1
|
Lee HS, Kim HY, Ahn YM, Cho KW. Herbal medicine Oryeongsan (Wulingsan): Cardio-renal effects via modulation of renin-angiotensin system and atrial natriuretic peptide system. Integr Med Res 2024; 13:101066. [PMID: 39247397 PMCID: PMC11378099 DOI: 10.1016/j.imr.2024.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 09/10/2024] Open
Abstract
Background Oryeongsan (Wulingsan, Goreisan) has long been used for the treatment of impaired body fluid metabolism. However, the action mechanisms have not been clearly defined. Recently, effects of Oryeongsan on the body fluid and Na+ metabolism and the action mechanisms have been shown more clearly. The present review focuses on the recent findings on the effects of Oryeongsan in the cardio-renal system in relation with body fluid metabolism and action mechanisms leading to a decrease in blood pressure in animal models of hypertension. Methods The new and recent findings were searched by using searching systems including PubMed-NCBI and Google-Scholar. Results Oryeongsan induced an increase in glomerular filtration rate, and natriuresis and diuresis with a decreased osmolality and resulted in a contraction of the body fluid and Na+ balance. These findings were associated with a suppression of abundance of Na+-H +-exchanger isoform 3 expression and V2 receptor/aquaporin2 water channel signaling pathway in the kidney. Further, treatment with Oryeongsan accentuated atrial natriuretic peptide secretion in the atria from spontaneously hypertensive rats in which the secretion was suppressed. In addition, Oryeongsan ameliorated impaired vasodilation in spontaneously hypertensive rats. Conclusion The effects of Oryeongsan in the kidney, atria, and vessel were accompanied by a suppression of AT1 receptor and concurrent accentuation of abundance of AT2/Mas receptors expression and modulation of the natriuretic peptide system in these organs from hypertensive rats. The review shows multiple sites of action of Oryeongsan and mechanisms involved in the regulation of volume and pressure homeostasis in the body.
Collapse
Affiliation(s)
- Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - You Mee Ahn
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kyung Woo Cho
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
2
|
Ahn YM, Kim HY, Kang DG, Cho KW, Lee HS. Herbal medicine (Oryeongsan) for fluid and sodium balance in renal cortex of spontaneously hypertensive rats. Integr Med Res 2024; 13:101007. [PMID: 38298863 PMCID: PMC10826321 DOI: 10.1016/j.imr.2023.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 02/02/2024] Open
Abstract
Background Herbal medicine Oryeongsan (ORS), also known as Wulingsan in Chinesehas been used for the treatment of impaired body fluid balance. However, the mechanisms involved are not clearly defined. The purpose of the present study was to identify the actions of ORS on the renal excretory function and blood pressure (BP) and to define the mechanisms involved in association with renin-angiotensin system (RAS) and natriuretic peptide system (NPS) in spontaneously hypertensive rats (SHR), an animal model of human essential hypertension. Methods Changes in urine volume (UV), excretion of electrolytes including Na+ (urinary excretion of Na+ (UNaV)) were measured. RT-PCR was performed to trace the changes in expression of RAS, NPS and sodium (Na+)-hydrogen (H+) exchanger 3 (NHE3) in the renal cortex. Results In the SHR treated with vehicle (SHR-V) group, UV and UNaV were suppressed and the Na+ balance was maintained at the higher levels leading to an increase in BP compared to WKY-V group. These were accompanied by an increase in NHE3 expression with an accentuation of angiotensin I converting enzyme-angiotensin II type 1 (ACE-AT1) receptor and concurrent suppression of angiotensin II type 2 (AT2) receptor/ACE2-Mas receptor expression in the renal cortex. Chronic treatment with ORS increased UV and UNaV, and decreased the Na+ and water balance with a decrease in BP in the ORS-treated SHR-ORS group compared to SHR-V. These were accompanied by a decrease in NHE3 expression with a suppression of ACE-AT1 receptor and concurrent accentuation of AT2/ACE2-Mas receptor. Conclusion The present study shows that ORS reduced BP with a decrease in Na+ and water retention by a suppression of NHE3 expression via modulation of RAS and NPS in SHR. The present study provides pharmacological rationale for the treatment of hypertension with ORS in SHR.
