1
|
Williams ZJ, Payne LB, Wu X, Gourdie RG. New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? Heart Rhythm 2025; 22:181-191. [PMID: 38908461 PMCID: PMC11662089 DOI: 10.1016/j.hrthm.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 β-subunits (β1-β4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1 but has a unique carboxyl-terminus. Although β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Laura Beth Payne
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Xiaobo Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia; School of Medicine, Virgina Polytechnic University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, Virginia.
| |
Collapse
|
2
|
Qu Z, Hanna P, Ajijola OA, Garfinkel A, Shivkumar K. Ultrastructure and cardiac impulse propagation: scaling up from microscopic to macroscopic conduction. J Physiol 2024. [PMID: 39612369 DOI: 10.1113/jp287632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 12/01/2024] Open
Abstract
The standard conception of cardiac conduction is based on the cable theory of nerve conduction, which treats cardiac tissue as a continuous syncytium described by the Hodgkin-Huxley equations. However, cardiac tissue is composed of discretized cells with microscopic and macroscopic heterogeneities and discontinuities, such as subcellular localizations of sodium channels and connexins. In addition to this, there are heterogeneities in the distribution of sympathetic and parasympathetic nerves, which powerfully regulate impulse propagation. In the continuous models, the ultrastructural details, i.e. the microscopic heterogeneities and discontinuities, are ignored by 'coarse graining' or 'smoothing'. However, these ultrastructural components may play crucial roles in cardiac conduction and arrhythmogenesis, particularly in disease states. We discuss the current progress of modelling the effects of ultrastructural components on electrical conduction, the issues and challenges faced by the cardiac modelling community, and how to scale up conduction properties at the subcellular (microscopic) scale to the tissue and whole-heart (macroscopic) scale in future modelling and experimental studies, i.e. how to link the ultrastructure at different scales to impulse conduction and arrhythmogenesis in the heart.
Collapse
Affiliation(s)
- Zhilin Qu
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peter Hanna
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Alan Garfinkel
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Blair GA, Wu X, Bain C, Warren M, Hoeker GS, Poelzing S. Mannitol and hyponatremia regulate cardiac ventricular conduction in the context of sodium channel loss of function. Am J Physiol Heart Circ Physiol 2024; 326:H724-H734. [PMID: 38214908 PMCID: PMC11221810 DOI: 10.1152/ajpheart.00211.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Scn5a heterozygous null (Scn5a+/-) mice have historically been used to investigate arrhythmogenic mechanisms of diseases such as Brugada syndrome (BrS) and Lev's disease. Previously, we demonstrated that reducing ephaptic coupling (EpC) in ex vivo hearts exacerbates pharmacological voltage-gated sodium channel (Nav)1.5 loss of function (LOF). Whether this effect is consistent in a genetic Nav1.5 LOF model is yet to be determined. We hypothesized that loss of EpC would result in greater reduction in conduction velocity (CV) for the Scn5a+/- mouse relative to wild type (WT). In vivo ECGs and ex vivo optical maps were recorded from Langendorff-perfused Scn5a+/- and WT mouse hearts. EpC was reduced with perfusion of a hyponatremic solution, the clinically relevant osmotic agent mannitol, or a combination of the two. Neither in vivo QRS duration nor ex vivo CV during normonatremia was significantly different between the two genotypes. In agreement with our hypothesis, we found that hyponatremia severely slowed CV and disrupted conduction for 4/5 Scn5a+/- mice, but 0/6 WT mice. In addition, treatment with mannitol slowed CV to a greater extent in Scn5a+/- relative to WT hearts. Unexpectedly, treatment with mannitol during hyponatremia did not further slow CV in either genotype, but resolved the disrupted conduction observed in Scn5a+/- hearts. Similar results in guinea pig hearts suggest the effects of mannitol and hyponatremia are not species specific. In conclusion, loss of EpC through either hyponatremia or mannitol alone results in slowed or disrupted conduction in a genetic model of Nav1.5 LOF. However, the combination of these interventions attenuates conduction slowing.NEW & NOTEWORTHY Cardiac sodium channel loss of function (LOF) diseases such as Brugada syndrome (BrS) are often concealed. We optically mapped mouse hearts with reduced sodium channel expression (Scn5a+/-) to evaluate whether reduced ephaptic coupling (EpC) can unmask conduction deficits. Data suggest that conduction deficits in the Scn5a+/- mouse may be unmasked by treatment with hyponatremia and perinexal widening via mannitol. These data support further investigation of hyponatremia and mannitol as novel diagnostics for sodium channel loss of function diseases.
