1
|
Karouzaki S, Peta C, Tsirimonaki E, Mangoura D. PKCε-dependent H-Ras activation encompasses the recruitment of the RasGEF SOS1 and of the RasGAP neurofibromin in the lipid rafts of embryonic neurons. Neurochem Int 2019; 131:104582. [PMID: 31629778 DOI: 10.1016/j.neuint.2019.104582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
The spatial organization of plasma membrane proteins is a key factor in the generation of distinct signal outputs, especially for PKC/Ras/ERK signalling. Regulation of activation of the membrane-bound Ras, critical for neuronal differentiation and highly specialized functions, is controlled by exchanges in nucleotides catalyzed by nucleotide exchange factors (GEFs) for GTP loading and Ras activation, and by Ras GTPase Activated Proteins (RasGAPs) that lead to activation of the intrinsic GTPase activity of Ras and thus its inactivation. PKCs are potent Ras activators yet the mechanistic details of these interactions, or the involvement of specific PKC isoforms are now beginning to be addressed. Even less known is the topology where RasGAPs terminate Ras activation. Towards this aim, we isolated lipid rafts from chick embryo neural tissue and primary neuronal cultures when PKCε is the prominent isoform and in combination with in vitro kinase assays, we now show that, in response the PKCε-specific activating peptide ψεRACK, an activated PKCε is recruited to lipid rafts; similar mobility was established when PKCε was physiologically activated with the Cannabinoid receptor 1 (CB1) agonist methanandamide. Activation of H-Ras for both agents was then established for the first time using in vivo RasGAP activity assays, which showed similar temporal profiles of activation and lateral mobility. Moreover, we found that the GEF SOS1, and the major neuronal RasGAP neurofibromin, a specific PKCε substrate, were both transiently significantly enriched in the rafts. Finally, our in silico analysis revealed a highly probable, conserved palmitoylation site adjacent to a CARC motif on neurofibromin, both of which are included only in the RasGAP related domain type I (GRDI) with the known high H-RasGAP activity. Taken together, these results suggest that PKCε activation regulates the spatial plasma membrane enrichments of both SOS1 and neurofibromin, thus controlling the output of activated H-Ras available for downstream signalling in neurons.
Collapse
Affiliation(s)
- Sophia Karouzaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Charoula Peta
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Emmanouella Tsirimonaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Dimitra Mangoura
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece.
| |
Collapse
|
2
|
PKC-epsilon activation is required for recognition memory in the rat. Behav Brain Res 2013; 253:280-9. [PMID: 23911427 DOI: 10.1016/j.bbr.2013.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/20/2022]
Abstract
Activation of PKCɛ, an abundant and developmentally regulated PKC isoform in the brain, has been implicated in memory throughout life and across species. Yet, direct evidence for a mechanistic role for PKCɛ in memory is still lacking. Hence, we sought to evaluate this in rats, using short-term treatments with two PKCɛ-selective peptides, the inhibitory ɛV1-2 and the activating ψɛRACK, and the novel object recognition task (NORT). Our results show that the PKCɛ-selective activator ψɛRACK, did not have a significant effect on recognition memory. In the short time frames used, however, inhibition of PKCɛ activation with the peptide inhibitor ɛV1-2 significantly impaired recognition memory. Moreover, when we addressed at the molecular level the immediate proximal signalling events of PKCɛ activation in acutely dissected rat hippocampi, we found that ψɛRACK increased in a time-dependent manner phosphorylation of MARCKS and activation of Src, Raf, and finally ERK1/2, whereas ɛV1-2 inhibited all basal activity of this pathway. Taken together, these findings present the first direct evidence that PKCɛ activation is an essential molecular component of recognition memory and point toward the use of systemically administered PKCɛ-regulating peptides as memory study tools and putative therapeutic agents.
Collapse
|
3
|
Biophysical Forces Modulate the Costamere and Z-Disc for Sarcomere Remodeling in Heart Failure. BIOPHYSICS OF THE FAILING HEART 2013. [DOI: 10.1007/978-1-4614-7678-8_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Hüttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, Vogt S, Grossman LI, Doan JW, Marcus K, Lee I. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:598-609. [PMID: 21771582 PMCID: PMC3229836 DOI: 10.1016/j.bbabio.2011.07.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/09/2023]
Abstract
Cytochrome c (Cytc) and cytochrome c oxidase (COX) catalyze the terminal reaction of the mitochondrial electron transport chain (ETC), the reduction of oxygen to water. This irreversible step is highly regulated, as indicated by the presence of tissue-specific and developmentally expressed isoforms, allosteric regulation, and reversible phosphorylations, which are found in both Cytc and COX. The crucial role of the ETC in health and disease is obvious since it, together with ATP synthase, provides the vast majority of cellular energy, which drives all cellular processes. However, under conditions of stress, the ETC generates reactive oxygen species (ROS), which cause cell damage and trigger death processes. We here discuss current knowledge of the regulation of Cytc and COX with a focus on cell signaling pathways, including cAMP/protein kinase A and tyrosine kinase signaling. Based on the crystal structures we highlight all identified phosphorylation sites on Cytc and COX, and we present a new phosphorylation site, Ser126 on COX subunit II. We conclude with a model that links cell signaling with the phosphorylation state of Cytc and COX. This in turn regulates their enzymatic activities, the mitochondrial membrane potential, and the production of ATP and ROS. Our model is discussed through two distinct human pathologies, acute inflammation as seen in sepsis, where phosphorylation leads to strong COX inhibition followed by energy depletion, and ischemia/reperfusion injury, where hyperactive ETC complexes generate pathologically high mitochondrial membrane potentials, leading to excessive ROS production. Although operating at opposite poles of the ETC activity spectrum, both conditions can lead to cell death through energy deprivation or ROS-triggered apoptosis.
