissue to recover after myocardial infarction is affected by numerous complex cellular and molecular pathways. Unbalance or failure of these pathways can lead to adverse remodelling of the heart and poor prognosis. Current clinical cardiac imaging modalities assess anatomy, perfusion, function, and viability of the myocardium, yet do not offer any insight into the specific molecular pathways involved in the repair process. Novel imaging techniques allow visualisation of these molecular processes and may have significant diagnostic and prognostic values, which could aid clinical management. Single photon-emission tomography, positron-emission tomography, and magnetic resonance imaging are used to visualise various aspects of these molecular processes. Imaging probes are usually attached to radioisotopes or paramagnetic nanoparticles to specifically target biological processes such as: apoptosis, necrosis, inflammation, angiogenesis, and scar formation. Although the results from preclinical studies are promising, translating this work to a clinical environment in a valuable and cost-effective way is extremely challenging. Extensive evaluation evidence of diagnostic and prognostic values in multi-centre clinical trials is still required.
Collapse
|
11
|
Damen FW, Berman AG, Soepriatna AH, Ellis JM, Buttars SD, Aasa KL, Goergen CJ. High-Frequency 4-Dimensional Ultrasound (4DUS): A Reliable Method for Assessing Murine Cardiac Function. ACTA ACUST UNITED AC 2017; 3:180-187. [PMID: 29308434 PMCID: PMC5749424 DOI: 10.18383/j.tom.2017.00016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vivo imaging has provided a unique framework for studying pathological progression in various mouse models of cardiac disease. Although conventional short-axis motion-mode (SAX MM) ultrasound and cine magnetic resonance imaging (MRI) are two of the most prevalent strategies used for quantifying cardiac function, there are few notable limitations including imprecision, inaccuracy, and geometric assumptions with ultrasound, or large and costly systems with substantial infrastructure requirements with MRI. Here we present an automated 4-dimensional ultrasound (4DUS) technique that provides comparable information to cine MRI through spatiotemporally synced imaging of cardiac motion. Cardiac function metrics derived from SAX MM, cine MRI, and 4DUS data show close agreement between cine MRI and 4DUS but overestimations by SAX MM. The inclusion of a mouse model of cardiac hypertrophy further highlights the precision of 4DUS compared with that of SAX MM, with narrower groupings of cardiac metrics based on health status. Our findings suggest that murine 4DUS can be used as a reliable, accurate, and cost-effective technique for longitudinal studies of cardiac function and disease progression.
Collapse
Affiliation(s)
- Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Alycia G Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Jessica M Ellis
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | | | | | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| |
Collapse
|
12
|
Gupta A, Houston B. A comprehensive review of the bioenergetics of fatty acid and glucose metabolism in the healthy and failing heart in nondiabetic condition. Heart Fail Rev 2017; 22:825-842. [DOI: 10.1007/s10741-017-9623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Vanhoutte L, Gerber BL, Gallez B, Po C, Magat J, Balligand JL, Feron O, Moniotte S. High field magnetic resonance imaging of rodents in cardiovascular research. Basic Res Cardiol 2016; 111:46. [PMID: 27287250 DOI: 10.1007/s00395-016-0565-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
Transgenic and gene knockout rodent models are primordial to study pathophysiological processes in cardiovascular research. Over time, cardiac MRI has become a gold standard for in vivo evaluation of such models. Technical advances have led to the development of magnets with increasingly high field strength, allowing specific investigation of cardiac anatomy, global and regional function, viability, perfusion or vascular parameters. The aim of this report is to provide a review of the various sequences and techniques available to image mice on 7-11.7 T magnets and relevant to the clinical setting in humans. Specific technical aspects due to the rise of the magnetic field are also discussed.
