1
|
Grano de Oro A, Kumariya S, Mell B, Zubcevic J, Joe B, Osman I. Spontaneous vascular dysfunction in Dahl salt-sensitive male rats raised without a high-salt diet. Physiol Rep 2024; 12:e16165. [PMID: 39048525 PMCID: PMC11268988 DOI: 10.14814/phy2.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Dahl salt-sensitive (SS) rats fed a high-salt diet, but not low-salt, exhibit vascular dysfunction. Several substrains of SS rats exist that differ in their blood pressure phenotypes and salt sensitivity. The goal of this study was to investigate whether the John-Rapp-derived SS rat (SS/Jr), which exhibits spontaneous hypertension on a low-salt diet, presents with hallmarks of vascular dysfunction observed in another experimental model of hypertension independent of dietary salt, the spontaneously hypertensive rat (SHR). Endothelium-intact aortic rings and mesenteric resistance arteries were isolated from low-salt fed adult male SS/Jr rats and SHRs, or their respective controls, for isometric wire myography. Vessels were challenged with cumulative concentrations of various vasoactive substances, in the absence or presence of nitric oxide synthase or cyclooxygenase inhibitors. Despite showing some differences in their responses to various vasoactive substances, both SS/Jr rats and SHRs exhibited key features of vascular dysfunction, including endothelial dysfunction and hyperresponsiveness to vasocontractile agonists. In conclusion, this study provides evidence to support the utility of the SS/Jr rat strain maintained on a low-salt diet as a valid experimental model for vascular dysfunction, a key feature of human hypertension.
Collapse
Affiliation(s)
- Arturo Grano de Oro
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Sanjana Kumariya
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Blair Mell
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Bina Joe
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Islam Osman
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| |
Collapse
|
2
|
Lukaszewicz K, Falck JR, Lombard J. Effect of Chronically Suppressed Plasma Angiotensin II on Regulation of the CYP4A/20-HETE Pathway in the Dahl Salt-Sensitive Rat. Antioxidants (Basel) 2023; 12:antiox12040783. [PMID: 37107157 PMCID: PMC10135295 DOI: 10.3390/antiox12040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In Dahl salt-sensitive (SS) rats, impaired vascular relaxation can be restored by: (1) minipump infusion of a low (sub-pressor) dose of angiotensin II (ANG II) to restore physiological levels of plasma ANG II, (2) inhibition of 20-HETE production, and (3) introgression of a normally functioning renin allele from the Brown Norway rat (SS-13BN consomic rat). Unlike SS rats, SS-13BN rats have normal levels of ANG II on a normal-salt diet and suppressed ANG II on a high-salt (HS) diet. This study tested whether chronically low ANG II levels in SS rats upregulate cytochrome P450-4A (CYP4A) increasing the production of the vasoconstrictor 20-HETE. Although salt-induced suppression of ANG II levels increased reactive oxygen species (ROS) in basilar arteries from SS-13BN rats in previous studies, this study showed no change in vascular 20-HETE levels in response to ANGII suppression. CYP4A inhibition significantly reduced vascular ROS levels and restored endothelium-dependent relaxation in response to acetylcholine in the middle cerebral artery (MCA) of SS rats and HS-fed SS-13BN rats. These data demonstrate that both the renin-angiotensin system and the CYP4A/20-HETE pathway play a direct role in the vascular dysfunction of the Dahl SS rat but are independent of each other, even though they may both contribute to vascular dysfunction through ROS production.
Collapse
Affiliation(s)
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Julian Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Could salt intake directly affect the cerebral microvasculature in hypertension? J Stroke Cerebrovasc Dis 2022; 31:106632. [PMID: 35870266 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Excess dietary salt and chronic kidney disease (CKD) are acknowledged stroke risk factors. The development of small vessel disease, similarly affecting the cerebral and renal microvasculatures, may be an important mechanistic link underlying this interaction. Therefore, we aimed to evaluate if the dietary salt intake and markers of CKD (estimated glomerular filtration rate, albuminuria) relate to transcranial Doppler (TCD) markers of cerebral small vessel disease (CSVD) in hypertensive patients. MATERIALS AND METHODS Fifty-six hypertensive patients (57% with diabetes) underwent TCD monitoring in the middle (MCA) and posterior (PCA) cerebral arteries for evaluating neurovascular coupling (NVC), dynamic cerebral autoregulation (dCA), and vasoreactivity to carbon dioxide (VRCO2). We investigated the relation between renal parameters and TCD studies using Pearson's correlation coefficient and linear regression analyses. RESULTS There were no associations between dCA, VRCO2, NVC, and renal function tests. However, there was a negative association between the daily salt intake and the natural frequency during visual stimulation (r2=0.101, ß=-0.340, p=0.035), indicative of increased rigidity of the cerebral resistance vessels that react to cognitive activation. CONCLUSIONS In this cross-sectional study, we found an association between excess dietary salt consumption and CSVD in hypertensive patients. Future research is needed to evaluate whether the natural frequency could be an early, non-invasive, surrogate marker for microvascular dysfunction in hypertension.
Collapse
|
4
|
Stock JM, Chelimsky G, Edwards DG, Farquhar WB. Dietary sodium and health: How much is too much for those with orthostatic disorders? Auton Neurosci 2022; 238:102947. [PMID: 35131651 PMCID: PMC9296699 DOI: 10.1016/j.autneu.2022.102947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/09/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
High dietary salt (NaCl) increases blood pressure (BP) and can adversely impact multiple target organs including the vasculature, heart, kidneys, brain, autonomic nervous system, skin, eyes, and bone. However, patients with orthostatic disorders are told to increase their NaCl intake to help alleviate symptoms. While there is evidence to support the short-term benefits of increasing NaCl intake in these patients, there are few studies assessing the benefits and side effects of long-term high dietary NaCl. The evidence reviewed suggests that high NaCl can adversely impact multiple target organs, often independent of BP. However, few of these studies have been performed in patients with orthostatic disorders. We conclude that the recommendation to increase dietary NaCl in patients with orthostatic disorders should be done with care, keeping in mind the adverse impact on dietary NaCl in people without orthostatic disorders. Modest, rather than robust, increases in NaCl intake may be sufficient to alleviate symptoms but also minimize any long-term negative effects.
Collapse
Affiliation(s)
- Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Gisela Chelimsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
5
|
Migdal KU, Robinson AT, Watso JC, Babcock MC, Lennon SL, Martens CR, Serrador JM, Farquhar WB. A high salt meal does not impair cerebrovascular reactivity in healthy young adults. Physiol Rep 2021; 8:e14585. [PMID: 33038066 PMCID: PMC7547584 DOI: 10.14814/phy2.14585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023] Open
Abstract
A high sodium (Na+) meal impairs peripheral vascular function. In rodents, chronic high dietary Na+ impairs cerebral vascular function, and in humans, habitual high dietary Na+ is associated with increased stroke risk. However, the effects of acute high dietary Na+ on the cerebral vasculature in humans are unknown. The purpose of this study was to determine if acute high dietary Na+ impairs cerebrovascular reactivity in healthy adults. Thirty‐seven participants (20F/17M; 25 ± 5 years; blood pressure [BP]: 107 ± 9/61 ± 6 mm Hg) participated in this randomized, cross‐over study. Participants were given a low Na+ meal (LSM; 138 mg Na+) and a high Na+ meal (HSM; 1,495 mg Na+) separated by ≥ one week. Serum Na+, beat‐to‐beat BP, middle cerebral artery velocity (transcranial Doppler), and end‐tidal carbon dioxide (PETCO2) were measured pre‐ (baseline) and 60 min post‐prandial. Cerebrovascular reactivity was assessed by determining the percent change in middle cerebral artery velocity to hypercapnia (via 8% CO2, 21% oxygen, balance nitrogen) and hypocapnia (via mild hyperventilation). Peripheral vascular function was measured using brachial artery flow‐mediated dilation (FMD). Changes in serum Na+ were greater following the HSM (HSM: Δ1.6 ± 1.2 mmol/L vs. LSM: Δ0.7 ± 1.2 mmol/L, p < .01). Cerebrovascular reactivity to hypercapnia (meal effect: p = .41) and to hypocapnia (meal effect: p = .65) were not affected by the HSM. Contrary with previous findings, FMD was not reduced following the HSM (meal effect: p = .74). These data suggest that a single high Na+ meal does not acutely impair cerebrovascular reactivity, and suggests that despite prior findings, a single high Na+ meal does not impair peripheral vascular function in healthy adults.
Collapse
Affiliation(s)
- Kamila U Migdal
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Austin T Robinson
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Joseph C Watso
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Matthew C Babcock
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Shannon L Lennon
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Christopher R Martens
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Jorge M Serrador
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - William B Farquhar
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| |
Collapse
|
6
|
Migdal KU, Robinson AT, Watso JC, Babcock MC, Lennon SL, Martens CR, Serrador JM, Farquhar WB. Ten days of high dietary sodium does not impair cerebral blood flow regulation in healthy adults. Auton Neurosci 2021; 234:102826. [PMID: 34058717 DOI: 10.1016/j.autneu.2021.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
High dietary sodium impairs cerebral blood flow regulation in rodents and is associated with increased stroke risk in humans. However, the effects of multiple days of high dietary sodium on cerebral blood flow regulation in humans is unknown. Therefore, the purpose of this study was to determine whether ten days of high dietary sodium impairs cerebral blood flow regulation. Ten participants (3F/7M; age: 30 ± 10 years; blood pressure (BP): 113 ± 8/62 ± 9 mmHg) participated in this randomized, cross-over design study. Participants were placed on 10-day diets that included either low- (1000 mg/d), medium- (2300 mg/d) or high- (7000 mg/d) sodium separated by ≥four weeks. Urinary sodium excretion, beat-to-beat BP (finger photoplethysmography), middle cerebral artery velocity (transcranial Doppler), and end-tidal carbon dioxide (capnography) was measured. Dynamic cerebral autoregulation during a ten-minute baseline was calculated and cerebrovascular reactivity assessed by determining the percent change in middle cerebral artery blood flow velocity to hypercapnia (8% CO2, 21% oxygen, balance nitrogen) and hypocapnia (via mild hyperventilation). Urinary sodium excretion increased in a stepwise manner (ANOVA P = 0.001) from the low, to medium, to high condition. There were no differences in dynamic cerebral autoregulation between conditions. While there was a trend for a difference during cerebrovascular reactivity to hypercapnia (ANOVA P = 0.06), this trend was abolished when calculating cerebrovascular conductance (ANOVA: P = 0.28). There were no differences in cerebrovascular reactivity (ANOVA P = 0.57) or conductance (ANOVA: P = 0.73) during hypocapnia. These data suggest that ten days of a high sodium diet does not impair cerebral blood flow regulation in healthy adults.