Collapse
Affiliation(s)
- Maik Hüttemann
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shi J, Xu J, Zhang X, Yang L. Positive feedback induced memory effect in ischemic preconditioning. J Theor Biol 2012; 300:317-23. [PMID: 22321855 DOI: 10.1016/j.jtbi.2012.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/17/2011] [Accepted: 01/19/2012] [Indexed: 11/27/2022]
Abstract
The memory of ischemic preconditioning remains a great mystery. Brief preconditioning (several sequential regional ischemia/reperfusion in minutes) can induce a two-phase protection that lasts up to 3 days. Thus comes the so-called memory of preconditioning. This memory effect has been attributed to a feed-forward signaling cascade. But recent experimental observations suggest that intra-mitochondrial positive feedback may be responsible for sustaining the protective effect. The link between positive feedback and memory is yet to be determined. In this study, we used a mathematical model to describe the way in which positive feedback induces memory in the first window of cardioprotection, and we derived an explicit relationship between the memory duration and the strength of the positive feedback. Our major findings are: (1) that positive feedback relying on a hysteresis response provides an effective way of prolonging protection up to any length; and (2) that the stronger the positive feedback, the longer the memory duration. Furthermore, compared with the feed-forward signaling cascade, positive feedback may be more favored by natural systems because of its robustness and high efficiency. The mechanisms described in this study have important implications for developments of experimental approaches as well as therapeutic strategies.
Collapse
Affiliation(s)
- Jichen Shi
- School of Mathematical Sciences, Soochow University, Suzhou, Jiangsu 215006, PR China
| | | | | | | |
Collapse
|
6
|
Weisheit S, Schäfer C, Mertens C, Berndt A, Liebmann C. PKCε acts as negative allosteric modulator of EGF receptor signalling. Cell Signal 2011; 23:436-48. [DOI: 10.1016/j.cellsig.2010.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 02/04/2023]
|
7
|
Asimaki O, Mangoura D. Cannabinoid receptor 1 induces a biphasic ERK activation via multiprotein signaling complex formation of proximal kinases PKCε, Src, and Fyn in primary neurons. Neurochem Int 2010; 58:135-44. [PMID: 21074588 DOI: 10.1016/j.neuint.2010.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 11/17/2022]
Abstract
Cannabinoid receptors 1 (CB1Rs) play important roles in the regulation of dendritic branching, synapse density, and synaptic transmission through multiple G-protein-coupled signaling systems, including the activation of the extracellular signal-regulated kinases ERK1/2. The proximal signaling interactions leading to ERK1/2 activation by CB1R in CNS remain, however, unclear. Here, we present evidence that the CB1R agonist methanandamide induced a biphasic and sustained activation of ERK1/2 in primary neurons derived from E7 telencephalon. We show that E7 neurons natively express high levels of CB1R message and protein, the majority of which associates with PKCɛ at basal conditions. We now demonstrate that the first peak of ERK activation by CB1R was mediated by the sequential activation of G(q), PLC, and PKCɛ, selectively, and that the CB1R-activated PKCɛ acutely formed transient signaling modules containing activated Src and Fyn. A second pool of CB1Rs, coupled to PTX-sensitive activation of G(i/o), utilized as effectors additional Src and Fyn molecules to generate a second, additional wave of ERK activation at 15 min. Concurrently to these intermolecular signaling interactions, cytoskeleton-associated proteins MARCKS and p120catenin were drastically modified by phosphorylation of PKC and Src, respectively. These receptor-proximal signaling events correlated well with induction of neuritic outgrowth in the long term. Our data provide evidence for multiprotein signaling complex formation in the coupling of CB1R to activation of ERK in CNS neurons, and may elucidate several of the less understood acute effects of cannabinoid drugs.
Collapse
Affiliation(s)
- Olga Asimaki
- Developmental Neurobiology and Neurochemistry Group, Basic Neurosciences, Center for Preventive Medicine, Neurosciences and Social Psychiatry, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Street, 11527 Athens, Greece
| | | |
Collapse
|
8
|
Muscella A, Calabriso N, Vetrugno C, Urso L, Fanizzi FP, De Pascali SA, Marsigliante S. Sublethal concentrations of the platinum(II) complex [Pt(O,O'-acac)(gamma-acac)(DMS)] alter the motility and induce anoikis in MCF-7 cells. Br J Pharmacol 2010; 160:1362-77. [PMID: 20590627 DOI: 10.1111/j.1476-5381.2010.00782.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE We showed previously that a new Pt(II) complex ([Pt(O,O'-acac)(gamma-acac)(DMS)]) exerted high and fast apoptotic processes in MCF-7 cells. The objective of this study was to investigate the hypothesis that [Pt(O,O'-acac)(gamma-acac)(DMS)] is also able to exert anoikis and alter the migration ability of MCF-7 cells, and to show some of the signalling events leading to these alterations. EXPERIMENTAL APPROACH Cells were treated with sublethal doses of [Pt(O,O'-acac)(gamma-acac)(DMS)], and the efficiency of colony initiation and anchorage-independent growth was assayed; cell migration was examined by in vitro culture wounding assay. Gelatin zymography for MMP-2 and -9 activities, Western blottings of MMPs, MAPKs, Src, PKC-epsilon and FAK, after [Pt(O,O'-acac)(gamma-acac)(DMS)] treatment, were also performed. KEY RESULTS Sub-cytotoxic drug concentrations decreased the: (i) anchorage-dependent and -independent growth; (ii) migration ability; and (iii) expression and activity of MMP-2 and MMP-9. [Pt(O,O'-acac)(gamma-acac)(DMS)] provoked the generation of reactive oxygen species (ROS), and the activation of p38MAPK, Src and PKC-epsilon. p38MAPK phosphorylation, cell anoikis and migration due to [Pt(O,O'-acac)(gamma-acac)(DMS)] were blocked by PKC-epsilon inhibition. Furthermore, Src inhibition blocked the [Pt(O,O'-acac)(gamma-acac)(DMS)]-provoked activation of PKC-epsilon, while ROS generation blockage inhibited the activation of Src, and also the decrement of phosphorylated FAK observed in detached [Pt(O,O'-acac)(gamma-acac)(DMS)]-treated cells. CONCLUSIONS AND IMPLICATIONS Sublethal concentrations of [Pt(O,O'-acac)(gamma-acac)(DMS)] induced anoikis and prevented events leading to metastasis via alterations in cell migration, anchorage independency, stromal interactions and MMP activity. Hence, [Pt(O,O'-acac)(gamma-acac)(DMS)] may be a promising therapeutic agent for preventing growth and metastasis of breast cancer.