Collapse
Affiliation(s)
- You Mee Ahn
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Kyung Woo Cho
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
3
|
Yasmina Va NSG, Belemnaba L, Nitiema M, Rimwagna O CW, Traore TK, Compaore S, Ouedraogo S, Ouedraogo N, Ouedraogo S. Antihypertensive Effect of the lyophilized Aqueous Extract of Lannea microcarpa in L-NAME-Induced Hypertensive Wistar Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1401.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Hulin JA, Gubareva EA, Jarzebska N, Rodionov RN, Mangoni AA, Tommasi S. Inhibition of Dimethylarginine Dimethylaminohydrolase (DDAH) Enzymes as an Emerging Therapeutic Strategy to Target Angiogenesis and Vasculogenic Mimicry in Cancer. Front Oncol 2020; 9:1455. [PMID: 31993367 PMCID: PMC6962312 DOI: 10.3389/fonc.2019.01455] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
The small free radical gas nitric oxide (NO) plays a key role in various physiological and pathological processes through enhancement of endothelial cell survival and proliferation. In particular, NO has emerged as a molecule of interest in carcinogenesis and tumor progression due to its crucial role in various cancer-related events including cell invasion, metastasis, and angiogenesis. The dimethylarginine dimethylaminohydrolase (DDAH) family of enzymes metabolize the endogenous nitric oxide synthase (NOS) inhibitors, asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA), and are thus key for maintaining homeostatic control of NO. Dysregulation of the DDAH/ADMA/NO pathway resulting in increased local NO availability often promotes tumor growth, angiogenesis, and vasculogenic mimicry. Recent literature has demonstrated increased DDAH expression in tumors of different origins and has also suggested a potential ADMA-independent role for DDAH enzymes in addition to their well-studied ADMA-mediated influence on NO. Inhibition of DDAH expression and/or activity in cell culture models and in vivo studies has indicated the potential therapeutic benefit of this pathway through inhibition of both angiogenesis and vasculogenic mimicry, and strategies for manipulating DDAH function in cancer are currently being actively pursued by several research groups. This review will thus provide a timely discussion on the expression, regulation, and function of DDAH enzymes in regard to angiogenesis and vasculogenic mimicry, and will offer insight into the therapeutic potential of DDAH inhibition in cancer based on preclinical studies.
Collapse
Affiliation(s)
- Julie-Ann Hulin
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Natalia Jarzebska
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Arduino A Mangoni
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sara Tommasi
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
5
|
Chang F, Flavahan S, Flavahan NA. Impaired activity of adherens junctions contributes to endothelial dilator dysfunction in ageing rat arteries. J Physiol 2017; 595:5143-5158. [PMID: 28561330 DOI: 10.1113/jp274189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Ageing-induced endothelial dysfunction contributes to organ dysfunction and progression of cardiovascular disease. VE-cadherin clustering at adherens junctions promotes protective endothelial functions, including endothelium-dependent dilatation. Ageing increased internalization and degradation of VE-cadherin, resulting in impaired activity of adherens junctions. Inhibition of VE-cadherin clustering at adherens junctions (function-blocking antibody; FBA) reduced endothelial dilatation in young arteries but did not affect the already impaired dilatation in old arteries. After junctional disruption with the FBA, dilatation was similar in young and old arteries. Src tyrosine kinase activity and tyrosine phosphorylation of VE-cadherin were increased in old arteries. Src inhibition increased VE-cadherin at adherens junctions and increased endothelial dilatation in old, but not young, arteries. Src inhibition did not increase dilatation in old arteries treated with the VE-cadherin FBA. Ageing impairs the activity of adherens junctions, which contributes to endothelial dilator dysfunction. Restoring the activity of adherens junctions could be of therapeutic benefit in vascular ageing. ABSTRACT Endothelial dilator dysfunction contributes to pathological vascular ageing. Experiments assessed