Collapse
Affiliation(s)
- Kamila U Migdal
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Austin T Robinson
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America; School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Joseph C Watso
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Matthew C Babcock
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Shannon L Lennon
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Christopher R Martens
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Jorge M Serrador
- Department of Pharmacology, Physiology & Neuroscience, Rutgers University, Newark, NJ, United States of America
| | - William B Farquhar
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
7
|
Jukic I, Mihaljevic Z, Matic A, Mihalj M, Kozina N, Selthofer-Relatic K, Mihaljevic D, Koller A, Tartaro Bujak I, Drenjancevic I. Angiotensin II type 1 receptor is involved in flow-induced vasomotor responses of isolated middle cerebral arteries: role of oxidative stress. Am J Physiol Heart Circ Physiol 2021; 320:H1609-H1624. [PMID: 33666506 DOI: 10.1152/ajpheart.00620.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/10/2021] [Indexed: 11/22/2022]
Abstract
This study aimed to determine the mechanosensing role of angiotensin II type 1 receptor (AT1R) in flow-induced dilation (FID) and oxidative stress production in middle cerebral arteries (MCA) of Sprague-Dawley rats. Eleven-week old, healthy male Sprague-Dawley rats on a standard diet were given the AT1R blocker losartan (1 mg/mL) in drinking water (losartan group) or tap water (control group) ad libitum for 7 days. Blockade of AT1R attenuated FID and acetylcholine-induced dilation was compared with control group. Nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester (l-NAME) and cyclooxygenase inhibitor indomethacin (Indo) significantly reduced FID in control group. The attenuated FID in losartan group was further reduced by Indo only at Δ100 mmHg, whereas l-NAME had no effect. In losartan group, Tempol (a superoxide scavenger) restored dilatation, whereas Tempol + l-NAME together significantly reduced FID compared with restored dilatation with Tempol alone. Direct fluorescence measurements of NO and reactive oxygen species (ROS) production in MCA, in no-flow conditions revealed significantly reduced vascular NO levels with AT1R blockade compared with control group, whereas in flow condition increased the NO and ROS production in losartan group and had no effect in the control group. In losartan group, Tempol decreased ROS production in both no-flow and flow conditions. AT1R blockade elicited increased serum concentrations of ANG II, 8-iso-PGF2α, and TBARS, and decreased antioxidant enzyme activity (SOD and CAT). These results suggest that in small isolated cerebral arteries: 1) AT1 receptor maintains dilations in physiological conditions; 2) AT1R blockade leads to increased vascular and systemic oxidative stress, which underlies impaired FID.NEW & NOTEWORTHY The AT1R blockade impaired the endothelium-dependent, both flow- and acetylcholine-induced dilations of MCA by decreasing vascular NO production and increasing the level of vascular and systemic oxidative stress, whereas it mildly influenced the vascular wall inflammatory phenotype, but had no effect on the systemic inflammatory response. Our data provide functional and molecular evidence for an important role of AT1 receptor activation in physiological conditions, suggesting that AT1 receptors have multiple biological functions.
Collapse
Affiliation(s)
- Ivana Jukic
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Matic
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Dermatology and Venereology, University Hospital Centre Osijek, Osijek, Croatia
| | - Natasa Kozina
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatic
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine, University of Josip Juraj Strossmayer Osijek, Osijek, Croatia
| | - Dubravka Mihaljevic
- Department of Internal Medicine, Faculty of Medicine, University of Josip Juraj Strossmayer Osijek, Osijek, Croatia
- Department of Nephrology, University Hospital Centre Osijek, Osijek, Croatia
| | - Akos Koller
- Department of Neurosurgery and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary
- Sport-Physiology Research Centre, University of Physical Education, Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruder Boskovic Institute, Zagreb, Croatia
| | - Ines Drenjancevic
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
8
|
Halvorson BD, Whitehead SN, McGuire JJ, Wiseman RW, Frisbee JC. Endothelium-dependent impairments to cerebral vascular reactivity with type 2 diabetes mellitus in the Goto-Kakizaki rat. Am J Physiol Regul Integr Comp Physiol 2019; 317:R149-R159. [PMID: 31091154 DOI: 10.1152/ajpregu.00088.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent pathology associated with elevated cerebrovascular disease risk. We determined wall mechanics and vascular reactivity in ex vivo middle cerebral arteries (MCA) from male Goto-Kakizaki rats (GK; ~17 wk old) versus control Wistar Kyoto rats (WKY) to test the hypothesis that the diabetic environment in GK, in the absence of obesity and other comorbidities, leads to endothelial dysfunction and impaired vascular tone regulation. Dilation of MCA following challenge with acetylcholine and hypoxia was blunted in MCA from GK versus WKY, due to lower nitric oxide bioavailability and altered arachidonic acid metabolism, whereas myogenic activation and constrictor responses to serotonin were unchanged. MCA wall distensibility and cross-sectional area were not different between GK and WKY, suggesting that wall mechanics were unchanged at this age, supported by the determination that MCA dilation to sodium nitroprusside was also intact. With the use of ex vivo aortic rings as a bioassay, altered vascular reactivity determined in MCA was paralleled by relaxation responses in artery segments from GK, whereas measurements of vasoactive metabolite production indicated a loss of nitric oxide and prostacyclin bioavailability and an increased thromboxane A2 production with both methacholine challenge and hypoxia. These results suggest that endothelium-dependent dilator reactivity of MCA in GK is impaired with T2DM, and that this impairment is associated with the genesis of a prooxidant/pro-inflammatory condition with diabetes mellitus. The restriction of vascular impairments to endothelial function only, at this age and development, provide insight into the severity of multimorbid conditions of which T2DM is only one constituent.
Collapse
Affiliation(s)
- Brayden D Halvorson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario , London, Ontario , Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario , London, Ontario , Canada
| | - John J McGuire
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario , London, Ontario , Canada
| | - Robert W Wiseman
- Departments of Physiology and Radiology, Michigan State University , East Lansing, Michigan
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
9
|
Allen LA, Schmidt JR, Thompson CT, Carlson BE, Beard DA, Lombard JH. High salt diet impairs cerebral blood flow regulation via salt-induced angiotensin II suppression. Microcirculation 2019; 26:e12518. [PMID: 30481399 DOI: 10.1111/micc.12518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/03/2018] [Accepted: 11/22/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVES This study sought to determine whether salt-induced ANG II suppression contributes to impaired CBF autoregulation. METHODS Cerebral autoregulation was evaluated with LDF during graded reductions of blood pressure. Autoregulatory responses in rats fed HS (4% NaCl) diet vs LS (0.4% NaCl) diet were analyzed using linear regression analysis, model-free analysis, and a mechanistic theoretical model of blood flow through cerebral arterioles. RESULTS Autoregulation was intact in LS-fed animals as MAP was reduced via graded hemorrhage to approximately 50 mm Hg. Short-term (3 days) and chronic (4 weeks) HS diet impaired CBF autoregulation, as evidenced by progressive reductions of laser Doppler flux with arterial pressure reduction. Chronic low dose ANG II infusion (5 mg/kg/min, i.v.) restored CBF autoregulation between the pre-hemorrhage MAP and 50 mm Hg in rats fed short-term HS diet. Mechanistic-based model analysis showed a reduced myogenic response and reduced baseline VSM tone with short-term HS diet, which was restored by ANG II infusion. CONCLUSIONS Short-term and chronic HS diet lead to impaired autoregulation in the cerebral circulation, with salt-induced ANG II suppression as a major factor in the initiation of impaired CBF regulation.
Collapse
Affiliation(s)
- Linda A Allen
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James R Schmidt
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher T Thompson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Brian E Carlson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Daniel A Beard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Matic A, Jukic I, Stupin A, Baric L, Mihaljevic Z, Unfirer S, Tartaro Bujak I, Mihaljevic B, Lombard JH, Drenjancevic I. High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of Sprague-Dawley rats. Am J Physiol Heart Circ Physiol 2018; 315:H718-H730. [DOI: 10.1152/ajpheart.00097.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of the present study was to examine the effect of 1 wk of high salt (HS) intake and the role of oxidative stress in changing the mechanisms of flow-induced dilation (FID) in isolated pressurized middle cerebral arteries of male Sprague-Dawley rats ( n = 15–16 rats/group). Reduced FID in the HS group was restored by intake of the superoxide scavenger tempol (HS + tempol in vivo group). The nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester, cyclooxygenase inhibitor indomethacin, and selective inhibitor of microsomal cytochrome P-450 epoxidase activity N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide significantly reduced FID in the low salt diet-fed group, whereas FID in the HS group was mediated by NO only. Cyclooxygenase-2 mRNA (but not protein) expression was decreased in the HS and HS + tempol in vivo groups. Hypoxia-inducible factor-1α and VEGF protein levels were increased in the HS group but decreased in the HS + tempol in vivo group. Assessment by direct fluorescence of middle cerebral arteries under flow revealed significantly reduced vascular NO levels and increased superoxide/reactive oxygen species levels in the HS group. These results suggest that HS intake impairs FID and changes FID mechanisms to entirely NO dependent, in contrast to the low-salt diet-fed group, where FID is NO, prostanoid, and epoxyeicosatrienoic acid dependent. These changes were accompanied by increased lipid peroxidation products in the plasma of HS diet-fed rats, increased vascular superoxide/reactive oxygen species levels, and decreased NO levels, together with increased expression of hypoxia-inducible factor-1α and VEGF. NEW & NOTEWORTHY High-salt (HS) diet changes the mechanisms of flow-induced dilation in rat middle cerebral arteries from a combination of nitric oxide-, prostanoid-, and epoxyeicosatrienoic acid-dependent mechanisms to, albeit reduced, a solely nitric oxide-dependent dilation. In vivo reactive oxygen species scavenging restores flow-induced dilation in HS diet-fed rats and ameliorates HS-induced increases in the transcription factor hypoxia-inducible factor-1α and expression of its downstream target genes.
Collapse
Affiliation(s)
- Anita Matic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Lidija Baric
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Sanela Unfirer
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Branka Mihaljevic
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Julian H. Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| |
Collapse
|
11
|
Lukaszewicz KM, Durand MJ, Priestley JRC, Schmidt JR, Allen LA, Geurts AM, Lombard JH. Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats. J Vis Exp 2017. [PMID: 29286398 DOI: 10.3791/56133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This protocol describes the use of in vitro television microscopy to evaluate vascular function in isolated cerebral resistance arteries (and other vessels), and describes techniques for evaluating tissue perfusion using Laser Doppler Flowmetry (LDF) and microvessel density utilizing fluorescently labeled Griffonia simplicifolia (GS1) lectin. Current methods for studying isolated resistance arteries at transmural pressures encountered in vivo and in the absence of parenchymal cell influences provide a critical link between in vivo studies and information gained from molecular reductionist approaches that provide limited insight into integrative responses at the whole animal level. LDF and techniques to selectively identify arterioles and capillaries with fluorescently-labeled GS1 lectin provide practical solutions to enable investigators to extend the knowledge gained from studies of isolated resistance arteries. This paper describes the application of these techniques to gain fundamental knowledge of vascular physiology and pathology in the rat as a general experimental model, and in a variety of specialized genetically engineered "designer" rat strains that can provide important insight into the influence of specific genes on important vascular phenotypes. Utilizing these valuable experimental approaches in rat strains developed by selective breeding strategies and new technologies for producing gene knockout models in the rat, will expand the rigor of scientific premises developed in knockout mouse models and extend that knowledge to a more relevant animal model, with a well understood physiological background and suitability for physiological studies because of its larger size.
Collapse
Affiliation(s)
| | | | | | - James R Schmidt
- Graduate Programs of Nurse Anesthesia, Texas Wesleyan University
| | | | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin
| | | |
Collapse
|
12
|
Raffai G, Lombard JH. Angiotensin-(1-7) Selectively Induces Relaxation and Modulates Endothelium-Dependent Dilation in Mesenteric Arteries of Salt-Fed Rats. J Vasc Res 2016; 53:105-118. [PMID: 27676088 DOI: 10.1159/000448714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
This study investigated the acute effects of angiotensin-(1-7) and AVE0991 on active tone and vasodilator responses to bradykinin and acetylcholine in isolated mesenteric arteries from Sprague-Dawley rats fed a high-salt (HS; 4% NaCl) versus a normal salt (NS; 0.4% NaCl) diet. Angiotensin-(1-7) and AVE0991 elicited relaxation, and angiotensin-(1-7) unmasked vasodilator responses to bradykinin in arteries from HS-fed rats. These effects of angiotensin-(1-7) and AVE0991 were inhibited by endothelium removal, A779, PD123319, HOE140 and L-NAME. Angiotensin-(1-7) also restored the acetylcholine-induced relaxation that was suppressed by the HS diet. Vasodilator responses to bradykinin and acetylcholine in the presence of angiotensin-(1-7) were mimicked by captopril and the AT2 receptor agonist CGP42112 in arteries from HS-fed rats. Thus, in contrast to salt-induced impairment of vascular relaxation in response to vasodilator stimuli, angiotensin-(1-7) induces endothelium-dependent and NO-mediated relaxation, unmasks bradykinin responses via activation of mas and AT2 receptors, and restores acetylcholine-induced vasodilation in HS-fed rats. AT2 receptor activation and angiotensin-converting enzyme (ACE) inhibition shared the ability of angiotensin-(1-7) to enhance bradykinin and acetylcholine responses in HS-fed rats. These findings suggest a therapeutic potential for mas and/or AT2 receptor activation and ACE inhibition in restoring endothelial function impaired by elevated dietary salt intake or other pathological conditions.