Collapse
Affiliation(s)
- Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
A role for PKCε during C2C12 myogenic differentiation. Cell Signal 2010; 22:629-35. [DOI: 10.1016/j.cellsig.2009.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 02/05/2023]
|
10
|
Calbet JAL, Robach P, Lundby C. The exercising heart at altitude. Cell Mol Life Sci 2009; 66:3601-13. [PMID: 19809792 PMCID: PMC11115914 DOI: 10.1007/s00018-009-0148-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
Maximal cardiac output is reduced in severe acute hypoxia but also in chronic hypoxia by mechanisms that remain poorly understood. In theory, the reduction of maximal cardiac output could result from: (1) a regulatory response from the central nervous system, (2) reduction of maximal pumping capacity of the heart due to insufficient coronary oxygen delivery prior to the achievement of the normoxic maximal cardiac output, or (3) reduced central command. In this review, we focus on the effects that acute and chronic hypoxia have on the pumping capacity of the heart, particularly on myocardial contractility and the molecular responses elicited by acute and chronic hypoxia in the cardiac myocytes. Special emphasis is put on the cardioprotective effects of chronic hypoxia.
Collapse
Affiliation(s)
- José A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain.
| | | | | |
Collapse
|
11
|
Galli S, Jahn O, Hitt R, Hesse D, Opitz L, Plessmann U, Urlaub H, Poderoso JJ, Jares-Erijman EA, Jovin TM. A new paradigm for MAPK: structural interactions of hERK1 with mitochondria in HeLa cells. PLoS One 2009; 4:e7541. [PMID: 19847302 PMCID: PMC2760858 DOI: 10.1371/journal.pone.0007541] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 09/30/2009] [Indexed: 11/19/2022] Open
Abstract
Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) are members of the MAPK family and participate in the transduction of stimuli in cellular responses. Their long-term actions are accomplished by promoting the expression of specific genes whereas faster responses are achieved by direct phosphorylation of downstream effectors located throughout the cell. In this study we determined that hERK1 translocates to the mitochondria of HeLa cells upon a proliferative stimulus. In the mitochondrial environment, hERK1 physically associates with (i) at least 5 mitochondrial proteins with functions related to transport (i.e. VDAC1), signalling, and metabolism; (ii) histones H2A and H4; and (iii) other cytosolic proteins. This work indicates for the first time the presence of diverse ERK-complexes in mitochondria and thus provides a new perspective for assessing the functions of ERK1 in the regulation of cellular signalling and trafficking in HeLa cells.
Collapse
Affiliation(s)
- Soledad Galli
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CIHIDECAR, CONICET, Buenos Aires, Argentina
- * E-mail: (SG); (TMJ)
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Reiner Hitt
- Transkriptomanalyselabor, University of Göttingen, Zentrum 3, Biochemistry and Molecular Cell Biology, Göttingen, Germany
| | - Doerte Hesse
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lennart Opitz
- Transkriptomanalyselabor, University of Göttingen, Zentrum 3, Biochemistry and Molecular Cell Biology, Göttingen, Germany
| | - Uwe Plessmann
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Juan Jose Poderoso
- Laboratory of Oxygen Metabolism, University Hospital “Jose de San Martin”, UBA, Buenos Aires, Argentina
| | - Elizabeth A. Jares-Erijman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CIHIDECAR, CONICET, Buenos Aires, Argentina
| | - Thomas M. Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Laboratorio Max Planck de Dinámica Celular, FCEyN, UBA, Buenos Aires, Argentina
- * E-mail: (SG); (TMJ)
| |
Collapse
|
12
|
Pignataro G, Scorziello A, Di Renzo G, Annunziato L. Post-ischemic brain damage: effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. FEBS J 2008; 276:46-57. [DOI: 10.1111/j.1742-4658.2008.06769.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Abstract
During the last 20 years, since the appearance of the first publication on ischemic preconditioning (PC), our knowledge of this phenomenon has increased exponentially. PC is defined as an increased tolerance to ischemia and reperfusion induced by previous sublethal period ischemia. This is the most powerful mechanism known to date for limiting the infract size. This adaptation occurs in a biphasic pattern (i) early preconditioning (lasts for 2-3 h) and (ii) late preconditioning (starting at 24 h lasting until 72-96 h after initial ischemia). Early preconditioning is more potent than delayed preconditioning in reducing infract size. Late preconditioning attenuates myocardial stunning and requires genomic activation with de novo protein synthesis. Early preconditioning depends on adenosine, opioids and to a lesser degree, on bradykinin and prostaglandins, released during ischemia. These molecules activate G-protein-coupled receptor, initiate activation of K(ATP) channel and generate oxygen-free radicals, and stimulate a series of protein kinases, which include protein kinase C, tyrosine kinase, and members of MAP kinase family. Late preconditioning is triggered by a similar sequence of events, but in addition essentially depends on newly synthesized proteins, which comprise iNOS, COX-2, manganese superoxide dismutase, and possibly heat shock proteins. The final mechanism of PC is still not very clear. The present review focuses on the possible role signaling molecules that regulate cardiomyocyte life and death during ischemia and reperfusion.