whether altered activity of endothelial adherens junctions (AJs) might contribute to this dysfunction. Aortas and tail arteries were isolated from young (3-4 months) and old (22-24 months) F344 rats. VE-cadherin immunofluorescent staining at endothelial AJs and AJ width were reduced in old compared to young arteries. A 140 kDa VE-cadherin species was present on the cell surface and in TTX-insoluble fractions, consistent with junctional localization. Levels of the 140 kDa VE-cadherin were decreased, whereas levels of a TTX-soluble 115 kDa VE-cadherin species were increased in old compared to young arteries. Acetylcholine caused endothelium-dependent dilatation that was decreased in old compared to young arteries. Disruption of VE-cadherin clustering at AJs (function-blocking antibody, FBA) inhibited dilatation to acetylcholine in young, but not old, arteries. After the FBA, there was no longer any difference in dilatation between old and young arteries. Src activity and tyrosine phosphorylation of VE-cadherin were increased in old compared to young arteries. In old arteries, Src inhibition (saracatinib) increased: (i) 140 kDa VE-cadherin in the TTX-insoluble fraction, (ii) VE-cadherin intensity at AJs, (iii) AJ width, and (iv) acetylcholine dilatation. In old arteries treated with the FBA, saracatinib no longer increased acetylcholine dilatation. Saracatinib did not affect dilatation in young arteries. Therefore, ageing impairs AJ activity, which appears to reflect Src-induced phosphorylation, internalization and degradation of VE-cadherin. Moreover, impaired AJ activity can account for the endothelial dilator dysfunction in old arteries. Restoring endothelial AJ activity may be a novel therapeutic approach to vascular ageing.
Collapse
Affiliation(s)
- Fumin Chang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sheila Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas A Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Zhou T, Huang X, Cai X, Xie L. Combined treatment of irbesartan and diltiazem ameliorates endothelium dependent vasodilatation in hypertensives. Clin Exp Hypertens 2017; 39:612-618. [PMID: 28613098 DOI: 10.1080/10641963.2017.1306537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tingting Zhou
- Fujian Medical University, Fujian Hypertension Research Institute, Fuzhou, P.R. China
| | - Xiaodong Huang
- Fujian Hypertension Research Institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Xiaoqi Cai
- Fujian Hypertension Research Institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Liangdi Xie
- Fujian Hypertension Research Institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| |
Collapse
|
7
|
Pinheiro LC, Tanus-Santos JE, Castro MM. The potential of stimulating nitric oxide formation in the treatment of hypertension. Expert Opin Ther Targets 2017; 21:543-556. [PMID: 28338370 DOI: 10.1080/14728222.2017.1310840] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hypertension is a leading cause of morbidity and mortality worldwide. A major pathophysiological factor contributing to hypertension is reduced nitric oxide (NO) bioavailability. Strategies to address this pathophysiological mechanism could offer significant advantages. Areas covered: In this review we aimed at examining a variety of drugs (statins, beta-adrenergic receptor blockers, calcium channel blockers, angiotensin converting enzyme inhibitors, angiotensin II type-1 receptor blockers) used to treat hypertension and other cardiovascular diseases, particularly with respect to their potential of increasing NO bioavailability and activity in the cardiovascular system. There is now evidence supporting the notion that many cardiovascular drugs activate NO signaling or enhance NO bioavailability as a contributing mechanism to their beneficial cardiovascular effects. Moreover, other drugs may attenuate NO inactivation by superoxide and other reactive oxygen species by exerting antioxidant effects. More recently, the NO oxidation products nitrite and nitrate have been acknowledged as sources of NO after recycling back to NO. Activation of the nitrate-nitrite-NO pathway is an alternate pathway that may generate NO from both anions and exert antihypertensive effects. Expert opinion: In this review, we provide an overview of the possible mechanisms by which these drugs enhance NO bioavailability and help in the therapy of hypertension.