Collapse
Affiliation(s)
- Gábor Raffai
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wis., USA
| | | |
Collapse
|
13
|
Whidden MA, Basgut B, Kirichenko N, Erdos B, Tümer N. Altered potassium ATP channel signaling in mesenteric arteries of old high salt-fed rats. J Exerc Nutrition Biochem 2016; 20:58-64. [PMID: 27508155 PMCID: PMC4977904 DOI: 10.20463/jenb.2016.06.20.2.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 11/30/2022] Open
Abstract
[Purpose] Both aging and the consumption of a high salt diet are associated with clear changes in the vascular system that can lead to the development of cardiovascular disease; however the mechanisms are not clearly understood. Therefore, we examined whether aging and the consumption of excess salt alters the function of potassium ATP-dependent channel signaling in mesenteric arteries [Methods] Young (7 months) and old (29 months) Fischer 344 x Brown Norway rats were fed a control or a high salt diet (8% NaCl) for 12 days and mesenteric arteries were utilized for vascular reactivity measurements. [Results] Acetylcholine-induced endothelium relaxation was significantly reduced in old arteries (81 ± 4%) when compared with young arteries (92 ± 2%). Pretreatment with the potassium-ATP channel blocker glibenclamide reduced relaxation to acetylcholine in young arteries but did not alter dilation in old arteries. On a high salt diet, endothelium dilation to acetylcholine was significantly reduced in old salt arteries (60 ± 3%) when compared with old control arteries (81 ± 4%). Glibenclamide reduced acetylcholine-induced dilation in young salt arteries but had no effect on old salt arteries. Dilation to cromakalim, a potassium-ATP channel opener, was reduced in old salt arteries when compared with old control arteries. [Conclusion] These findings demonstrate that aging impairs endothelium-dependent relaxation in mesenteric arteries. Furthermore, a high salt diet alters the function of potassium-ATP-dependent channel signaling in old isolated mesenteric arteries and affects the mediation of relaxation stimuli.
Collapse
Affiliation(s)
- Melissa A Whidden
- Department of Kinesiology, West Chester University, West Chester USA
| | - Bilgen Basgut
- Department of Pharmacology, Near East University, Northern Cyprus Turkey
| | - Nataliya Kirichenko
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center GainesvilleUSA; Department of Pharmacology and Therapeutics, University of Florida, GainesvilleUSA
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington USA
| | - Nihal Tümer
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center GainesvilleUSA; Department of Pharmacology and Therapeutics, University of Florida, GainesvilleUSA
| |
Collapse
|
14
|
Boegehold MA, Drenjancevic I, Lombard JH. Salt, Angiotensin II, Superoxide, and Endothelial Function. Compr Physiol 2015; 6:215-54. [PMID: 26756632 DOI: 10.1002/cphy.c150008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper function of the vascular endothelium is essential for cardiovascular health, in large part due to its antiproliferative, antihypertrophic, and anti-inflammatory properties. Crucial to the protective role of the endothelium is the production and liberation of nitric oxide (NO), which not only acts as a potent vasodilator, but also reduces levels of reactive oxygen species, including superoxide anion (O2•-). Superoxide anion is highly injurious to the vasculature because it not only scavenges NO molecules, but has other damaging effects, including direct oxidative disruption of normal signaling mechanisms in the endothelium and vascular smooth muscle cells. The renin-angiotensin system plays a crucial role in the maintenance of normal blood pressure. This function is mediated via the peptide hormone angiotensin II (ANG II), which maintains normal blood volume by regulating Na+ excretion. However, elevation of ANG II above normal levels increases O2•- production, promotes oxidative stress and endothelial dysfunction, and plays a major role in multiple disease conditions. Elevated dietary salt intake also leads to oxidant stress and endothelial dysfunction, but these occur in the face of salt-induced ANG II suppression and reduced levels of circulating ANG II. While the effects of abnormally high levels of ANG II have been extensively studied, far less is known regarding the mechanisms of oxidant stress and endothelial dysfunction occurring in response to chronic exposure to abnormally low levels of ANG II. The current article focuses on the mechanisms and consequences of this less well understood relationship among salt, superoxide, and endothelial function.
Collapse
Affiliation(s)
| | - Ines Drenjancevic
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
15
|
Cavka A, Cosic A, Jukic I, Jelakovic B, Lombard JH, Phillips SA, Seric V, Mihaljevic I, Drenjancevic I. The role of cyclo-oxygenase-1 in high-salt diet-induced microvascular dysfunction in humans. J Physiol 2015; 593:5313-24. [PMID: 26498129 DOI: 10.1113/jp271631] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Recent studies have shown that some of the deleterious effects of a high-salt (HS) diet are independent of elevated blood pressure and are associated with impaired endothelial function. Increased generation of cyclo-oxygenase (COX-1 and COX-2)-derived vasoconstrictor factors and endothelial activation may contribute to impaired vascular relaxation during HS loading. The present study aimed to assess the regulation of microvascular reactivity and to clarify the role of COX-1 and COX-2 in normotensive subjects on a short-term HS diet. The present study demonstrates the important role of COX-1 derived vasoconstrictor metabolites in regulation of microvascular blood flow during a HS diet. These results help to explain how even short-term HS diets may impact upon microvascular reactivity without changes in blood pressure and suggest that a vasoconstrictor metabolite of COX-1 could play a role in this impaired tissue blood flow. ABSTRACT The present study aimed to assess the effect of a 1-week high-salt (HS) diet on the role of cyclo-oxygenases (COX-1 and COX-2) and the vasoconstrictor prostaglandins, thromboxane A2 (TXA2 ) and prostaglandin F2α (PGF2α ), on skin microcirculatory blood flow, as well as to detect its effect on markers of endothelial activation such as soluble cell adhesion molecules. Young women (n = 54) were assigned to either the HS diet group (N = 30) (∼14 g day(-1) NaCl ) or low-salt (LS) diet group (N = 24) (<2.3 g day(-1) NaCl ) for 7 days. Post-occlusive reactive hyperaemia (PORH) in the skin microcirculation was assessed by laser Doppler flowmetry. Plasma renin activity, plasma aldosterone, plasma and 24 h urine sodium and potassium, plasma concentrations of TXB2 (stable TXA2 metabolite) and PGF2α , soluble cell adhesion molecules and blood pressure were measured before and after the diet protocols. One HS diet group subset received 100 mg of indomethacin (non-selective COX-1 and COX-2 inhibitor), and another HS group subset received 200 mg of celecoxib (selective COX-2 inhibitor) before repeating laser Doppler flowmetry measurements. Blood pressure was unchanged after the HS diet, although it significantly reduced after the LS diet. Twenty-four hour urinary sodium was increased, and plasma renin activity and plasma aldosterone levels were decreased after the HS diet. The HS diet significantly impaired PORH and increased TXA2 but did not change PGF2α levels. Indomethacin restored microcirculatory blood flow and reduced TXA2 . By contrast, celecoxib decreased TXA2 levels but had no significant effects on blood flow. Restoration of of PORH by indomethacin during a HS diet suggests an important role of COX-1 derived vasoconstrictor metabolites in the regulation of microvascular blood flow during HS intake.
Collapse
Affiliation(s)
- Ana Cavka
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Cosic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Bojan Jelakovic
- School of Medicine University of Zagreb, Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shane A Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois in Chicago, Chicago, IL, USA
| | - Vatroslav Seric
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
| | - Ivan Mihaljevic
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, Osijek, Croatia
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
16
|
Priestley JRC, Kautenburg KE, Casati MC, Endres BT, Geurts AM, Lombard JH. The NRF2 knockout rat: a new animal model to study endothelial dysfunction, oxidant stress, and microvascular rarefaction. Am J Physiol Heart Circ Physiol 2015; 310:H478-87. [PMID: 26637559 DOI: 10.1152/ajpheart.00586.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/01/2015] [Indexed: 12/26/2022]
Abstract
Nuclear factor (erythroid-derived 2)-like-2 (NRF2) is a master antioxidant and cell protective transcription factor that upregulates antioxidant defenses. In this study we developed a strain of Nrf2 null mutant rats to evaluate the role of reduced NRF2-regulated antioxidant defenses in contributing to endothelial dysfunction and impaired angiogenic responses during salt-induced ANG II suppression. Nrf2(-/-) mutant rats were developed using transcription activator-like effector nuclease technology in the Sprague-Dawley genetic background, and exhibited a 41-bp deletion that included the start codon for Nrf2 and an absence of immunohistochemically detectable NRF2 protein. Expression of mRNA for the NRF2-regulated indicator enzymes heme oxygenase-1, catalase, superoxide dismutase 1, superoxide dismutase 2, and glutathione reductase was significantly lower in livers of Nrf2(-/-) mutant rats fed high salt (HS; 4% NaCl) for 2 wk compared with wild-type controls. Endothelium-dependent dilation to acetylcholine was similar in isolated middle cerebral arteries (MCA) of Nrf2(-/-) mutant rats and wild-type littermates fed low-salt (0.4% NaCl) diet, and was eliminated by short-term (3 days) HS diet in both strains. Low-dose ANG II infusion (100 ng/kg sc) reversed salt-induced endothelial dysfunction in MCA and prevented microvessel rarefaction in wild-type rats fed HS diet, but not in Nrf2(-/-) mutant rats. The results of this study indicate that suppression of NRF2 antioxidant defenses plays an essential role in the development of salt-induced oxidant stress, endothelial dysfunction, and microvessel rarefaction in normotensive rats and emphasize the potential therapeutic benefits of directly upregulating NRF2-mediated antioxidant defenses to ameliorate vascular oxidant stress in humans.
Collapse
Affiliation(s)
| | - Katie E Kautenburg
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Marc C Casati
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Bradley T Endres
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
17
|
Prisco SZ, Priestley JRC, Weinberg BD, Prisco AR, Hoffman MJ, Jacob HJ, Flister MJ, Lombard JH, Lazar J. Vascular dysfunction precedes hypertension associated with a blood pressure locus on rat chromosome 12. Am J Physiol Heart Circ Physiol 2014; 307:H1103-10. [PMID: 25320330 DOI: 10.1152/ajpheart.00464.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously isolated a 6.1-Mb region of SS/Mcwi (Dahl salt-sensitive) rat chromosome 12 (13.4-19.5 Mb) that significantly elevated blood pressure (BP) (Δ+34 mmHg, P < 0.001) compared with the SS-12(BN) consomic control. In the present study, we examined the role of vascular dysfunction and remodeling in hypertension risk associated with the 6.1-Mb (13.4-19.5 Mb) locus on rat chromosome 12 by reducing dietary salt, which lowered BP levels so that there were no substantial differences in BP between strains. Consequently, any observed differences in the vasculature were considered BP-independent. We also reduced the candidate region from 6.1 Mb with 133 genes to 2 Mb with 23 genes by congenic mapping. Both the 2 Mb and 6.1 Mb congenic intervals were associated with hypercontractility and decreased elasticity of resistance vasculature prior to elevations of BP, suggesting that the vascular remodeling and dysfunction likely contribute to the pathogenesis of hypertension in these congenic models. Of the 23 genes within the narrowed congenic interval, 12 were differentially expressed between the resistance vasculature of the 2 Mb congenic and SS-12(BN) consomic strains. Among these, Grifin was consistently upregulated 2.7 ± 0.6-fold (P < 0.05) and 2.0 ± 0.3-fold (P < 0.01), and Chst12 was consistently downregulated -2.8 ± 0.3-fold (P < 0.01) and -4.4 ± 0.4-fold (P < 0.00001) in the 2 Mb congenic compared with SS-12(BN) consomic under normotensive and hypertensive conditions, respectively. A syntenic region on human chromosome 7 has also been associated with BP regulation, suggesting that identification of the genetic mechanism(s) underlying cardiovascular phenotypes in this congenic strain will likely be translated to a better understanding of human hypertension.