Collapse
Affiliation(s)
- Manika Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | | |
Collapse
|
14
|
Yu Q, Nguyen T, Ogbi M, Caldwell RW, Johnson JA. Differential loss of cytochrome-c oxidase subunits in ischemia-reperfusion injury: exacerbation of COI subunit loss by PKC-epsilon inhibition. Am J Physiol Heart Circ Physiol 2008; 294:H2637-45. [PMID: 18408135 DOI: 10.1152/ajpheart.91476.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously described a PKC-epsilon interaction with cytochrome oxidase subunit IV (COIV) that correlates with enhanced CO activity and cardiac ischemic preconditioning (PC). We therefore investigated the effects of PC and ischemia-reperfusion (I/R) injury on CO subunit levels in an anesthetized rat coronary ligation model. Homogenates prepared from the left ventricular regions at risk (RAR) and not at risk (RNAR) for I/R injury were fractionated into cell-soluble (S), 600 g low-speed centrifugation (L), gradient-purified mitochondrial (M), and 100,000 g particulate (P) fractions. In RAR tissue, PC (2 cycles of 5-min ischemia and 5-min reperfusion) decreased the COI in the P fraction ( approximately 29% of total cellular COI), suggesting changes in interfibrillar mitochondria. After 30 min of ischemia and 120 min of reperfusion, total COI levels decreased in the RAR by 72%. Subunit Va was also downregulated by 42% following prolonged I/R in the RAR. PC administered before I/R reduced the loss of COI in the M and P fractions approximately 30% and prevented COVa losses completely. We observed no losses in subunits Vb and VIIa following I/R alone; however, significant losses occurred when PC was administered before prolonged I/R. Delivery of a cell-permeable PKC-epsilon translocation inhibitor (epsilonV1-2) to isolated rat hearts before prolonged I/R dramatically increased COI loss, suggesting that PKC-epsilon protects COI levels. We propose that additional measures to protect CO subunits when coadministered with PC may improve its cardioprotection against I/R injury.
Collapse
Affiliation(s)
- Qilin Yu
- Department of Pharmacology and Toxicology, School of Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|
15
|
Regulation of mitochondrial oxidative phosphorylation through cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1701-20. [DOI: 10.1016/j.bbamcr.2007.10.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Guo D, Nguyen T, Ogbi M, Tawfik H, Ma G, Yu Q, Caldwell RW, Johnson JA. Protein kinase C-epsilon coimmunoprecipitates with cytochrome oxidase subunit IV and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol 2007; 293:H2219-30. [PMID: 17660387 DOI: 10.1152/ajpheart.01306.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have utilized an in situ rat coronary ligation model to establish a PKC-epsilon cytochrome oxidase subunit IV (COIV) coimmunoprecipitation in myocardium exposed to ischemic preconditioning (PC). Ischemia-reperfusion (I/R) damage and PC protection were confirmed using tetrazolium-based staining methods and serum levels of cardiac troponin I. Homogenates prepared from the regions at risk (RAR) and not at risk (RNAR) for I/R injury were fractionated into cell-soluble (S), 600 g low-speed centrifugation (L), Percoll/Optiprep density gradient-purified mitochondrial (M), and 100,000 g particulate (P) fractions. COIV immunoreactivity and cytochrome-c oxidase activity measurements estimated the percentages of cellular mitochondria in S, L, M, and P fractions to be 0, 55, 29, and 16%, respectively. We observed 18, 3, and 3% of PKC-delta, -epsilon, and -zeta isozymes in the M fraction under basal conditions. Following PC, we observed a 61% increase in PKC-epsilon levels in the RAR M fraction compared with the RNAR M fraction. In RAR mitochondria, we also observed a 2.8-fold increase in PKC-epsilon serine 729 phosphoimmunoreactivity (autophosphorylation), indicating the presence of activated PKC-epsilon in mitochondria following PC. PC administered before prolonged I/R induced a 1.9-fold increase in the coimmunoprecipitation of COIV, with anti-PKC-epsilon antisera and a twofold enhancement of cytochrome-c oxidase activity. Our results suggest that PKC-epsilon may interact with COIV as a component of the cardioprotection in PC. Induction of this interaction may provide a novel therapeutic target for protecting the heart from I/R damage.
Collapse
Affiliation(s)
- Dehuang Guo
- Department of Pharmacology & Toxicology, School of Medicine, Medical College of Georgia, Augusta, Georgia 30912-2300, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Camiña JP, Campos JF, Caminos JE, Dieguez C, Casanueva FF. Obestatin-mediated proliferation of human retinal pigment epithelial cells: regulatory mechanisms. J Cell Physiol 2007; 211:1-9. [PMID: 17186496 DOI: 10.1002/jcp.20925] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we have evaluated the effect of the new discovered peptide obestatin on cell proliferation in primary cultures of human retinal epithelial cells (hRPE cells). The results showed that this peptide induced, in a dose-dependent manner, cell proliferation by MEK/ERK 1/2 phosphorylation. A sequential analysis of the obestatin transmembrane signaling pathway showed that the ERK 1/2 activity is partially blocked after preincubation of the cells with pertussis toxin (PTX), as well as by wortmannin (an inhibitor of PI3K), claphostin C (an inhibitor of PKC), and PP2 (which inhibits the non receptor tyrosine kinase Src). Upon administration of obestatin, the intracellular levels of phospho-PKCepsilon-, theta-, and micro-isoenzymes rise with different time courses, from which PKCepsilon might be responsible for ERK 1/2 response. Based on the experimental data, a signaling pathway involving the consecutive activation of Gi, PI3K, novel PKC (probably PKCepsilon), and Src for ERK 1/2 activation is proposed. These results incorporate a new mitogenic factor to the group of factors that regulate proliferation of hRPE cells.