Collapse
Affiliation(s)
- Lucas C Pinheiro
- a Department of Pharmacology, Ribeirao Preto Medical School , University of Sao Paulo , Ribeirao Preto , Brazil
| | - Jose E Tanus-Santos
- a Department of Pharmacology, Ribeirao Preto Medical School , University of Sao Paulo , Ribeirao Preto , Brazil
| | - Michele M Castro
- a Department of Pharmacology, Ribeirao Preto Medical School , University of Sao Paulo , Ribeirao Preto , Brazil
| |
Collapse
|
8
|
Wilson C, Saunter CD, Girkin JM, McCarron JG. Advancing Age Decreases Pressure-Sensitive Modulation of Calcium Signaling in the Endothelium of Intact and Pressurized Arteries. J Vasc Res 2017; 53:358-369. [PMID: 28099964 PMCID: PMC5345132 DOI: 10.1159/000454811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/27/2016] [Indexed: 01/21/2023] Open
Abstract
Aging is the summation of many subtle changes which result in altered cardiovascular function. Impaired endothelial function underlies several of these changes and precipitates plaque development in larger arteries. The endothelium transduces chemical and mechanical signals into changes in the cytoplasmic calcium concentration to control vascular function. However, studying endothelial calcium signaling in larger arteries in a physiological configuration is challenging because of the requirement to focus through the artery wall. Here, pressure- and agonist-sensitive endothelial calcium signaling was studied in pressurized carotid arteries from young (3-month-old) and aged (18-month-old) rats by imaging from within the artery using gradient index fluorescence microendoscopy. Endothelial sensitivity to acetylcholine increased with age. The number of cells exhibiting oscillatory calcium signals and the frequency of oscillations were unchanged with age. However, the latency of calcium responses was significantly increased with age. Acetylcholine-evoked endothelial calcium signals were suppressed by increased intraluminal pressure. However, pressure-dependent inhibition of calcium signaling was substantially reduced with age. While each of these changes will increase endothelial calcium signaling with increasing age, decreases in endothelial pressure sensitivity may manifest as a loss of functionality and responsiveness in aging.
Collapse
Affiliation(s)
- Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | |
Collapse
|
9
|
Li X, Lin Y, Zhou H, Li Y, Wang A, Wang H, Zhou MS. Puerarin protects against endothelial dysfunction and end-organ damage in Ang II-induced hypertension. Clin Exp Hypertens 2017; 39:58-64. [DOI: 10.1080/10641963.2016.1200603] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaojie Li
- Department of Physiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Yuhan Lin
- Department of Physiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Hongyu Zhou
- Vagelos Scholars Program of the Molecular Life Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yao Li
- Department of Physiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Aimei Wang
- Department of Physiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Hongxin Wang
- Department of Pharmacology, Liaoning Medical University; Jinzhou, Liaoning, China
| | - Ming-Sheng Zhou
- Department of Physiology, Liaoning Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
10
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 599] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
11
|
Hong K, Zhao G, Hong Z, Sun Z, Yang Y, Clifford PS, Davis MJ, Meininger GA, Hill MA. Mechanical activation of angiotensin II type 1 receptors causes actin remodelling and myogenic responsiveness in skeletal muscle arterioles. J Physiol 2016; 594:7027-7047. [PMID: 27531064 PMCID: PMC5134373 DOI: 10.1113/jp272834] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Candesartan, an inverse agonist of the type 1 angiotensin II receptor (AT1 R), causes a concentration-dependent inhibition of pressure-dependent myogenic tone consistent with previous reports of mechanosensitivity of this G protein-coupled receptor. Mechanoactivation of the AT1 R occurs independently of local angiotensin II production and the type 2 angiotensin receptor. Mechanoactivation of the AT1 R stimulates actin polymerization by a protein kinase C-dependent mechanism, but independently of a change in intracellular Ca2+ . Using atomic force microscopy, changes in single vascular smooth muscle cell cortical actin are observed to remodel following mechanoactivation of the AT1 R. ABSTRACT The Gq/11 protein-coupled angiotensin II type 1 receptor (AT1 R) has been shown to be activated by mechanical stimuli. In the vascular system, evidence supports the AT1 R being a mechanosensor that contributes to arteriolar myogenic constriction. The aim of this study was to determine if AT1 R mechanoactivation affects myogenic constriction in skeletal muscle arterioles and to determine underlying cellular mechanisms. Using pressure myography to study rat isolated first-order cremaster muscle arterioles the AT1 R inhibitor candesartan (10-7 -10-5 m) showed partial but concentration-dependent inhibition of myogenic reactivity. Inhibition was demonstrated by a rightward shift in the pressure-diameter relationship over the intraluminal pressure range, 30-110 mmHg. Pressure-induced changes in global vascular smooth muscle intracellular Ca2+ (using Fura-2) were similar in the absence or presence of candesartan, indicating that AT1 R-mediated myogenic constriction relies on Ca2+ -independent downstream signalling. The diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) reversed the inhibitory effect of candesartan, while this rescue effect was prevented by the protein kinase C (PKC) inhibitor GF 109203X. Both candesartan and PKC inhibition caused increased G-actin levels, as determined by Western blotting of vessel lysates, supporting involvement of cytoskeletal remodelling. At the single vascular smooth muscle cell level, atomic force microscopy showed that cell swelling (stretch) with hypotonic buffer also caused thickening of cortical actin fibres and this was blocked by candesartan. Collectively, the present studies support growing evidence for novel modes of activation of the AT1 R in arterioles and suggest that mechanically activated AT1 R generates diacylglycerol, which in turn activates PKC which induces the actin cytoskeleton reorganization that is required for pressure-induced vasoconstriction.