Collapse
Affiliation(s)
- Sasha Z Prisco
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Brian D Weinberg
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anthony R Prisco
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew J Hoffman
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Howard J Jacob
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jozef Lazar
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Yao H, Nabika T. Excess salt increases infarct size produced by photothrombotic distal middle cerebral artery occlusion in spontaneously hypertensive rats. PLoS One 2014; 9:e97109. [PMID: 24816928 PMCID: PMC4016244 DOI: 10.1371/journal.pone.0097109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
Cerebral circulation is known to be vulnerable to high salt loading. However, no study has investigated the effects of excess salt on focal ischemic brain injury. After 14 days of salt loading (0.9% saline) or water, spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) were subjected to photothrombotic middle cerebral artery occlusion (MCAO), and infarct volume was determined at 48 h after MCAO: albumin and hemoglobin contents in discrete brain regions were also determined in SHR. Salt loading did not affect blood pressure levels in SHR and WKY. After MCAO, regional cerebral blood flow (CBF), determined with two ways of laser-Doppler flowmetry (one-point measurement or manual scanning), was more steeply decreased in the salt-loaded group than in the control group. In SHR/Izm, infarct volume in the salt-loaded group was 112±27 mm3, which was significantly larger than 77±12 mm3 in the control group (p = 0.002), while the extents of blood-brain barrier disruption (brain albumin and hemoglobin levels) were not affected by excess salt. In WKY, salt loading did not significantly increase infarct size. These results show the detrimental effects of salt loading on intra-ischemic CBF and subsequent brain infarction produced by phototrhombotic MCAO in hypertensive rats.
Collapse
Affiliation(s)
- Hiroshi Yao
- Laboratory for Neurochemistry, National Hospital Organization Hizen Psychiatric Center, Saga, Japan
- * E-mail:
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Saga, Japan
| |
Collapse
|
19
|
Beyer AM, Fredrich K, Lombard JH. AT1 receptors prevent salt-induced vascular dysfunction in isolated middle cerebral arteries of 2 kidney-1 clip hypertensive rats. Am J Hypertens 2013; 26:1398-404. [PMID: 23934707 DOI: 10.1093/ajh/hpt129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Elevated blood pressure, elevated angiotensin II (ANG II), and ANG II suppression with high salt (HS) diet all contribute to vascular dysfunction. This study investigated the interplay of HS diet and vascular function in a high renin model of hypertension. METHODS Male Sprague-Dawley rats were subjected to 2 kidney-1 clip (2K1C) Goldblatt hypertension for 4 weeks and compared with sham-operated controls. RESULTS Middle cerebral arteries (MCA) of 2K1C rats and sham-operated controls fed normal salt (NS; 0.4% NaCl) diet dilated in response to acetylcholine (ACh) and reduced partial pressure of oxygen (PO2). Switching to HS (4% NaCl) diet for 3 days to reduce plasma renin activity (PRA) eliminated vasodilation to ACh and reduced PO2 in sham-operated controls, with no effect on vasodilation in 2K1C rats. AT1 receptor blockade (losartan, 20 mg/kg/day; 1 week) eliminated vasodilator responses to ACh and reduced PO2 in 2K1C rats fed NS or HS diet. ANG II infusion (5 ng/kg/min, intravenous) for 3 days to prevent salt-induced reductions in plasma ANG II restored vascular relaxation in MCA of sham-operated controls fed HS diet. Copper/zinc superoxide dismutase expression and total superoxide dismutase activity were significantly higher in arteries of 2K1C rats fed HS diet vs. sham-operated controls. CONCLUSIONS These results suggest that the sustained effects of elevated ANG II levels in 2K1C hypertension maintain endothelium-dependent vasodilatation via AT1 receptor-mediated preservation of antioxidant defense mechanisms despite significant elevations in blood pressure and salt-induced suppression of PRA.
Collapse
Affiliation(s)
- Andreas M Beyer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | |
Collapse
|
20
|
Boegehold MA. The effect of high salt intake on endothelial function: reduced vascular nitric oxide in the absence of hypertension. J Vasc Res 2013; 50:458-67. [PMID: 24192502 DOI: 10.1159/000355270] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
Within the last 25 years, it has become increasingly clear that high dietary salt intake represents a risk factor for the development of cardiovascular disease that is independent of its well-known ability to increase arterial pressure in some individuals. Studies in normotensive experimental animals and human subjects have revealed that a key feature of this pressure-independent effect of dietary salt is a profound reduction in vascular nitric oxide (NO) bioavailability that limits endothelium-dependent dilation. This reduction in NO is strongly associated with increased levels of reactive oxygen species (ROS) generated by NAD(P)H oxidase, xanthine oxidase or uncoupled endothelial NO synthase within the vascular wall, leading not only to scavenging of NO but also to disruption of some signaling pathways that mediate its production. The mechanistic link between high salt intake and elevated levels of enzymatically generated ROS in the peripheral vasculature is not clear, but a reduction in circulating angiotensin II may play a key role in this regard. Additional studies are needed to further elucidate the mechanisms, both at the systemic level and within the vascular wall, that trigger these salt-induced deficits in endothelial function, and to further clarify how the attendant loss of NO may disrupt tissue blood flow regulation and ultimately lead to adverse cardiovascular events.
Collapse
Affiliation(s)
- Matthew A Boegehold
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, W.Va., USA
| |
Collapse
|
21
|
High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-resistant humans. J Hypertens 2013; 31:530-6. [PMID: 23263240 DOI: 10.1097/hjh.0b013e32835c6ca8] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Excess dietary sodium has been linked to the development of hypertension and other cardiovascular diseases. In humans, the effects of sodium consumption on endothelial function have not been separated from the effects on blood pressure. The present study was designed to determine if dietary sodium intake affected endothelium-dependent dilation (EDD) independently of changes in blood pressure. METHOD Fourteen healthy salt-resistant adults were studied (9M, 5F; age 33 ± 2.4 years) in a controlled feeding study. After a baseline run-in diet, participants were randomized to a 7-day high-sodium (300-350 mmol/day) and 7-day low-sodium (20 mmol/day) diet. Salt resistance, defined as a 5 mmHg or less change in a 24-h mean arterial pressure, was individually assessed while on the low-sodium and high-sodium diets and confirmed in the participants undergoing study (low-sodium: 85 ± 1 mmHg; high-sodium: 85 ± 2 mmHg). EDD was determined in each participant via brachial artery flow-mediated dilation on the last day of each diet. RESULTS Sodium excretion increased during the high-sodium diet (P < 0.01). EDD was reduced on the high-sodium diet (low: 10.3 ± 0.9%, high: 7.3 ± 0.7%; P < 0.05). The high-sodium diet significantly suppressed plasma renin activity (PRA), plasma angiotensin II, and aldosterone (P < 0.05). CONCLUSION These data demonstrate that excess salt intake in humans impairs endothelium-dependent dilation independently of changes in blood pressure.
Collapse
|
22
|
Priestley JRC, Buelow MW, McEwen ST, Weinberg BD, Delaney M, Balus SF, Hoeppner C, Dondlinger L, Lombard JH. Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles. Microvasc Res 2013; 89:134-45. [PMID: 23628292 PMCID: PMC3758804 DOI: 10.1016/j.mvr.2013.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/19/2013] [Accepted: 04/18/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVES We investigated the effect of suppressing plasma angiotensin II (ANG II) levels on arteriolar relaxation in the hamster cheek pouch. METHODS Arteriolar diameters were measured via television microscopy during short-term (3-6days) high salt (HS; 4% NaCl) diet and angiotensin converting enzyme (ACE) inhibition with captopril (100mg/kg/day). RESULTS ACE inhibition and/or HS diet eliminated endothelium-dependent arteriolar dilation to acetylcholine, endothelium-independent dilation to the NO donor sodium nitroprusside, the prostacyclin analogs carbacyclin and iloprost, and the KATP channel opener cromakalim; and eliminated arteriolar constriction during KATP channel blockade with glibenclamide. Scavenging of superoxide radicals and low dose ANG II infusion (25ng/kg/min, subcutaneous) reduced oxidant stress and restored arteriolar dilation in arterioles of HS-fed hamsters. Vasoconstriction to topically-applied ANG II was unaffected by HS diet while arteriolar responses to elevation of superfusion solution PO2 were unaffected (5% O2, 10% O2) or reduced (21% O2) by HS diet. CONCLUSIONS These findings indicate that sustained exposure to low levels of circulating ANG II leads to widespread dysfunction in endothelium-dependent and independent vascular relaxation mechanisms in cheek pouch arterioles by increasing vascular oxidant stress, but does not potentiate O2- or ANG II-induced constriction of arterioles in the distal microcirculation of normotensive hamsters.
Collapse
|
23
|
Vuletic V, Drenjancevic I, Rahelic D, Demarin V. Effect of indomethacin on cerebrovascular reactivity in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2013; 101:81-7. [PMID: 23684449 DOI: 10.1016/j.diabres.2013.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/21/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
AIM Impaired cerebral vasoreactivity to endothelium-dependent stimuli were described in type 2 diabetes mellitus (T2DM), but the mechanisms underlying that impairment are still unclear. The aim of this study was to investigate the role of cyclooxygenases' metabolites in response to acute hypercapnic stimulus in cerebral vessels, in patients with T2DM. METHODS Vascular responses in the breath-holding test (BHT) were assessed in the absence/presence of a non-selective, reversible-inhibitor of cyclooxygenases, indomethacin (INDO), by functional transcranial Doppler sonography of the middle cerebral artery (N of patients=50; 33 men and 17 women). The functional hemodynamic parameter mean flow velocity (MFV) was assessed at rest, before and 90min after 100mg of INDO, and during the BHT. Breath holding index (BHI) [(MFV at the end of BHT minus MFV at rest)/MFV at rest)×100/s of breath-holding] was calculated after BHT performed before and 90min after INDO. RESULTS MFV at rest significantly decreased after INDO administration compared with a control condition before INDO (at rest before INDO from 49.36±15.09 to 36.72±8.45 after INDO, p<0.001) However, overall cerebral vessel vasoreactivity to hypercapnia, evaluated with BHI, was significantly improved after INDO administration compared with the BHI before INDO administration (from 0.68±0.4 to 1.27±0.42, p<0.001). CONCLUSIONS The improvement in cerebral vasoreactivity in response to BHT after INDO administration suggests that the production of a vasoconstrictor metabolite of cyclooxygenase in diabetic patients was reduced by indomethacin consumption.
Collapse
Affiliation(s)
- Vladimira Vuletic
- Department of Neurology, Dubrava University Hospital, Zagreb, Croatia.