Collapse
Affiliation(s)
- Jesus P Camiña
- Laboratory of Molecular Endocrinology, Research Area, Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
18
|
Slupsky JR, Kamiguti AS, Harris RJ, Cawley JC, Zuzel M. Central role of protein kinase Cepsilon in constitutive activation of ERK1/2 and Rac1 in the malignant cells of hairy cell leukemia. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:745-54. [PMID: 17255340 PMCID: PMC1851876 DOI: 10.2353/ajpath.2007.060557] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously identified the presence of Ras/Raf-independent constitutive activation of extracellular signal-regulated kinase (ERK) in the hairy cells (HCs) of hairy cell leukemia. The aim of the present study was to characterize the signaling components involved in this activation and their relationship to the reported activation of Rac1. We found that both Rac1 and ERK activation in HCs are downstream of active Src and protein kinase C (PKC). Inhibition with toxin B showed that Rac1 plays no role in ERK activation in HCs. However, toxin B inhibited p60src and the Rac1-GEF Vav, demonstrating a positive feedback/activation of p60src by Rac1. Treatment with specific small interfering RNA for various PKC isoforms, or with PKC isoform-specific inhibitors, demonstrated a central role for PKCepsilon in the constitutive activation of Rac1 and ERK in HCs. PKCepsilon and active ERK were mutually associated and co-localized with mitochondria in HCs. Furthermore, active PKCepsilon was nitrated on tyrosine, pointing to a reactive oxygen species-dependent mechanism of activation. By being involved in activation of ERK and Rac1, PKCepsilon plays roles in both the survival of HCs and in the cytoskeletal dynamics responsible for the distinctive morphology and tissue homing of these cells. Our study therefore describes novel aspects of signaling important for the pathogenesis of hairy cell leukemia.
Collapse
Affiliation(s)
- Joseph R Slupsky
- Department of Haematology, Royal Liverpool University Hospital, Liverpool, UK L69 3GA.
| | | | | | | | | |
Collapse
|
19
|
Camiña JP, Lodeiro M, Ischenko O, Martini AC, Casanueva FF. Stimulation by ghrelin of p42/p44 mitogen-activated protein kinase through the GHS-R1a receptor: Role of G-proteins and β-arrestins. J Cell Physiol 2007; 213:187-200. [PMID: 17525997 DOI: 10.1002/jcp.21109] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Results presented in this study indicate that in human embryonic kidney 293 cells (HEK 293), the ghrelin receptor growth hormone secretagogue receptor type 1a (GHS-R1a) activates the extracellular signal-related kinases 1 and 2 (ERK 1/2) via three pathways. One pathway is mediated by the beta-arrestins 1 and 2, and requires entry of the receptor into a multiprotein complex with the beta-arrestins, Src, Raf-1, and ERK 1/2. A second pathway is G(q/11)-dependent and involves a Ca(2+)-dependent PKC (PKCalpha/beta) and Src. A third pathway is G(i)-dependent and involves phosphoinositide 3-kinase (PI3K), PKCepsilon, and Src. Our current study reveals that G(i/o)- and G(q/11)-proteins are crucially involved in the beta-arrestin-mediated ERK 1/2 activation. These results thus support the view that the beta-arrestins act as both scaffolding proteins and signal transducers in ERK 1/2 activation, as reported for other receptors. The different pathways of ERK 1/2 activation suggest that binding to GHS-R1a activates ERK 1/2 pools at different locations within the cell, and thus probably with different physiological consequences.
Collapse
Affiliation(s)
- Jesus P Camiña
- Laboratory of Molecular Endocrinology, Research Area, Complejo Hospitalario Universitario de Santiago (CHUS) and Department of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
20
|
Jia J, Wang X, Li H, Han S, Zu P, Li J. Activations of nPKCε and ERK1/2 Were Involved in Oxygen-Glucose Deprivation-induced Neuroprotection via NMDA Receptors in Hippocampal Slices of Mice. J Neurosurg Anesthesiol 2007; 19:18-24. [PMID: 17198096 DOI: 10.1097/01.ana.0000211020.88431.e2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulated reports have suggested that activation of protein kinase C (PKC) isoforms may involve the activation of extracellular signal-regulated kinases (ERKs) in the neuronal response to ischemic/hypoxic stimuli. We have previously demonstrated that the membrane translocation of novel PKC (nPKC) epsilon increased in the early phase of cerebral ischemic/hypoxic preconditioning of mice. In this study, we used Western blot analysis and propidium iodide stain to determine whether the activations of nPKCepsilon and ERKs were involved in oxygen-glucose deprivation (OGD)-induced neuroprotection via N-methyl-D-aspartate (NMDA) receptors. The hippocampal slices of mice were exposed to OGD for 10 (OGD10) or 45 minutes (OGD45) to mimic mild (causing ischemic/hypoxic preconditioning) and severe (causing severe OGD) ischemia/hypoxia, respectively. We found that OGD10-induced nPKCepslilon membrane translocation was mediated by NMDA receptors, and both OGD10 and NMDA (1 microM, 30 min) pretreatment could protect Cornu Ammonis region 1 neurons against the subsequent severe OGD45. In addition, nPKCepsilon translocation inhibitor, epsilonV1-2 (1 microM, 30 min), and ERKs upstream mitogen-activated protein/extracellular signal regulated kinase kinase inhibitor, PD-98059 (20 microM, 30 min), could significantly inhibit OGD10 and NMDA-induced neuroprotection. These results suggest that OGD10-induced neuroprotection against severe OGD45 in the Cornu Ammonis region 1 region of the hippocampal slices was mediated by the activations of NMDA receptors, nPKCepsilon, and the downstream ERKs.