Collapse
Affiliation(s)
- Laetitia Vanhoutte
- Department of Paediatric Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium. .,Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium.
| | - Bernhard L Gerber
- Division of Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium.,Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Unit (REMA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Chrystelle Po
- CNRS, ICube, FMTS, Institut de Physique Biologique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Julie Magat
- L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Inserm U1045, Bordeaux, France
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Stéphane Moniotte
- Department of Paediatric Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium
| |
Collapse
|
14
|
Joubert M, Hardouin J, Legallois D, Blanchart K, Elie N, Nowoczyn M, Croisille P, Coulbault L, Bor-Angelier C, Allouche S, Manrique A. Effects of glycaemic variability on cardiac remodelling after reperfused myocardial infarction: Evaluation of streptozotocin-induced diabetic Wistar rats using cardiac magnetic resonance imaging. DIABETES & METABOLISM 2016; 42:342-350. [PMID: 26971835 DOI: 10.1016/j.diabet.2016.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/27/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
AIMS In addition to hyperglycaemia, glycaemic variability seems to be associated with poor outcomes after acute myocardial infarction. This study explored the impact of glycaemic variability in diabetic Wistar rats subjected to myocardial ischaemia/reperfusion. METHODS Animals with streptozotocin-induced diabetes received insulin either to maintain stable hyperglycaemia (Dh group) or to generate glycaemic variability (Dv). After experimental myocardial ischaemia/reperfusion was surgically induced, 7T cardiac magnetic resonance imaging (CMR) was performed at weeks 1 (w1) and 3 (w3). RESULTS Twenty-six rats were randomized [sham group (S): n=5; control group (C): n=7; Dh group: n=6; and Dv group: n=8]. The mean amplitude of glucose reflecting glycaemic variability was higher in the Dv than in the Dh group (9.1±2.7mmol/L vs 5.9±1.9mmol/L; P<0.05). CMR assessment at w3 revealed ventricular enlargement in both Dh and Dv groups compared with the C and S groups (end-diastolic volume: 1.60±0.22 and 1.36±0.30mL/kg compared with 1.11±0.13 and 0.87±0.11mL/kg, respectively; P<0.05). Circumferential strain was altered between w1 and w3 in the remote area only in the Dv group, resulting in a lower value in this group than in the S, C and Dh groups (-0.11±0.01 vs -0.17±0.05, -0.15±0.03 and -0.16±0.03, respectively; P<0.05). In addition, at w3, oedema was also higher in the remote area in the Dv than in the C group (18.3±4.9ms vs 14.5±1.7ms, respectively; P<0.05). CONCLUSION In the context of experimental myocardial ischaemia/reperfusion, our results suggest that glycaemic variability might have a potentially deleterious impact on myocardial outcomes beyond the classical glucose metrics.
Collapse
Affiliation(s)
- M Joubert
- Diabetes Care Unit, Caen University Hospital, Caen, France; EA4650 Normandie université, GIP Cyceron, 14000 Caen, France.
| | - J Hardouin
- Diabetes Care Unit, Caen University Hospital, Caen, France; EA4650 Normandie université, GIP Cyceron, 14000 Caen, France.
| | - D Legallois
- Cardiology Unit, Caen University Hospital, 14033 Caen, France; EA4650 Normandie université, GIP Cyceron, 14000 Caen, France.
| | - K Blanchart
- Cardiology Unit, Caen University Hospital, 14033 Caen, France; EA4650 Normandie université, GIP Cyceron, 14000 Caen, France.
| | - N Elie
- CMABIO-HIQ Facility, SF4206 ICORE, IBFA, University of Caen, 14000 Caen, France.
| | - M Nowoczyn
- Biochemistry Unit, Caen University Hospital, 14000 Caen, France; EA4650 Normandie université, GIP Cyceron, 14000 Caen, France.
| | - P Croisille
- Radiology Department, Saint-Etienne University Hospital, 42000 Saint-Etienne, France; CREATIS CNRS UMR5220 Inserm U1044, Lyon University, 69000 Lyon, France.
| | - L Coulbault
- Biochemistry Unit, Caen University Hospital, 14000 Caen, France; EA4650 Normandie université, GIP Cyceron, 14000 Caen, France.
| | - C Bor-Angelier
- Pathology Department, F.-Baclesse Cancer Center, 14000 Caen, France.
| | - S Allouche
- Biochemistry Unit, Caen University Hospital, 14000 Caen, France; EA4650 Normandie université, GIP Cyceron, 14000 Caen, France.
| | - A Manrique
- Nuclear Medicine Department, Caen University Hospital, 14033 Caen, France; EA4650 Normandie université, GIP Cyceron, 14000 Caen, France.
| |
Collapse
|
15
|
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging and brief overviews of other imaging modalities. We also briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking.