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, University Josip, Juraj Strossmayer, Osijek, Croatia
| | - Dario Rahelic
- Department of Endocrinology, Diabetes and Metabolic Disorders, Dubrava University Hospital, Zagreb, Croatia
| | - Vida Demarin
- Medical Director, Medical Centre "Aviva", Zagreb, Croatia
| |
Collapse
|
24
|
Durand MJ, Lombard JH. Low-dose angiotensin II infusion restores vascular function in cerebral arteries of high salt-fed rats by increasing copper/zinc superoxide dimutase expression. Am J Hypertens 2013; 26:739-47. [PMID: 23443725 DOI: 10.1093/ajh/hpt015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND This study examined the vasoprotective role of circulating angiotensin II (ANG II) levels in the cerebral circulation of high salt (HS)-fed (SS.BN-(D13hmgc41-13hmgc23)/Mcwi) (Ren1-BN) congenic rats, which carry a normally functioning renin allele from the Brown Norway (BN) rat on the Dahl salt-sensitive genetic background. METHODS Ren1-BN rats were placed on an HS (4.0% NaCl) diet for 3 days. The vasodilator response to acetylcholine (ACh; 10(-10) - 10(-6) mol/L) was assessed in isolated middle cerebral arteries (MCAs), and Western blots were performed to assess the expression of the antioxidant enzymes copper (Cu)/zinc (Zn) superoxide dismutase (SOD) and manganese (Mn) SOD in cerebral resistance vessels. A separate group of HS-fed animals were infused with either a subpressor dose of ANG II (100ng/kg/min) or saline vehicle via osmotic minipump for 3 days. RESULTS HS diet eliminated acetylcholine (ACh)-induced dilation in the MCAs of the congenic rats. Western blot analysis of antioxidant enzymes showed that Cu/Zn SOD and Mn SOD expression were significantly reduced in the cerebral resistance arteries of the HS-fed rats compared with control animals fed a normal salt diet. Infusion of ANG II restored the vasodilator response to ACh in the MCAs and increased Cu/Zn SOD (but not Mn SOD) expression compared with saline-infused animals. CONCLUSIONS These results indicate that prevention of salt-induced ANG II suppression prevents vascular dysfunction in the cerebral circulation by preventing the downregulation of Cu/Zn SOD and vascular oxidant stress that normally occurs with HS diet.
Collapse
Affiliation(s)
- Matthew J Durand
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
25
|
Introgression of Brown Norway CYP4A genes on to the Dahl salt-sensitive background restores vascular function in SS-5(BN) consomic rats. Clin Sci (Lond) 2013; 124:333-42. [PMID: 22938512 DOI: 10.1042/cs20120232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study tested the hypothesis that the Dahl SS (salt-sensitive) rat has vascular dysfunction due, in part, to the up-regulation of the CYP4A/20-HETE (cytochrome P450 ω-hydroxylase 4A)/20-hydroxyeicosatetraenoic acid) system. To assess the role of vascular 20-HETE, SS rats were compared with SS-5(BN) consomic rats, carrying CYP4A alleles on chromosome 5 from the normotensive BN (Brown Norway) introgressed on to the SS genetic background. Cerebral arteries from SS-5(BN) rats had less CYP4A protein than arteries from SS rats fed either NS (normal-salt, 0.4% NaCl) or HS (high-salt, 4.0% NaCl) diet. ACh (acetylcholine)-induced dilation of MCAs (middle cerebral arteries) from SS and SS-5(BN) rats was present in SS-5(BN) rats fed on either an NS or HS diet, but absent in SS rats. In SS rats fed on either diet, ACh-induced dilation was restored by acute treatment with the CYP4A inhibitor DDMS (N-methyl-sulfonyl-12,12-dibromododec-11-enamide) or the 20-HETE antagonist 20-HEDE [20-hydroxyeicosa-6(Z),15(Z)-dienoic acid]. The restored response to ACh in DDMS-treated SS rats was inhibited by L-NAME (N(G)nitro-L-arginine methyl ester) and unaffected by indomethacin or MS-PPOH [N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide]. Vascular relaxation responses to the NO donor C(5)FeN(6)Na(2)O were intact in both SS and SS-5(BN) rats and unaffected by the acute addition of DDMS, indicating that the vascular dysfunction of the SS rat is due to a reduced bioavailability of NO instead of failure of the VSMCs (vascular smooth muscle cells) to respond to the vasodilator. Superoxide levels in cerebral arteries of SS-5(BN) rats [evaluated semi-quantitatively by DHE (dihydroethidium) fluorescence] were lower than those in the arteries of SS rats. These findings indicate that SS rats have an up-regulation of the CYP4A/20-HETE pathway resulting in elevated ROS (reactive oxygen species) and reduced NO bioavailability causing vascular dysfunction.
Collapse
|
26
|
Beyer AM, Raffai G, Weinberg B, Fredrich K, Lombard JH. Dahl salt-sensitive rats are protected against vascular defects related to diet-induced obesity. Hypertension 2012; 60:404-10. [PMID: 22710645 DOI: 10.1161/hypertensionaha.112.191551] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity increases plasma renin activity and angiotensin II levels, leading to vascular damage, elevated blood pressure, diabetes mellitus, and renal damage. Because genetic deletion of crucial parts of the renin-angiotensin system protect against obesity-related cardiovascular defects, we hypothesized that Dahl salt-sensitive (SS) rats, a model of chronically low plasma renin activity and angiotensin II levels, would be protected against vascular defects during diet-induced obesity compared with SS.13(BN) consomic rats showing normal renin-angiotensin system regulation. We evaluated vascular function in middle cerebral arteries of SS or SS.13(BN) rats fed high-fat (45% kcal from fat) versus normal-fat diet for 15 to 20 weeks from weaning. Endothelium-dependent relaxation in response to acetylcholine (10(-8) to 10(-4) mol/L) was restored in middle cerebral arteries of high-fat SS rats versus normal-fat diet controls, whereas vasodilation to acetylcholine was dramatically reduced in high-fat SS 13(BN) rats versus normal-fat diet controls. These findings support the hypothesis that physiological levels of angiotensin II play an important role in maintaining normal vascular relaxation in cerebral arteries and suggest that the cerebral vasculature of the SS rat model is genetically protected against endothelial dysfunction in diet-induced obesity.
Collapse
Affiliation(s)
- Andreas M Beyer
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
27
|
Bravo A. I, Michea A. L. Analysis of experimental evidence that shows adverse effects of salt and its relation to hypertension. Medwave 2012. [DOI: 10.5867/medwave.2012.02.5303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Abstract
BACKGROUND Angiotensin II (Ang II) induces constriction (AT(1)) and dilation (AT(2) receptors) of cerebral arterioles. High sodium intake induces changes in receptors expression and loss of AT(2)-mediated vasodilation in extracerebral vessels. We investigated whether high salt modifies the AT(2)-mediated response of cerebral arterioles. METHODS Three-month-old male Wistar rats received drinking water supplemented or not with 1% NaCl. We measured at day 4 or 30 plasma aldosterone concentration, AT receptors expression (brain microvessels, western blot, RT-qPCR), internal diameter of pial arterioles (cranial window) following suffusion with Ang II (10(-6) mol/l, or 10(-8) mol/l + losartan 10(-5) mol/l), serotonin (5-HT, 10(-6) mol/l), sodium nitroprusside (10(-5) mol/l) and adenosine diphosphate (ADP, 10(-4) mol/l). RESULTS High salt did not modify arterial pressure, baseline arteriolar diameter, vasoconstriction to Ang II or 5-HT, nor vasodilation to SNP. High salt lowered plasma aldosterone concentration (d4 138 ± 71 not significant vs. control 338 ± 73; d30 150 ± 21 P < 0.05 vs. control 517 ± 79 μmol/l). AT receptors mRNA did not change while protein level of AT(2) receptors decreased at d4 (64 ± 9% of control, P < 0.05). AT(2)-mediated vasodilation (control d4; d30 8 ± 2; 5 ± 2%) was abolished at d4 (-2 ± 2%, P < 0.05) and reversed to vasoconstriction at d30 (-7 ± 2%, P < 0.05). ADP-induced vasodilation is abolished at d30 (2 ± 2, P < 0.05 vs. control 19 ± 4%). CONCLUSION High salt specifically abolishes AT(2)-mediated vasodilation, immediately, via decreased level of AT(2) receptor protein, and after 30 days, in association with abolition of endothelial vasodilation. Such loss of AT(2)-mediated vasodilation may be deleterious in case of stroke.
Collapse
|
29
|
Fiore MC, Jimenez PM, Cremonezzi D, Juncos LI, García NH. Statins reverse renal inflammation and endothelial dysfunction induced by chronic high salt intake. Am J Physiol Renal Physiol 2011; 301:F263-70. [DOI: 10.1152/ajprenal.00109.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High salt intake (HS) is a risk factor for cardiovascular and kidney disease. Indeed, HS may promote blood-pressure-independent tissue injury via inflammatory factors. The lipid-lowering 3-hydroxy 3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors exert beneficial lipid-independent effects, reducing the expression and synthesis of inflammatory factors. We hypothesized that HS impairs kidney structure and function in the absence of hypertension, and these changes are reversed by atorvastatin. Four groups of rats were treated for 6 wk in metabolic cages with their diets: normal salt (NS); HS, NS plus atorvastatin and HS plus atorvastatin. We measured basal and final body weight, urinary sodium and protein excretion (UProtV), and systolic blood pressure (SBP). At the end of the experimental period, cholesterolemia, creatinine clearance, renal vascular reactivity, glomerular volume, cortical and glomerular endothelial nitric oxide synthase (eNOS), and transforming growth factor (TGF)-β1 expression were measured. We found no differences in SBP, body weight, and cholesterolemia. HS rats had increased creatinine clearence, UProtV, and glomerular volume at the end of the study. Acetylcholine-induced vasodilatation decreased by 40.4% in HS rats ( P < 0.05). HS decreased cortical and glomerular eNOS and caused mild glomerular sclerosis, interstitial mononuclear cell infiltration, and increased cortical expression of TGF-β1. All of these salt-induced changes were reversed by atorvastatin. We conclude that long-term HS induces inflammatory and hemodynamic changes in the kidney that are independent of SBP. Atorvastatin corrected all, suggesting that the nitric oxide-oxidative stress balance plays a significant role in the earlier stages of salt induced kidney damage.
Collapse
Affiliation(s)
- M. C. Fiore
- J. Robert Cade Foundation-CONICET, Córdoba
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis; and
| | - P. M. Jimenez
- Instituto Privado de Investigaciones Médicas Mercedes y Martín Ferreyra and
| | - D. Cremonezzi
- Cátedra de Histología, Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
30
|
Raffai G, Durand MJ, Lombard JH. Acute and chronic angiotensin-(1-7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats. Am J Physiol Heart Circ Physiol 2011; 301:H1341-52. [PMID: 21803946 DOI: 10.1152/ajpheart.00202.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study determined the effect of ANG-(1-7) on salt-induced suppression of endothelium-dependent vasodilatation in the mesenteric arteries of male Sprague-Dawley rats. Chronic intravenous infusion of ANG-(1-7), oral administration of the nonpeptide mas receptor agonist AVE-0991, and acute preincubation of the arteries with ANG-(1-7) and AVE-0991 all restored vasodilator responses to both ACh and histamine that were absent in the arteries of rats fed a high-salt (4% NaCl) diet. The protective effects of ANG-(1-7) and AVE-0991 were inhibited by acute or chronic administration of the mas receptor antagonist A-779, the ANG II type 2 (AT(2)) receptor blocker PD-123319, or N-nitro-l-arginine methyl ester, but not the ANG II type 1 receptor antagonist losartan. Preincubation with the antioxidant tempol or the nitric oxide (NO) donor diethylenetriamine NONOate and acute and chronic administration of the AT(2) receptor agonist CGP-42112 mimicked the protective effect of ANG-(1-7) to restore vascular relaxation. Acute preincubation with ANG-(1-7) and chronic infusion of ANG-(1-7) ameliorated the elevated superoxide levels in rats fed a high-salt diet, but the expression of Cu/Zn SOD and Mn SOD enzyme proteins in the vessel wall was unaffected by ANG-(1-7) infusion. These results indicate that both acute and chronic systemic administration of ANG-(1-7) or AVE-0991 restore endothelium-dependent vascular relaxation in salt-fed Sprague-Dawley rats by reducing vascular oxidant stress and enhancing NO availability via mas and AT(2) receptors. These findings suggest a therapeutic potential for mas/AT(2) receptor activation in preventing the vascular oxidant stress and endothelial dysfunction associated with elevated dietary salt intake.