Collapse
Affiliation(s)
- Jun Jia
- Department of Physiology, Institute for Biomedical Science of Pain, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | |
Collapse
|
21
|
Pierre SV, Yang C, Yuan Z, Seminerio J, Mouas C, Garlid KD, Dos-Santos P, Xie Z. Ouabain triggers preconditioning through activation of the Na+,K+-ATPase signaling cascade in rat hearts. Cardiovasc Res 2006; 73:488-96. [PMID: 17157283 PMCID: PMC1852501 DOI: 10.1016/j.cardiores.2006.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 10/26/2006] [Accepted: 11/02/2006] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Because ouabain activates several pathways that are critical to cardioprotective mechanisms such as ischemic preconditioning, we tested if this digitalis compound could protect the heart against ischemia-reperfusion injury through activation of the Na+,K+-ATPase/c-Src receptor complex. METHODS AND RESULTS In Langendorff-perfused rat hearts, a short (4 min) administration of ouabain 10 muM followed by an 8-minute washout before 30 min of global ischemia and reperfusion improved cardiac function, decreased lactate dehydrogenase release and reduced infarct size by 40%. Western blot analysis revealed that ouabain activated the cardioprotective phospholipase Cgamma1/protein kinase Cepsilon (PLC-gamma1/PKCepsilon) pathway. Pre-treatment of the hearts with the Src kinase family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2) blocked not only ouabain-induced activation of PLC-gamma1/PKCepsilon pathway, but also cardiac protection. This protection was also blocked by a PKCepsilon translocation inhibitor peptide (PKCepsilon TIP). CONCLUSION Short exposure to a low concentration of ouabain protects the heart against ischemia/reperfusion injury. This effect of ouabain on the heart is most likely due to the activation of the Na+,K+-ATPase/c-Src receptor complex and subsequent stimulation of key mediators of preconditioning, namely PLC-gamma1 and PKCepsilon.
Collapse
Affiliation(s)
- Sandrine V. Pierre
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, Medical University of Ohio, Toledo, Ohio
| | - Changjun Yang
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, Medical University of Ohio, Toledo, Ohio
| | - Zhaokan Yuan
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, Medical University of Ohio, Toledo, Ohio
| | - Jennifer Seminerio
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, Medical University of Ohio, Toledo, Ohio
| | - Christian Mouas
- Inserm C689, Centre de Cardiologie vasculaire de Lariboisiere, Paris, France
| | - Keith D. Garlid
- Department of Biology, Portland State University, Portland, Oregon
| | | | - Zijian Xie
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, Medical University of Ohio, Toledo, Ohio
| |
Collapse
|
22
|
Ogbi M, Johnson J. Protein kinase Cepsilon interacts with cytochrome c oxidase subunit IV and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning. Biochem J 2006; 393:191-9. [PMID: 16336199 PMCID: PMC1383677 DOI: 10.1042/bj20050757] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously identified a phorbol ester-induced PKCepsilon (protein kinase Cepsilon) interaction with the ( approximately 18 kDa) COIV [CO (cytochrome c oxidase) subunit IV] in NCMs (neonatal cardiac myocytes). Since PKCepsilon has been implicated as a key mediator of cardiac PC (preconditioning), we examined whether hypoxic PC could induce PKCepsilon-COIV interactions. Similar to our recent study with phorbol esters [Ogbi, Chew, Pohl, Stuchlik, Ogbi and Johnson (2004) Biochem. J. 382, 923-932], we observed a time-dependent increase in the in vitro phosphorylation of an approx. 18 kDa protein in particulate cell fractions isolated from NCMs subjected to 1-60 min of hypoxia. Introduction of a PKCepsilon-selective translocation inhibitor into cells attenuated this in vitro phosphorylation. Furthermore, when mitochondria isolated from NCMs exposed to 30 min of hypoxia were subjected to immunoprecipitation analyses using PKCepsilon-selective antisera, we observed an 11.1-fold increase in PKCepsilon-COIV co-precipitation. In addition, we observed up to 4-fold increases in CO activity after brief NCM hypoxia exposures that were also attenuated by introducing a PKCepsilon-selective translocation inhibitor into the cells. Finally, in Western-blot analyses, we observed a >2-fold PC-induced protection of COIV levels after 9 h index hypoxia. Our studies suggest that a PKCepsilon-COIV interaction and an enhancement of CO activity occur in NCM hypoxic PC. We therefore propose novel mechanisms of PKCepsilon-mediated PC involving enhanced energetics, decreased mitochondrial reactive oxygen species production and the preservation of COIV levels.
Collapse
Affiliation(s)
- Mourad Ogbi
- Department of Pharmacology and Toxicology, School of Medicine and the Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2300, U.S.A
| | - John A. Johnson
- Department of Pharmacology and Toxicology, School of Medicine and the Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2300, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Abstract
Mechanotransduction refers to the cellular mechanisms by which load-bearing cells sense physical forces, transduce the forces into biochemical signals, and generate appropriate responses leading to alterations in cellular structure and function. This process affects the beat-to-beat regulation of cardiac performance but also affects the proliferation, differentiation, growth, and survival of the cellular components that comprise the human myocardium. This review focuses on the experimental evidence indicating that the costamere and its structurally related structure the focal adhesion complex are critical cytoskeletal elements involved in cardiomyocyte mechanotransduction. Biochemical signals originating from the extracellular matrix-integrin-costameric protein complex share many common features with those signals generated by growth factor receptors. The roles of key regulatory kinases and other muscle-specific proteins involved in mechanotransduction and growth factor signaling are discussed, and issues requiring further study in this field are outlined.