Collapse
Affiliation(s)
- Colin K L Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University School of Medicine, New York, New York
| | - Daniel H Turnbull
- Departments of Radiology and Pathology, New York University School of Medicine, New York, New York.,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
16
|
Yoshihara HAI, Bastiaansen JAM, Berthonneche C, Comment A, Schwitter J. An intact small animal model of myocardial ischemia-reperfusion: Characterization of metabolic changes by hyperpolarized 13C MR spectroscopy. Am J Physiol Heart Circ Physiol 2015; 309:H2058-66. [PMID: 26453328 DOI: 10.1152/ajpheart.00376.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023]
Abstract
Hyperpolarized carbon-13 magnetic resonance spectroscopy ((13)C MRS) enables the sensitive and noninvasive assessment of the metabolic changes occurring during myocardial ischemia-reperfusion. Ischemia-reperfusion models using hyperpolarized (13)C MRS are established in heart preparations ex vivo and in large animals in vivo, but an in vivo model in small animals would be advantageous to allow the study of reperfusion metabolism with neuroendocrine and inflammatory responses intact with the option to perform a greater number of experiments. A novel intact rat model of ischemia-reperfusion is presented that incorporates hyperpolarized (13)C MRS to characterize reperfusion metabolism. Typically, in an in vivo model, a tissue input function (TIF) is required to account for apparent changes in the metabolism of injected hyperpolarized [1-(13)C]pyruvate resulting from changes in perfusion. Whereas the measurement of a TIF by metabolic imaging is particularly challenging in small animals, the ratios of downstream metabolites can be used as an alternative. The ratio of [(13)C]bicarbonate:[1-(13)C]lactate (RatioBic/Lac) measured within 1-2 min after coronary release decreased vs. baseline in ischemic rats (n = 10, 15-min occlusion, controls: n = 10; P = 0.017 for interaction, 2-way ANOVA). The decrease in oxidative pyruvate metabolism [RatioBic/Lac(Ischemia)/RatioBic/Lac(Baseline)] modestly correlated with area at risk (r = 0.66; P = 0.002). Hyperpolarized (13)C MRS was also used to examine alanine production during ischemia, which is observed in ex vivo models, but no significant change was noted; metrics incorporating [1-(13)C]alanine did not substantially improve the discrimination of ischemic-reperfused myocardium from nonischemic myocardium. This intact rat model, which mimics the human situation of reperfused myocardial infarction, could be highly valuable for the testing of new drugs to treat reperfusion injury, thereby facilitating translational research.
Collapse
Affiliation(s)
- Hikari A I Yoshihara
- Division of Cardiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; Cardiac MR Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jessica A M Bastiaansen
- Institute of Physics of Biological Systems, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Corinne Berthonneche
- Cardiovascular Assessment Facility, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Arnaud Comment
- Institute of Physics of Biological Systems, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Juerg Schwitter
- Division of Cardiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Cardiac MR Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
17
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
18
|
Variability of Mouse Left Ventricular Function Assessment by 11.7 Tesla MRI. J Cardiovasc Transl Res 2015; 8:362-71. [PMID: 26070905 DOI: 10.1007/s12265-015-9638-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
We studied intraobserver (n = 24), interobserver (n = 24) and interexperiment (n = 12) reproducibility of left ventricular (LV) mass and volume measurements in mice using an 11.7 T MRI system. The LV systolic function was assessed with a short-axis FLASH-cine sequence in 29 mice, including animals having undergone transverse aortic constriction. Bland-Altman and regression analysis were used to compare the different data sets. Reproducibility was excellent for the LV mass and end-diastolic volume (coefficient of variability (CoV) between 5.4 and 11.8 %), good for end-systolic volume (CoV 15.2-19.4 %) and moderate for stroke volume and ejection fraction (CoV 14.7-20.9 %). We found an excellent correlation between LV mass determined by MRI and ex vivo morphometric data (r = 0.92). In conclusion, LV systolic function can be assessed on an 11.7 T MRI scanner with high reproducibility for most parameters, as needed in longitudinal studies. However, data should be interpreted taking into account the moderate reproducibility of small volumes.