Collapse
Affiliation(s)
- Grace A Blair
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, United States
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Xiaobo Wu
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Chandra Bain
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Mark Warren
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Gregory S Hoeker
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Steven Poelzing
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, United States
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States
| |
Collapse
|
4
|
Zhang Y, Wu X, Vadlamani RA, Lim Y, Kim J, David K, Gilbert E, Li Y, Wang R, Jiang S, Wang A, Sontheimer H, English DF, Emori S, Davalos RV, Poelzing S, Jia X. Submillimeter Multifunctional Ferromagnetic Fiber Robots for Navigation, Sensing, and Modulation. Adv Healthc Mater 2023; 12:e2300964. [PMID: 37473719 PMCID: PMC10799194 DOI: 10.1002/adhm.202300964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Herein, submillimeter fiber robots that can integrate navigation, sensing, and modulation functions are presented. These fiber robots are fabricated through a scalable thermal drawing process at a speed of 4 meters per minute, which enables the integration of ferromagnetic, electrical, optical, and microfluidic composite with an overall diameter of as small as 250 µm and a length of as long as 150 m. The fiber tip deflection angle can reach up to 54o under a uniform magnetic field of 45 mT. These fiber robots can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, Langendorff mouse hearts model, glioblastoma micro platforms, and in vivo mouse models are utilized to demonstrate the capabilities of sensing electrophysiology signals and performing a localized treatment. Additionally, it is demonstrated that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.
Collapse
Affiliation(s)
- Yujing Zhang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Ram Anand Vadlamani
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Youngmin Lim
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jongwoon Kim
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kailee David
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Earl Gilbert
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - You Li
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruixuan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shan Jiang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Anbo Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22903, USA
| | | | - Satoru Emori
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
5
|
Adams WP, Raisch TB, Zhao Y, Davalos R, Barrett S, King DR, Bain CB, Colucci-Chang K, Blair GA, Hanlon A, Lozano A, Veeraraghavan R, Wan X, Deschenes I, Smyth JW, Hoeker GS, Gourdie RG, Poelzing S. Extracellular Perinexal Separation Is a Principal Determinant of Cardiac Conduction. Circ Res 2023; 133:658-673. [PMID: 37681314 PMCID: PMC10561697 DOI: 10.1161/circresaha.123.322567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.
Collapse
Affiliation(s)
- William P. Adams
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Tristan B. Raisch
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Yajun Zhao
- School of Biomedical Engineering and Sciences, Virginia Tech
| | - Rafael Davalos
- School of Biomedical Engineering and Sciences, Virginia Tech
| | | | - D. Ryan King
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Chandra B. Bain
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
| | - Katrina Colucci-Chang
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- School of Biomedical Engineering and Sciences, Virginia Tech
| | - Grace A. Blair
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Alexandra Hanlon
- Virginia Tech Center for Biostatistics and Health Data Science, Roanoke, Virginia
| | - Alicia Lozano
- Virginia Tech Center for Biostatistics and Health Data Science, Roanoke, Virginia
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - Xiaoping Wan
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - Isabelle Deschenes
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - James W. Smyth
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Department of Biological Sciences, College of Science, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Gregory S. Hoeker
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
| | - Robert G. Gourdie
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- School of Biomedical Engineering and Sciences, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Steven Poelzing
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
- School of Biomedical Engineering and Sciences, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
6
|
Zhang Y, Wu X, Vadlamani RA, Lim Y, Kim J, David K, Gilbert E, Li Y, Wang R, Jiang S, Wang A, Sontheimer H, English D, Emori S, Davalos RV, Poelzing S, Jia X. Multifunctional ferromagnetic fiber robots for navigation, sensing, and treatment in minimally invasive surgery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525973. [PMID: 36778450 PMCID: PMC9915472 DOI: 10.1101/2023.01.27.525973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Here, we present a robotic fiber platform for integrating navigation, sensing, and therapeutic functions at a submillimeter scale. These fiber robots consist of ferromagnetic, electrical, optical, and microfluidic components, fabricated with a thermal drawing process. Under magnetic actuation, they can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, we utilize Langendorff mouse hearts model, glioblastoma microplatforms, and in vivo mouse models to demonstrate the capabilities of sensing electrophysiology signals and performing localized treatment. Additionally, we demonstrate that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.