Collapse
Affiliation(s)
- Kwangseok Hong
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
- Robert M. Berne Cardiovascular Research Centre and Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVA22908USA
| | - Guiling Zhao
- College of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIL60612USA
| | - Zhongkui Hong
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Biomedical EngineeringUniversity of South DakotaSioux FallsSD57107USA
| | - Zhe Sun
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| | - Yan Yang
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
| | - Philip S. Clifford
- College of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIL60612USA
| | - Michael J. Davis
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| | - Gerald A. Meininger
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| | - Michael A. Hill
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| |
Collapse
|
12
|
Flavahan S, Chang F, Flavahan NA. Local renin-angiotensin system mediates endothelial dilator dysfunction in aging arteries. Am J Physiol Heart Circ Physiol 2016; 311:H849-54. [PMID: 27422988 DOI: 10.1152/ajpheart.00422.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/11/2016] [Indexed: 01/07/2023]
Abstract
Aging impairs endothelium-dependent NO-mediated dilatation, which results from increased production of reactive oxygen species (ROS). The local generation of angiotensin II (ANG II) is increased in aging arteries and contributes to inflammatory and fibrotic activity of smooth muscle cells and arterial wall remodeling. Although prolonged in vivo ANG II inhibition improves the impaired endothelial dilatation of aging arteries, it is unclear whether this reflects inhibition of intravascular or systemic ANG II systems. Experiments were therefore performed on isolated tail arteries from young (3-4 mo) and old (22-24 mo) F344 rats to determine if a local renin-angiotensin system contributes to the endothelial dilator dysfunction of aging. Aging impaired dilatation to the endothelial agonist acetylcholine but did not influence responses to a nitric oxide (NO) donor (DEA NONOate). Dilatation to acetylcholine was greatly reduced by NO synthase inhibition [nitro-l-arginine methyl ester (l-NAME)] in young and old arteries. In isolated arteries, acute inhibition of angiotensin-converting enzyme (ACE) (perindoprilat), renin (aliskiren), or AT1 receptors (valsartan, losartan) did not influence dilatation to acetylcholine in young arteries but increased responses in old arteries. After ANG II inhibition, the dilator response to acetylcholine was similar in young and old arteries. ROS activity, which was increased in endothelium of aging arteries, was also reduced by inhibiting ANG II (perindoprilat, losartan). Renin expression was increased by 5.6 fold and immunofluorescent levels of ANG II were confirmed to be increased in aging compared with young arteries. Exogenous ANG II inhibited acetylcholine-induced dilatation. Therefore, aging-induced impairment of endothelium-dependent dilatation in aging is caused by a local intravascular renin-angiotensin system.