Collapse
Affiliation(s)
- Gábor Raffai
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
31
|
Durand MJ, Lombard JH. Introgression of the Brown Norway renin allele onto the Dahl salt-sensitive genetic background increases Cu/Zn SOD expression in cerebral arteries. Am J Hypertens 2011; 24:563-8. [PMID: 21331057 DOI: 10.1038/ajh.2011.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Nitric oxide (NO)-dependent vasodilation is impaired in middle cerebral arteries (MCAs) from Dahl salt-sensitive (SS) rats that are fed normal salt (NS) diet, due to low plasma renin activity and chronic exposure to low plasma angiotensin II (ANG II) levels. NO-dependent vasodilator responses are rescued in MCAs from Ren1-BN congenic rats, which have a 2.0 Mbp portion of Brown Norway (BN) chromosome 13 containing the renin gene introgressed onto the Dahl SS genetic background. METHODS Vascular superoxide levels were measured with dihydroethidium (DHE) fluorescence in basilar arteries from 10- to 14-week-old, male Dahl SS and Ren1-BN congenic rats that fed NS diet. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and xanthine oxidase (XO) activity were also measured in cerebral artery tissue homogenates. Expression of the superoxide dismutase (SOD) enzymes was evaluated via western blotting in cerebral arteries from the two rat strains. RESULTS Superoxide levels were significantly higher in basilar arteries from Dahl SS rats compared to Ren1-BN congenic rats. NADPH oxidase and XO activity were similar between the two rat strains. Cu/Zn SOD expression was significantly higher in cerebral arteries from Ren1-BN congenic rats vs. those from Dahl SS rats. The expression of Mn-SOD was similar in cerebral arteries from both strains. CONCLUSIONS These findings suggest that introgressing the BN renin allele onto the Dahl SS genetic background to restore normal activity of the renin-angiotensin system (RAS) protects NO-dependent vascular relaxation in cerebral arteries by increasing the expression of Cu/Zn SOD and lowering vascular superoxide levels.
Collapse
|
32
|
Raffai G, Wang J, Roman RJ, Anjaiah S, Weinberg B, Falck JR, Lombard JH. Modulation by cytochrome P450-4A ω-hydroxylase enzymes of adrenergic vasoconstriction and response to reduced PO₂ in mesenteric resistance arteries of Dahl salt-sensitive rats. Microcirculation 2011; 17:525-35. [PMID: 21040118 DOI: 10.1111/j.1549-8719.2010.00053.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study evaluated the contribution of the 20-HETE/cytochrome P450-4A ω-hydroxylase (CYP4A) system to the early development of salt-induced vascular changes in Dahl salt-sensitive (SS) rats. METHODS CYP4A expression and 20-HETE production were evaluated and responses to norepinephrine, endothelin, and reduced PO₂ were determined by video microscopy in isolated mesenteric resistance arteries from SS rats fed high salt (HS; 4% NaCl) diet for three days vs. low salt (LS; 0.4% NaCl) controls. RESULTS CYP4A enzyme inhibition with dibromododecenyl methylsulfimide (DDMS) selectively reduced norepinephrine sensitivity and restored impaired vasodilation in response to reduced PO₂ in SS rats fed HS diet. In the presence of DDMS, vasodilatation to reduced PO₂ was eliminated by indomethacin and unaffected by l-NAME in rats fed LS diet, and eliminated by l-NAME and unaffected by indomethacin in rats fed HS diet. The 20-HETE agonist WIT003 restored norepinephrine sensitivity in DDMS-treated arteries of HS-fed rats. HS diet increased vascular 20-HETE production and CYP4A protein levels by ∼24% and ∼31%, respectively, although these differences were not significant. CONCLUSIONS These findings support the hypothesis that the 20-HETE/CYP4A system modulates vessel responses to norepinephrine and vascular relaxation to reduced PO₂ in mesenteric resistance arteries of SS rats fed HS diet.
Collapse
Affiliation(s)
- Gábor Raffai
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Durand MJ, Moreno C, Greene AS, Lombard JH. Impaired relaxation of cerebral arteries in the absence of elevated salt intake in normotensive congenic rats carrying the Dahl salt-sensitive renin gene. Am J Physiol Heart Circ Physiol 2010; 299:H1865-74. [PMID: 20852041 DOI: 10.1152/ajpheart.00700.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study evaluated endothelium-dependent vascular relaxation in response to acetylcholine (ACh) in isolated middle cerebral arteries (MCA) from Dahl salt-sensitive (Dahl SS) rats and three different congenic strains that contain a portion of Brown Norway (BN) chromosome 13 introgressed onto the Dahl SS genetic background through marker-assisted breeding. Two of the congenic strains carry a 3.5-Mbp portion and a 2.6-Mbp portion of chromosome 13 that lie on opposite sides of the renin locus, while the third contains a 2.0-Mbp overlapping region that includes the BN renin allele. While maintained on a normal salt (0.4% NaCl) diet, MCAs from Dahl SS rats and the congenic strains retaining the Dahl SS renin allele failed to dilate in response to ACh, whereas MCAs from the congenic strain carrying the BN renin allele exhibited normal vascular relaxation. In congenic rats receiving the BN renin allele, vasodilator responses to ACh were eliminated by nitric oxide synthase inhibition with N(G)-nitro-l-arginine methyl ester, angiotensin-converting enzyme inhibition with captopril, and AT(1) receptor blockade with losartan. N(G)-nitro-l-arginine methyl ester-sensitive vasodilation in response to ACh was restored in MCAs of Dahl SS rats that received either a 3-day infusion of a subpressor dose of angiotensin II (3 ng·kg(-1)·min(-1) iv), or chronic treatment with the superoxide dismutase mimetic tempol (15 mg·kg(-1)·day(-1)). These findings indicate that the presence of the Dahl SS renin allele plays a crucial role in endothelial dysfunction present in the cerebral circulation of the Dahl SS rat, even in the absence of elevated dietary salt intake, and that introgression of the BN renin allele rescues endothelium-dependent vasodilator responses by restoring normal activation of the renin-angiotensin system.
Collapse
Affiliation(s)
- Matthew J Durand
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
34
|
Kunert MP, Dwinell MR, Lombard JH. Vascular responses in aortic rings of a consomic rat panel derived from the Fawn Hooded Hypertensive strain. Physiol Genomics 2010; 42A:244-58. [PMID: 20841496 DOI: 10.1152/physiolgenomics.00124.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The present experiments, utilizing the high-throughput vascular protocol of PhysGen (Program for Genomic Applications) characterized the responses of aortic rings to vasoconstrictor (phenylephrine) and vasodilator (acetylcholine, sodium nitroprusside, and reduced tissue bath Po(2)) stimuli in consomic rat strains derived from a cross between the Fawn Hooded Hypertensive rat (FHH/EurMcwi) and the Brown Norway normotensive (BN/NHsdMcwi) rat. The effects of substituting individual BN chromosomes into the FHH genetic background were determined in animals that were maintained on a low-salt (0.4% NaCl) diet or switched to a high-salt (4% NaCl) diet for 3 wk. Sex-specific differences were evaluated in male and female consomic rats on similar dietary salt intake. Multiple chromosomes affected various vascular reactivity phenotypes in the FHH × BN consomic panel, and substantial salt-dependent changes in vascular reactivity and sex-specific differences in aortic reactivity were observed in individual consomic strains. However, compared with earlier studies of consomic rats derived from a cross between the BN rat and the Dahl salt-sensitive (SS) rat, only 3-7% of the vascular phenotypes were affected in a similar manner by substituting specific BN chromosomeschromosomes into the FHH genetic background versus the SS genetic background. The findings of the present study stress the potential value of consomic rat panels in gaining insight into genetic factors influencing vascular reactivity and suggest that the chromosomes that appear to be involved in the determination of aortic ring reactivity in different rodent models of hypertension are highly strain- and sex specific.
Collapse
Affiliation(s)
- Mary Pat Kunert
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
35
|
Abstract
Blood pressure and hypertension have significant genetic underpinnings that may be age-dependent. The age-dependency, significant contributions from environmental factors such as diet and exercise, and inherent moment-to-moment variability complicate the identification of the genes contributing to the development of hypertension. Although genetic abnormalities may have moderate effects, the physiologic pathways involving these genes have redundant compensating mechanisms to bring the system back into equilibrium. This has the effect of reducing or completely masking the initial genetic defects, one of the hypothesized reasons for the small genetic effects found by the recent genome-wide association studies. This review article discusses the concept of initiators versus compensators in the context of finding genes related to hypertension development. A brief review is provided of some key genes found to be associated with hypertension, including the genes identified from the nine genome-wide association studies published to date.
Collapse
Affiliation(s)
- Steven C Hunt
- Cardiovascular Genetics Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84108, USA.
| |
Collapse
|
36
|
Durand MJ, Raffai G, Weinberg BD, Lombard JH. Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 2010; 299:H1024-33. [PMID: 20656887 DOI: 10.1152/ajpheart.00328.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goals of this study were to 1) determine the acute effect of ANG-(1-7) on vascular tone in isolated middle cerebral arteries (MCAs) from Sprague-Dawley rats fed a normal salt (NS; 0.4% NaCl) diet, 2) evaluate the ability of chronic intravenous infusion of ANG-(1-7) (4 ng·kg(-1)·min(-1)) for 3 days to restore endothelium-dependent dilation to acetylcholine (ACh) in rats fed a high-salt (HS; 4% NaCl) diet, and 3) determine whether the amelioration of endothelial dysfunction by ANG-(1-7) infusion in rats fed a HS diet is different from the protective effect of low-dose ANG II infusion in salt-fed rats. MCAs from rats fed a NS diet dilated in response to exogenous ANG-(1-7) (10(-10)-10(-5) M). Chronic ANG-(1-7) infusion significantly reduced vascular superoxide levels and restored the nitric oxide-dependent dilation to ACh (10(-10)-10(-5) M) that was lost in MCAs of rats fed a HS diet. Acute vasodilation to ANG-(1-7) and the restoration of ACh-induced dilation by chronic ANG-(1-7) infusion in rats fed a HS diet were blocked by the Mas receptor antagonist [D-ALA(7)]-ANG-(1-7) or the ANG II type 2 receptor antagonist PD-123319 and unaffected by ANG II type 1 receptor blockade with losartan. The restoration of ACh-induced dilation in MCAs of HS-fed rats by chronic intravenous infusion of ANG II (5 ng·kg(-1)·min(-1)) was blocked by losartan and unaffected by d-ALA. These findings demonstrate that circulating ANG-(1-7), working via the Mas receptor, restores endothelium-dependent vasodilation in cerebral resistance arteries of animals fed a HS diet via mechanisms distinct from those activated by low-dose ANG II infusion.