Collapse
|
19
|
Lan SM, Wu YN, Wu PC, Sun CK, Shieh DB, Lin RM. Advances in noninvasive functional imaging of bone. Acad Radiol 2014; 21:281-301. [PMID: 24439341 DOI: 10.1016/j.acra.2013.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 02/03/2023]
Abstract
The demand for functional imaging in clinical medicine is comprehensive. Although the gold standard for the functional imaging of human bones in clinical settings is still radionuclide-based imaging modalities, nonionizing noninvasive imaging technology in small animals has greatly advanced in recent decades, especially the diffuse optical imaging to which Britton Chance made tremendous contributions. The evolution of imaging probes, instruments, and computation has facilitated exploration in the complicated biomedical research field by allowing longitudinal observation of molecular events in live cells and animals. These research-imaging tools are being used for clinical applications in various specialties, such as oncology, neuroscience, and dermatology. The Bone, a deeply located mineralized tissue, presents a challenge for noninvasive functional imaging in humans. Using nanoparticles (NP) with multiple favorable properties as bioimaging probes has provided orthopedics an opportunity to benefit from these noninvasive bone-imaging techniques. This review highlights the historical evolution of radionuclide-based imaging, computed tomography, positron emission tomography, and magnetic resonance imaging, diffuse optics-enabled in vivo technologies, vibrational spectroscopic imaging, and a greater potential for using NPs for biomedical imaging.
Collapse
|
20
|
Gupta A, Rohlfsen C, Leppo MK, Chacko VP, Wang Y, Steenbergen C, Weiss RG. Creatine kinase-overexpression improves myocardial energetics, contractile dysfunction and survival in murine doxorubicin cardiotoxicity. PLoS One 2013; 8:e74675. [PMID: 24098344 PMCID: PMC3788056 DOI: 10.1371/journal.pone.0074675] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022] Open
Abstract
Doxorubicin (DOX) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Because ATP is absolutely required to sustain normal cardiac contractile function and because impaired ATP synthesis through creatine kinase (CK), the primary myocardial energy reserve reaction, may contribute to contractile dysfunction in heart failure, we hypothesized that impaired CK energy metabolism contributes to DOX-induced cardiotoxicity. We therefore overexpressed the myofibrillar isoform of CK (CK-M) in the heart and determined the energetic, contractile and survival effects of CK-M following weekly DOX (5mg/kg) administration using in vivo31P MRS and 1H MRI. In control animals, in vivo cardiac energetics were reduced at 7 weeks of DOX protocol and this was followed by a mild but significant reduction in left ventricular ejection fraction (EF) at 8 weeks of DOX, as compared to baseline. At baseline, CK-M overexpression (CK-M-OE) increased rates of ATP synthesis through cardiac CK (CK flux) but did not affect contractile function. Following DOX however, CK-M-OE hearts had better preservation of creatine phosphate and higher CK flux and higher EF as compared to control DOX hearts. Survival after DOX administration was significantly better in CK-M-OE than in control animals (p<0.02). Thus CK-M-OE attenuates the early decline in myocardial high-energy phosphates and contractile function caused by chronic DOX administration and increases survival. These findings suggest that CK impairment plays an energetic and functional role in this DOX-cardiotoxicity model and suggests that metabolic strategies, particularly those targeting CK, offer an appealing new strategy for limiting DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Medicine, Division of Cardiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Radiology, Division of Magnetic Resonance Research, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Cory Rohlfsen
- Department of Medicine, Division of Cardiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michelle K. Leppo
- Department of Medicine, Division of Cardiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vadappuram P. Chacko
- Department of Radiology, Division of Magnetic Resonance Research, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yibin Wang
- University of California Los Angeles, Los Angeles, California, United States of America
| | - Charles Steenbergen
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert G. Weiss
- Department of Medicine, Division of Cardiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Radiology, Division of Magnetic Resonance Research, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Stanley WC, Keehan KH. Update on innovative initiatives for the American Journal of Physiology-Heart and Circulatory Physiology. Am J Physiol Heart Circ Physiol 2013; 304:H1045-9. [PMID: 23457015 DOI: 10.1152/ajpheart.00082.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|