Collapse
Affiliation(s)
- Sheila Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Fumin Chang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Nicholas A Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
13
|
Ca2+ -regulated lysosome fusion mediates angiotensin II-induced lipid raft clustering in mesenteric endothelial cells. Hypertens Res 2016; 39:227-36. [PMID: 26763850 DOI: 10.1038/hr.2015.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 11/08/2022]
Abstract
It has been reported that intracellular Ca2+ is involved in lysosome fusion and membrane repair in skeletal cells. Given that angiotensin II (Ang II) elicits an increase in intracellular Ca2+ and that lysosome fusion is a crucial mediator of lipid raft (LR) clustering, we hypothesized that Ang II induces lysosome fusion and activates LR formation in rat mesenteric endothelial cells (MECs). We found that Ang II acutely increased intracellular Ca2+ content, an effect that was inhibited by the extracellular Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) and the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release inhibitor 2-aminoethoxydiphenyl borate (2-APB). Further study showed that EGTA almost completely blocked Ang II-induced lysosome fusion, the translocation of acid sphingomyelinase (ASMase) to LR clusters, ASMase activation and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activation. In contrast, 2-APB had a slight inhibitory effect. Functionally, both the lysosome inhibitor bafilomycin A1 and the ASMase inhibitor amitriptyline reversed Ang II-induced impairment of vasodilation. We conclude that Ca2+ -regulated lysosome fusion mediates the Ang II-induced regulation of the LR-redox signaling pathway and mesenteric endothelial dysfunction.
Collapse
|
14
|
Wilson C, Saunter CD, Girkin JM, McCarron JG. Pressure-dependent regulation of Ca2+ signalling in the vascular endothelium. J Physiol 2015; 593:5231-53. [PMID: 26507455 PMCID: PMC4704526 DOI: 10.1113/jp271157] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
Key points Increased pressure suppresses endothelial control of vascular tone but it remains uncertain (1) how pressure is sensed by the endothelium and (2) how the vascular response is inhibited. This study used a novel imaging method to study large numbers of endothelial cells in arteries that were in a physiological configuration and held at normal blood pressures. Increased pressure suppressed endothelial IP3‐mediated Ca2+ signals. Pressure modulated endothelial cell shape. The changes in cell shape may alter endothelial Ca2+ signals by modulating the diffusive environment for Ca2+ near IP3 receptors. Endothelial pressure‐dependent mechanosensing may occur without a requirement for a conventional molecular mechanoreceptor.
Abstract The endothelium is an interconnected network upon which haemodynamic mechanical forces act to control vascular tone and remodelling in disease. Ca2+ signalling is central to the endothelium's mechanotransduction and networked activity. However, challenges in imaging Ca2+ in large numbers of endothelial cells under conditions that preserve the intact physical configuration of pressurized arteries have limited progress in understanding how pressure‐dependent mechanical forces alter networked Ca2+ signalling. We developed a miniature wide‐field, gradient‐index (GRIN) optical probe designed to fit inside an intact pressurized artery that permitted Ca2+ signals to be imaged with subcellular resolution in a large number (∼200) of naturally connected endothelial cells at various pressures. Chemical (acetylcholine) activation triggered spatiotemporally complex, propagating inositol trisphosphate (IP3)‐mediated Ca2+ waves that originated in clusters of cells and progressed from there across the endothelium. Mechanical stimulation of the artery, by increased intraluminal pressure, flattened the endothelial cells and suppressed IP3‐mediated Ca2+ signals in all activated cells. By computationally modelling Ca2+ release, endothelial shape changes were shown to alter the geometry of the Ca2+ diffusive environment near IP3 receptor microdomains to limit IP3‐mediated Ca2+ signals as pressure increased. Changes in cell shape produce a geometric microdomain regulation of IP3‐mediated Ca2+ signalling to explain macroscopic pressure‐dependent, endothelial mechanosensing without the need for a conventional mechanoreceptor. The suppression of IP3‐mediated Ca2+ signalling may explain the decrease in endothelial activity as pressure increases. GRIN imaging provides a convenient method that gives access to hundreds of endothelial cells in intact arteries in physiological configuration. Increased pressure suppresses endothelial control of vascular tone but it remains uncertain (1) how pressure is sensed by the endothelium and (2) how the vascular response is inhibited. This study used a novel imaging method to study large numbers of endothelial cells in arteries that were in a physiological configuration and held at normal blood pressures. Increased pressure suppressed endothelial IP3‐mediated Ca2+ signals. Pressure modulated endothelial cell shape. The changes in cell shape may alter endothelial Ca2+ signals by modulating the diffusive environment for Ca2+ near IP3 receptors. Endothelial pressure‐dependent mechanosensing may occur without a requirement for a conventional molecular mechanoreceptor.
Collapse
Affiliation(s)
- Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Christopher D Saunter
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - John M Girkin
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|