Collapse
Affiliation(s)
- Matthew J Durand
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
37
|
de Resende MM, Stodola TJ, Greene AS. Role of the renin angiotensin system on bone marrow-derived stem cell function and its impact on skeletal muscle angiogenesis. Physiol Genomics 2010; 42:437-44. [PMID: 20501694 DOI: 10.1152/physiolgenomics.00037.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autologous bone marrow cell (BMC) transplantation has been shown as a potential approach to treat various ischemic diseases. However, under many conditions BMC dysfunction has been reported, leading to poor cell engraftment and a failure of tissue revascularization. We have previously shown that skeletal muscle angiogenesis induced by electrical stimulation (ES) is impaired in the SS/Mcwi rats and that this effect is related to a dysregulation of the renin angiotensin system (RAS) that is normalized by the replacement of chromosome 13 derived from the Brown Norway rat (SS-13(BN)/Mcwi consomic rats). The present study explored bone marrow-derived endothelial cell (BM-EC) function in the SS/Mcwi rat and its impact on skeletal muscle angiogenesis induced by ES. SS/Mcwi rats were randomized to receive BMC from: SS/Mcwi; SS-13(BN)/Mcwi; SS/Mcwi rats infused with saline or ANG II (3 ng kg(-1) min(-1)). BMC were injected in the stimulated tibialis anterior muscle of SS/Mcwi rats. Vessel density was evaluated in unstimulated and stimulated muscles after 7 days of ES. BMC isolated from SS/Mcwi or SS/Mcwi rats infused with saline failed to restore angiogenesis induced by ES. However, BMC isolated from SS-13(BN)/Mcwi and SS/Mcwi rats infused with ANG II effectively restored the angiogenesis response in the SS/Mcwi recipient. Furthermore, ANG II infusion increased the capacity of BM-EC to induce endothelial cell tube formation in vitro and slightly increased VEGF protein expression. This study suggests that dysregulation of the RAS in the SS/Mcwi rat contributes to impaired BM-EC function and could impact the angiogenic therapeutic potential of BMC.
Collapse
Affiliation(s)
- Micheline M de Resende
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
38
|
Drenjancevic-Peric I, Weinberg BD, Greene AS, Lombard JH. Restoration of cerebral vascular relaxation in renin congenic rats by introgression of the Dahl R renin gene. Am J Hypertens 2010; 23:243-8. [PMID: 19959997 DOI: 10.1038/ajh.2009.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND This study determined whether transfer of the renin gene from the Dahl salt-resistant (Dahl R) strain into the Dahl salt-sensitive (SS) genetic background restores the relaxation of middle cerebral arteries (MCAs) to different vasodilator stimuli in S/renRR renin congenic (SS.SR-(D13N1 and Syt2)/Mcwi) (RGRR) rats maintained on low-salt (0.4% NaCl) diet. METHODS Responses to vasodilator stimuli were evaluated in isolated MCA from SS (Dahl SS/Jr/Hsd/MCWi), RGRR rats, and Dahl R rats. RESULTS MCA from SS rats failed to dilate in response to acetylcholine (ACh; 10(-6) mol/l), hypoxia (PO2 reduction to 40-45 mm Hg), and iloprost (10(-11) g/ml). ACh- and hypoxia-induced dilations were present in Dahl R rats and restored in RGRR rats. MCA from RGRR and SS constricted in response to iloprost, whereas MCA from Dahl R rats dilated in response to iloprost. MCA from SS, RGRR, and Dahl R rats exhibited similar dilations in response to cholera toxin (10(-9) g/ml) and dialated in response to the nitric oxide (NO) donor DEA-NONOate (10(-5) mol/l). CONCLUSIONS (i) Restoration of normal regulation of the renin-angiotensin system restores dilations to ACh and hypoxia that are impaired in SS rats, (ii) prostacyclin signaling is impaired in SS and RGRR rats but intact in Dahl R rats, indicating that alleles other than the renin gene affect vascular relaxation in response to this agonist; and (iii) vascular smooth muscle sensitivity to NO is preserved in SS and RGRR and is not responsible for impaired arterial relaxation in response to ACh in SS rats.
Collapse
|
39
|
Kunert MP, Friesma J, Falck JR, Lombard JH. CYP450 4A inhibition attenuates O2 induced arteriolar constriction in chronic but not acute Goldblatt hypertension. Microvasc Res 2009; 78:442-6. [PMID: 19761780 DOI: 10.1016/j.mvr.2009.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 08/13/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
We explored the role of 20-hydroxy-5Z, 8Z, 11Z, 14Z-eicosatetraenoic acid (20-HETE) in oxygen-induced vasoconstriction in a normal renin form of hypertension [the 1 kidney-1 clip Goldblatt hypertensive rat (1K1C)] and a high renin form of hypertension [the 2 kidney-1 clip Goldblatt hypertensive rat (2K1C)]. A silver clip was placed around the left renal artery of adult Sprague-Dawley males. The right kidney was removed in the 1K1C group and left intact in the 2K1C group. Arteriolar responses to elevation of O(2) concentration in the superfusion solution from 0% O(2) to 21% O(2) were determined in the in situ cremaster muscle before and after inhibition of cytochrome P450 4A omega-hydroxylase (CYP450 4A) with N-methyl-sulfonyl-12, 12-dibromododec-11-enamide (DDMS). Arteriolar constriction to elevated PO(2) was enhanced in the chronic 1K1C but not the acute 1K1C or 2K1C. DDMS eliminated O(2)-induced arteriolar constriction in the 9-week 1K1C, but had no effect in the 2-week 1K1C, and only partially inhibited O(2)-induced constriction of arterioles in the 4-week 2K1C rat. These findings indicate that although the CYP4A/20-HETE system contributes to arteriolar constriction in response to elevated PO(2) in the established stage of 1K1C renovascular hypertension, physiological alterations in other mechanisms are the primary determinants of O(2)-induced constriction of arterioles in the early and developing stages of 1K1C and 2K1C hypertension.
Collapse
|
40
|
McEwen ST, Balus SF, Durand MJ, Lombard JH. Angiotensin II maintains cerebral vascular relaxation via EGF receptor transactivation and ERK1/2. Am J Physiol Heart Circ Physiol 2009; 297:H1296-303. [PMID: 19684181 DOI: 10.1152/ajpheart.01325.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study identified, on the integrative level, two components of the ANG II signaling pathway that lay downstream from the ANG II type 1 (AT(1)) receptor and are critically involved in maintaining vascular relaxation in cerebral resistance arteries. In these experiments, the relaxation of isolated middle cerebral arteries (MCA) in response to ACh (10(-9)-10(-5) M), iloprost (10(-16)-10(-11) g/ml), and reduced PO(2) was lost and the ratio of phospho-ERK/ERK1/2 was significantly reduced in aortas of male Sprague-Dawley rats fed a high-salt (HS; 4% NaCl) diet to suppress plasma ANG II levels. In salt-fed rats, relaxation of MCA in response to these vasodilator stimuli was restored by chronic (3 days) intravenous infusion of either ANG II (5 ngxkg(-1)xmin(-1)) or epidermal growth factor (EGF; 2 microg/h). The protective effect of ANG II infusion to restore vascular relaxation was eliminated by coinfusion of either the EGF receptor kinase inhibitor AG-1478 (20 microg/h), the ERK1/2 inhibitor PD-98059 (10 microg/h), or the protein synthesis inhibitor cycloheximide (5 microg/h). In rats fed a low-salt (0.4% NaCl) diet, MCA relaxation in response to ACh, reduced PO(2), and iloprost was eliminated by intravenous infusion of AG-1478, PD-98059, or cycloheximide. In ANG II-infused rats fed HS diet, and in rats fed LS diet, vasodilator responses to reduced PO(2) and iloprost were unaffected by the p38 MAP kinase inhibitor SB-203580 and the phosphatidylinositol 3-kinase inhibitor wortmannin. These findings indicate that maintenance of normal vascular relaxation mechanisms by ANG II in rat MCA requires activation of the EGF receptor kinase and ERK1/2.
Collapse
Affiliation(s)
- Scott T McEwen
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
41
|
McEwen ST, Schmidt JR, Somberg L, Cruz LDL, Lombard JH. Time-course and mechanisms of restored vascular relaxation by reduced salt intake and angiotensin II infusion in rats fed a high-salt diet. Microcirculation 2009; 16:220-34. [PMID: 19235625 DOI: 10.1080/10739680802544177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study determined the mechanisms and time-course of recovery of vascular relaxation in middle cerebral arteries (MCAs) of salt-fed Sprague-Dawley rats returned to a low-salt (LS) diet (0.4% NaCl) or infused with low-dose angiotensin II (ANG II). METHODS Rats were fed a high-salt (HS) diet (4% NaCl) for 3 days or 4 weeks before returning to an LS diet for various periods. Other rats fed a HS diet (HS+ANG II) received a chronic (3 days) intravenous (i.v.) infusion of a low dose of ANG II (5 ng kg(-1) min(-1)) to prevent salt-induced ANG II suppression. RESULTS The HS diet eliminated the increase in cerebral blood flow in response to acetylcholine (ACh) infusion and the relaxation of MCA in response to ACh, iloprost, cholera toxin, and reduced PO2. Recovery of vascular relaxation was slow, requiring at least 2 weeks of the LS diet, regardless of the duration of exposure to a HS diet. Hypoxic dilation was mediated by cyclo-oxygenase metabolites and ACh-induced dilation was mediated via nitric oxide in LS rats and in HS rats returned to the LS diet or receiving ANG II infusion. CONCLUSIONS Returning to a LS diet for 2 weeks or chronic 3-day ANG II infusion restores the mechanisms that normally mediate cerebral vascular relaxation.
Collapse
Affiliation(s)
- Scott T McEwen
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
42
|
Wang J, Schmidt JR, Roman RJ, Anjaiah S, Falck JR, Lombard JH. Modulation of vascular O2 responses by cytochrome 450-4A omega-hydroxylase metabolites in Dahl salt-sensitive rats. Microcirculation 2009; 16:345-54. [PMID: 19225982 DOI: 10.1080/10739680802698007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study evaluated the role of the 20-HETE/cytochrome P450-4A omega-hydroxylase (CYP450-4A) system in microvascular regulation in the skeletal muscle circulation following short-term (three-day) exposure to a high-salt (HS) diet in Dahl salt-sensitive (SS) rats. METHODS The effects of inhibiting CYP450-4A on resting diameter, O(2)-induced constriction, and vasodilator responses to acetylcholine (ACh) and the nitric oxide (NO) donor, sodium nitroprusside (SNP), were evaluated in cremasteric arterioles of SS rats fed a low- (LS; 0.4% NaCl) or high-salt (HS; 4% NaCl) diet for three days. RESULTS The HS diet upregulated CYP450-4A mRNA expression and led to an enhanced constriction of arterioles in response to elevated PO(2) in SS rats, which could be blocked by inhibiting CYP450-4A enzymes with dibromododecenyl methylsulfimide (DDMS). DDMS also inhibited resting tone significantly in SS rats fed the HS, but not the LS, diet, despite similar resting diameters and active tone in the two groups. Arteriolar dilations in response to ACh and SNP were similar in SS rats fed the LS vs. the HS diet and were unaffected by DDMS. CONCLUSIONS These findings suggest that CYP450-4A enzymes contribute to resting tone and to an enhanced response to elevated PO(2) in arterioles of Dahl-SS rats fed the HS diet.