Collapse
Affiliation(s)
- Allen M Samarel
- Cardiovascular Institute, Loyola Univ. Medical Center, Bldg. 110, Rm. 5222, 2160 South First Ave., Maywood, IL 60153, USA.
| |
Collapse
|
24
|
Zhang J, Baines CP, Zong C, Cardwell EM, Wang G, Vondriska TM, Ping P. Functional proteomic analysis of a three-tier PKCepsilon-Akt-eNOS signaling module in cardiac protection. Am J Physiol Heart Circ Physiol 2004; 288:H954-61. [PMID: 15528226 DOI: 10.1152/ajpheart.00756.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac protective signaling networks have been shown to involve PKCepsilon. However, the molecular mechanisms by which PKCepsilon interacts with other members of these networks to form task-specific modules remain unknown. Among 93 different PKCepsilon-associated proteins that have been identified, Akt and endothelial nitric oxide (NO) synthase (eNOS) are of importance because of their independent abilities to promote cell survival and prevent cell death. The simultaneous association of PKCepsilon, Akt, and eNOS has not been examined, and, in particular, the formation of a module containing these three proteins and the role of such a module in the regulation of NO production and cardiac protection are unknown. The present study was undertaken to determine whether these molecules form a signaling module and, thereby, play a collective role in cardiac signaling. Using recombinant proteins in vitro and PKCepsilon transgenic mouse hearts, we demonstrate the following: 1) PKCepsilon, Akt, and eNOS interact and form signaling modules in vitro and in the mouse heart. Activation of either PKCepsilon or Akt enhances the formation of PKCepsilon-Akt-eNOS signaling modules. 2) PKCepsilon directly phosphorylates and enhances activation of Akt in vitro, and PKCepsilon activation increases phosphorylation and activation of Akt in PKCepsilon transgenic mouse hearts. 3) PKCepsilon directly phosphorylates eNOS in vitro, and this phosphorylation enhances eNOS activity. Activation of PKCepsilon in vivo increased phosphorylation of eNOS at Ser(1177), indicating eNOS activation. This study characterizes, for the first time, the physical, as well as functional, coupling of PKCepsilon, Akt, and eNOS in the heart and implicates these PKCepsilon-Akt-eNOS signaling modules as critical signaling elements during PKCepsilon-induced cardiac protection.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Cardiology, Departments of Physiology and Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Poole AW, Pula G, Hers I, Crosby D, Jones ML. PKC-interacting proteins: from function to pharmacology. Trends Pharmacol Sci 2004; 25:528-35. [PMID: 15380937 DOI: 10.1016/j.tips.2004.08.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein kinase C (PKC) is a ubiquitously expressed family of kinases that have key roles in regulating multiple cellular activities. The activity of this family is controlled tightly by several molecular mechanisms, including interaction with binding-partner proteins. These PKC-interacting proteins (C-KIPs) confer specificity for individual PKC isoforms by regulating the activity and cellular localization of PKC isoforms and, subsequently, the ability of these isoforms to specifically regulate cellular functional events. Although many C-KIPs have been identified by genome and proteome-mining approaches, it is important to address the specificity and function of the interactions in greater detail because they might form novel drug targets. In this article, we review recent work on C-KIPs and the implications for pharmacological and therapeutic development.
Collapse
Affiliation(s)
- Alastair W Poole
- Department of Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | |
Collapse
|
26
|
Huang YS, Tseng YZ, Wu JC, Wang SM. Mechanism of oleic acid-induced gap junctional disassembly in rat cardiomyocytes. J Mol Cell Cardiol 2004; 37:755-66. [PMID: 15350848 DOI: 10.1016/j.yjmcc.2004.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 06/01/2004] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
This study investigated the mechanism of oleic acid (OA) on gap junctions and identified the protein kinase C (PKC) isoforms involved in OA-mediated gap junction disassembly in cardiomyocytes. Control cardiomyocytes showed continuous staining of the plasma membrane at cell-cell contact areas using antibodies reacting with connexin 43 (Cx43). The spontaneous contraction rate of cultured cardiomyocytes was reduced in a time-dependent manner by OA. In addition, Cx43 expression at cell-cell junction decreased, suggesting the disassembly of gap junction. Staining for PKC and PKCalpha, which were shown to colocalize with Cx43, also decreased with increased duration of OA treatment. The effects of OA on these distributional changes at cell junctions were reversed by 24 h incubation in fresh culture medium devoid of OA. Immunoprecipitation assays confirmed the biochemical binding between Cx43 and PKC/PKCalpha, and this protein interaction was not affected by OA. This may provide the basis for simultaneous detachment of Cx and PKC/PKCalpha from the cell-cell junction to the cytosol upon OA stimulation. Western blot analysis showed that OA-induced Cx43 Ser368 phosphorylation, and that this effect could be blocked by cotreatment with the general PKC inhibitor, calphostin C, the PKC inhibitor, eV1-2, or the Src kinase inhibitor, PP1, but not by the PKCalpha inhibitor, Gö6976. eV1-2 also prevented the OA-induced disassembly of gap junctions. Taken together, these data suggest that OA-induced Cx43 Ser368 phosphorylation is mediated by activation of PKC and Src kinase and might be responsible for OA-induced gap junctional disassembly.