Collapse
Affiliation(s)
- Jingli Wang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 USA
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Liclican EL, McGiff JC, Falck JR, Carroll MA. Failure to upregulate the adenosine2A receptor-epoxyeicosatrienoic acid pathway contributes to the development of hypertension in Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2008; 295:F1696-704. [PMID: 18829737 DOI: 10.1152/ajprenal.90502.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine-activated renovascular dilatation in Sprague-Dawley (SD) rats is mediated by stimulating adenosine(2A) receptors (A(2A)R), which is linked to epoxyeicosatrienoic acid (EET) synthesis. The A(2A)R-EET pathway is upregulated by high salt (HS) intake in normotensive SD rats. Because this pathway is antipressor, we examined the role of the A(2A)R-EET pathway in Dahl salt-sensitive (SS) rats. Male Dahl salt-resistant (SR) and SS rats were fed either HS (8.0% NaCl) or normal salt (NS; 0.4% NaCl) diet for 7 days. On day 8, isolated kidneys were perfused with Krebs-Henseleit buffer containing indomethacin and N(G)-nitro-l-arginine methyl ester and preconstricted with phenylephrine. Bolus injections of the stable adenosine analog 2-chloroadenosine (2-CA; 0.1-20 microg) elicited dose-dependent dilation in both Dahl SR and SS rats. Dahl SR rats fed a HS diet demonstrated a greater renal vasodilator response to 10 microg of 2-CA, as measured by the reduction in renal perfusion pressure, than that of Dahl SR rats fed a NS diet (-104 +/- 6 vs. -77 +/- 7 mmHg, respectively; P < 0.05). In contrast, Dahl SS rats did not exhibit a difference in the vasodilator response to 2-CA whether fed NS or HS diet (96 +/- 6 vs. 104 +/- 13 mmHg in NS- and HS-fed rats, respectively). In Dahl SR but not Dahl SS rats, HS intake significantly increased purine flux, augmented the protein expression of A(2A)R and the cytochrome P-450 2C23 and 2C11 epoxygenases, and elevated the renal efflux of EETs. Thus the Dahl SR rat is able to respond to HS intake by recruiting EET formation, whereas the Dahl SS rat appears to have exhausted its ability to increase EET synthesis above the levels observed on NS intake, and this inability of Dahl SS rats to upregulate the A(2A)R-EET pathway in response to salt loading may contribute to the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Elvira L Liclican
- Dept. of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
45
|
Kunert MP, Dwinell MR, Drenjancevic Peric I, Lombard JH. Sex-specific differences in chromosome-dependent regulation of vascular reactivity in female consomic rat strains from a SSxBN cross. Am J Physiol Regul Integr Comp Physiol 2008; 295:R516-27. [PMID: 18509103 DOI: 10.1152/ajpregu.00038.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-throughput studies in the Medical College of Wisconsin Program for Genomic Applications (Physgen) were designed to link chromosomes with physiological function in consomic strains derived from a cross between Dahl salt-sensitive SS/JrHsdMcwi (SS) and Brown Norway normotensive BN/NHsdMcwi (BN) rats. The specific goal of the vascular protocol was to characterize the responses of aortic rings from these strains to vasoconstrictor and vasodilator stimuli (phenylephrine, acetylcholine, sodium nitroprusside, and bath hypoxia) to identify chromosomes that either increase or decrease vascular reactivity to these vasoactive stimuli. Because previous studies demonstrated sex-specific quantitative trait loci (QTLs) related to regulation of cardiovascular phenotypes in an F2 cross between the parental strains, males and females of each consomic strain were included in all experiments. As there were significant sex-specific differences in aortic sensitivity to vasoconstrictor and vasodilator stimuli compared with the parental SS strain, we report the results of the females separately from the males. There were also sex-specific differences in aortic ring sensitivity to these vasoactive stimuli in consomic strains that were fed a high-salt diet (4% NaCl) for 3 wk to evaluate salt-induced changes in vascular reactivity. Differences in genetic architecture could contribute to sex-specific differences in the development and expression of cardiovascular diseases via differential regulation and expression of genes. Our findings are the first to link physiological traits with specific chromosomes in female SS rats and support the idea that sex is an important environmental variable that plays a role in the expression and regulation of genes.
Collapse
Affiliation(s)
- Mary Pat Kunert
- College of Nursing, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA.
| | | | | | | |
Collapse
|
46
|
|
47
|
Marvar PJ, Falck JR, Boegehold MA. High dietary salt reduces the contribution of 20-HETE to arteriolar oxygen responsiveness in skeletal muscle. Am J Physiol Heart Circ Physiol 2007; 292:H1507-15. [PMID: 17114243 DOI: 10.1152/ajpheart.00754.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The coupling of tissue blood flow to cellular metabolic demand involves oxygen-dependent adjustments in arteriolar tone, and arteriolar responses to oxygen can be mediated, in part, by changes in local production of 20-HETE. In this study, we examined the long-term effect of dietary salt on arteriolar oxygen responsiveness in the exteriorized, superfused rat spinotrapezius muscle and the role of 20-HETE in this responsiveness. Rats were fed either a normal-salt (NS, 0.45%) or high-salt (HS, 4%) diet for 4–5 wk. There was no difference in steady-state tissue Po2 between NS and HS rats, and elevation of superfusate oxygen content from 0% to 10% caused tissue Po2 to increase by the same amount in both groups. However, the resulting reductions in arteriolar diameter and blood flow were less in HS rats than NS rats. Inhibition of 20-HETE formation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or 17-octadecynoic acid (17-ODYA) attenuated oxygen-induced constriction in NS rats but not HS rats. Exogenous 20-HETE elicited arteriolar constriction that was greatly reduced by the large-conductance Ca2+-activated potassium (KCa) channel inhibitors tetraethylammonium chloride (TEA) and iberiotoxin (IbTx) in NS rats and a smaller constriction that was less sensitive to TEA or IbTx in HS rats. Arteriolar responses to exogenous angiotensin II were similar in both groups but more sensitive to inhibition with DDMS in NS rats. Norepinephrine-induced arteriolar constriction was similar and insensitive to DDMS in both groups. We conclude that 20-HETE contributes to oxygen-induced constriction of skeletal muscle arterioles via inhibition of KCa channels and that a high-salt diet impairs arteriolar responses to increased oxygen availability due to a reduction in vascular smooth muscle responsiveness to 20-HETE.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Arterioles/drug effects
- Arterioles/physiology
- Hydroxyeicosatetraenoic Acids/metabolism
- Indomethacin/pharmacology
- Male
- Models, Animal
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Norepinephrine/pharmacology
- Oxygen/blood
- Rats
- Rats, Sprague-Dawley
- Sodium, Dietary/pharmacology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Paul J Marvar
- Dept of Physiology and Pharmacology, West Virginia Univ School of Medicine, Robert C Byrd Health Science Center, Morgantown, WV 26506-9229, USA
| | | | | |
Collapse
|
48
|
Zhu J, Drenjancevic-Peric I, McEwen S, Friesema J, Schulta D, Yu M, Roman RJ, Lombard JH. Role of superoxide and angiotensin II suppression in salt-induced changes in endothelial Ca2+ signaling and NO production in rat aorta. Am J Physiol Heart Circ Physiol 2006; 291:H929-38. [PMID: 16603691 DOI: 10.1152/ajpheart.00692.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Male Sprague-Dawley rats were maintained on a low-salt (LS) diet (0.4% NaCl) or changed to a high-salt (HS) diet (4% NaCl) for 3 days. Increases in intracellular Ca2+ ([Ca2+]i) in response to methacholine (10 μM) and histamine (10 μM) were significantly attenuated in aortic endothelial cells from rats fed a HS diet, whereas thapsigargin (10 μM)-induced increases in [Ca2+]i were unaffected. Methacholine-induced nitric oxide (NO) production was eliminated in endothelial cells of aortas from rats fed a HS diet. Low-dose ANG II infusion (5 ng·kg−1·min−1 iv) for 3 days prevented impaired [Ca2+]i signaling response to methacholine and histamine and restored methacholine-induced NO production in aortas from rats on a HS diet. Adding Tempol (500 μM) to the tissue bath to scavenge superoxide anions increased NO release and caused Nω-nitro-l-arginine methyl ester-sensitive vascular relaxation in aortas from rats fed a HS diet but had no effect on methacholine-induced Ca2+ responses. Chronic treatment with Tempol (1 mM) in the drinking water restored NO release, augmented vessel relaxation, and increased methacholine-induced Ca2+ responses significantly in aortas from rats on a HS diet but not in aortas from rats on a LS diet. These findings suggest that 1) agonist-induced Ca2+ responses and NO levels are reduced in aortas of rats on a HS diet; 2) increased vascular superoxide levels contribute to NO destruction, and, eventually, to impaired Ca2+ signaling in the vascular endothelial cells; and 3) reduced circulating ANG II levels during elevated dietary salt lead to elevated superoxide levels, impaired endothelial Ca2+ signaling, and reduced NO production in the endothelium.
Collapse
Affiliation(s)
- Jiaxuan Zhu
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kunert MP, Drenjancevic-Peric I, Dwinell MR, Lombard JH, Cowley AW, Greene AS, Kwitek AE, Jacob HJ. Consomic strategies to localize genomic regions related to vascular reactivity in the Dahl salt-sensitive rat. Physiol Genomics 2006; 26:218-25. [PMID: 16772359 DOI: 10.1152/physiolgenomics.00004.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromosomal substitution strains afford the opportunity to discover regions of the rat genome that contain genes related to cardiovascular traits with the long-range goal of linking these genes to physiological function. PhysGen (Programs for Genomic Applications) created a consomic panel of rats derived from the introgression of a single chromosome (> or =95% of the BN chromosome, one at a time) of the Brown Norway (BN/NHsdMcwi) rat onto the homogeneous genetic background of the Dahl salt-sensitive rat (SS/JrHsdMcwi). For 3 wk before the experiment, the rats were maintained on a low-salt diet (0.4% NaCl). The dose response of aortic rings from each strain of rat to phenylephrine, acetylcholine, sodium nitroprusside, and three different levels of tissue bath hypoxia (10, 5, and 0% O2) was measured and compared with the parental SS rat. To maximize the possibility that differences among the strains would become apparent, each strain of rat including the parental SS and BN was also studied after being maintained on a high-salt diet (4.0% NaCl) for 3 wk. If the response of the aortic ring from a consomic strain to these vasoactive substances was different from that of the SS parental strain, it was concluded that the introgressed chromosome contained a gene or genes that contributed to that difference. Because the BN chromosome is removed from its native background and the SS rat loses a native chromosome, it is also necessary to consider the contribution of changes in gene-to-gene interaction.
Collapse
Affiliation(s)
- Mary Pat Kunert
- University of Wisconsin-Milwaukee, College of Nursing, Milwaukee, Wisconsin 53211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Phillips SA, Olson EB, Lombard JH, Morgan BJ. Chronic intermittent hypoxia alters NE reactivity and mechanics of skeletal muscle resistance arteries. J Appl Physiol (1985) 2006; 100:1117-23. [PMID: 16357071 DOI: 10.1152/japplphysiol.00994.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although arterial dilator reactivity is severely impaired during exposure of animals to chronic intermittent hypoxia (CIH), few studies have characterized vasoconstrictor responsiveness in resistance arteries of this model of sleep-disordered breathing. Sprague-Dawley rats were exposed to CIH (10% inspired O2 fraction for 1 min at 4-min intervals; 12 h/day) for 14 days. Control rats were housed under normoxic conditions. Diameters of isolated gracilis muscle resistance arteries (GA; 120–150 μm) were measured by television microscopy before and during exposure to norepinephrine (NE) and angiotensin II (ANG II) and at various intraluminal pressures between 20 and 140 mmHg in normal and Ca2+-free physiological salt solution. There was no difference in the ability of GA to constrict in response to ANG II ( P = 0.42; not significant; 10−10–10−7 M). However, resting tone, myogenic activation, and vasoconstrictor responses to NE ( P < 0.001; 10−9–10−6 M) were reduced in CIH vs. controls. Treatment of rats with the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol; 1 mM) in the drinking water restored myogenic responses and NE-induced constrictions of CIH rats, suggesting that elevated superoxide production during exposure to CIH attenuates vasoconstrictor responsiveness to NE and myogenic activation in skeletal muscle resistance arteries. CIH also leads to an increased stiffness and reduced vessel wall distensibility that were not correctable with oral tempol treatment.
Collapse
Affiliation(s)
- Shane A Phillips
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | | | | | | |
Collapse
|