Collapse
Affiliation(s)
- Yuahn-Sieh Huang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei, Taiwan 100, ROC
| | | | | | | |
Collapse
|
27
|
Abstract
Ischemic preconditioning (IPC) is a most powerful endogenous mechanism for myocardial protection against ischemia/reperfusion injury. It is now apparent that reactive oxygen species (ROS) generated in the mitochondrial respiratory chain act as a trigger of IPC. ROS mediate signal transduction in the early phase of IPC through the posttranslational modification of redox-sensitive proteins. ROS-mediated activation of Src tyrosine kinases serves a scaffold for interaction of proteins recruited by G protein-coupled receptors and growth factor receptors that is necessary for amplification of cardioprotective signal transduction. Protein kinase C (PKC) plays a central role in this signaling cascade. A crucial target of PKC is the mitochondrial ATP-sensitive potassium channel, which acts as a trigger and a mediator of IPC. Mitogen-activated protein (MAP) kinases (extracellular signal-regulated kinase, p38 MAP kinase, and c-Jun NH(2)-terminal kinase) are thought to exist downstream of the Src-PKC signaling module, although the role of MAP kinases in IPC remains undetermined. The late phase of IPC is mediated by cardioprotective gene expression. This mechanism involves redox-sensitive activation of transcription factors through PKC and tyrosine kinase signal transduction pathways that are in common with the early phase of IPC. The effector proteins then act against myocardial necrosis and stunning presumably through alleviation of oxidative stress and Ca(2+) overload. Elucidation of IPC-mediated complex signaling processes will help in the development of more effective pharmacological approaches for prevention of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hajime Otani
- Department of Thoracic and Cardiovascular Surgery, Kansai Medical University, Moriguchi City, Osaka 570, Japan.
| |
Collapse
|
28
|
McJilton MA, Van Sikes C, Wescott GG, Wu D, Foreman TL, Gregory CW, Weidner DA, Harris Ford O, Morgan Lasater A, Mohler JL, Terrian DM. Protein kinase Cepsilon interacts with Bax and promotes survival of human prostate cancer cells. Oncogene 2003; 22:7958-68. [PMID: 12970744 DOI: 10.1038/sj.onc.1206795] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prostatic glandular epithelial cells express protein kinase Cepsilon (PKCepsilon ), an oncoprotein that coordinately disrupts the reactivation of the tumor suppressor Rb, derepressess transcriptional elongation of the c-myc oncogene, and propagates survival signals in LNCaP cells. Since the activation of such a program may contribute to the progression of human prostate cancer, a proteomic analysis was performed to gain a more global perspective on the signaling network that PKCepsilon might be capable of engaging in prostate cancer cells. Using CWR22 xenografts, we identified at least 18 different structural, signaling, and stress-related proteins that associated with PKCepsilon, including an interaction with the proapoptotic protein Bax that was novel to recurrent CWR22 tumors. An investigation into the biological significance of the PKCepsilon association with Bax provided the first evidence of an inverse relationship between endogenous levels of PKCepsilon and susceptibility of prostate cancer cells to the apoptotic effects of phorbol esters. Western blot and antisense experiments demonstrated that CWR-R1 cells expressed moderate levels of PKCepsilon and relied on this protein to survive in the presence of phorbol esters, while the apoptosis normally induced by phorbol esters in PKCepsilon -deficient LNCaP cells was dependent on the presence of Bax. Forced expression of PKCepsilon in LNCaP cells was sufficient to confer a significant resistance to phorbol esters and this resistance was associated with an inhibition of phorbol ester-induced Bax conformational rearrangements that are important for Bax oligomerization, mitochondrial integration, and cytochrome c release. Considered in their entirety, our data suggest that an association of PKCepsilon with Bax may neutralize apoptotic signals propagated through a mitochondrial death-signaling pathway.
Collapse
Affiliation(s)
- Meagan A McJilton
- Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y, Bolli R, Cardwell EM, Ping P. Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 2003; 92:873-80. [PMID: 12663490 PMCID: PMC3691672 DOI: 10.1161/01.res.0000069215.36389.8d] [Citation(s) in RCA: 352] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although functional coupling between protein kinase Cepsilon (PKCepsilon) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCepsilon remain unknown. Based on recent evidence that the mitochondrial permeability transition pore may be involved in ischemia/reperfusion injury, we hypothesized that protein-protein interactions between PKCepsilon and mitochondrial pore components may serve as a signaling mechanism to modulate pore function and thus engender cardioprotection. Coimmunoprecipitation and GST-based affinity pull-down from mouse cardiac mitochondria revealed interaction of PKCepsilon with components of the pore, namely voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), and hexokinase II (HKII). VDAC1, ANT1, and HKII were present in the PKCepsilon complex at approximately 2%, approximately 0.2%, and approximately 1% of their total expression, respectively. Moreover, in vitro studies demonstrated that PKCepsilon can directly bind and phosphorylate VDAC1. Incubation of isolated cardiac mitochondria with recombinant PKCepsilon resulted in a significant inhibition of Ca2+-induced mitochondrial swelling, an index of pore opening. Furthermore, cardiac-specific expression of active PKCepsilon in mice, which is cardioprotective, greatly increased interaction of PKCepsilon with the pore components and inhibited Ca2+-induced pore opening. In contrast, cardiac expression of kinase-inactive PKCepsilon did not affect pore opening. Finally, administration of the pore opener atractyloside significantly attenuated the infarct-sparing effect of PKCepsilon transgenesis. Collectively, these data demonstrate that PKCepsilon forms physical interactions with components of the cardiac mitochondrial pore. This in turn inhibits the pathological function of the pore and contributes to PKCepsilon-induced cardioprotection.
Collapse
Affiliation(s)
- Christopher P Baines
- Department of Physiology and Biophysics, University of Louisville, Louisville, Ky, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|