Collapse
Affiliation(s)
- Yujing Zhang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA
| | - Ram Anand Vadlamani
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA
| | - Youngmin Lim
- Department of Physics, Virginia Tech, Blacksburg, VA
| | - Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Kailee David
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA
| | - Earl Gilbert
- School of Neuroscience, Virginia Tech, Blacksburg, VA
| | - You Li
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Ruixuan Wang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Shan Jiang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Anbo Wang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA
| | | | - Satoru Emori
- Department of Physics, Virginia Tech, Blacksburg, VA
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA
| | - Xiaoting Jia
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
- School of Neuroscience, Virginia Tech, Blacksburg, VA
| |
Collapse
|
7
|
Abstract
Gap junctions, comprising connexin proteins, create conduits directly coupling the cytoplasms of adjacent cells. Expressed in essentially all tissues, dynamic gap junction structures enable the exchange of small molecules including ions and second messengers, and are central to maintenance of homeostasis and synchronized excitability. With such diverse and critical roles throughout the body, it is unsurprising that alterations to gap junction and/or connexin expression and function underlie a broad array of age-related pathologies. From neurological dysfunction to cardiac arrhythmia and bone loss, it is hard to identify a human disease state that does not involve reduced, or in some cases inappropriate, intercellular communication to affect organ function. With a complex life cycle encompassing several key regulatory steps, pathological gap junction remodeling during ageing can arise from alterations in gene expression, translation, intracellular trafficking, and posttranslational modification of connexins. Connexin proteins are now known to "moonlight" and perform a variety of non-junctional functions in the cell, independent of gap junctions. Furthermore, connexin "hemichannels" on the cell surface can communicate with the extracellular space without ever coupling to an adjacent cell to form a gap junction channel. This chapter will focus primarily on gap junctions in ageing, but such non-junctional connexin functions will be referred to where appropriate and the full spectrum of connexin biology should be noted as potentially causative/contributing to some findings in connexin knockout animals, for example.
Collapse
Affiliation(s)
- Michael J Zeitz
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA. .,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA. .,Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA. .,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
8
|
Teng ACT, Gu L, Di Paola M, Lakin R, Williams ZJ, Au A, Chen W, Callaghan NI, Zadeh FH, Zhou YQ, Fatah M, Chatterjee D, Jourdan LJ, Liu J, Simmons CA, Kislinger T, Yip CM, Backx PH, Gourdie RG, Hamilton RM, Gramolini AO. Tmem65 is critical for the structure and function of the intercalated discs in mouse hearts. Nat Commun 2022; 13:6166. [PMID: 36257954 PMCID: PMC9579145 DOI: 10.1038/s41467-022-33303-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
The intercalated disc (ICD) is a unique membrane structure that is indispensable to normal heart function, yet its structural organization is not completely understood. Previously, we showed that the ICD-bound transmembrane protein 65 (Tmem65) was required for connexin43 (Cx43) localization and function in cultured mouse neonatal cardiomyocytes. Here, we investigate the functional and cellular effects of Tmem65 reductions on the myocardium in a mouse model by injecting CD1 mouse pups (3-7 days after birth) with recombinant adeno-associated virus 9 (rAAV9) harboring Tmem65 shRNA, which reduces Tmem65 expression by 90% in mouse ventricles compared to scrambled shRNA injection. Tmem65 knockdown (KD) results in increased mortality which is accompanied by eccentric hypertrophic cardiomyopathy within 3 weeks of injection and progression to dilated cardiomyopathy with severe cardiac fibrosis by 7 weeks post-injection. Tmem65 KD hearts display depressed hemodynamics as measured echocardiographically as well as slowed conduction in optical recording accompanied by prolonged PR intervals and QRS duration in electrocardiograms. Immunoprecipitation and super-resolution microscopy demonstrate a physical interaction between Tmem65 and sodium channel β subunit (β1) in mouse hearts and this interaction appears to be required for both the establishment of perinexal nanodomain structure and the localization of both voltage-gated sodium channel 1.5 (NaV1.5) and Cx43 to ICDs. Despite the loss of NaV1.5 at ICDs, whole-cell patch clamp electrophysiology did not reveal reductions in Na+ currents but did show reduced Ca2+ and K+ currents in Tmem65 KD cardiomyocytes in comparison to control cells. We conclude that disrupting Tmem65 function results in impaired ICD structure, abnormal cardiac electrophysiology, and ultimately cardiomyopathy.
Collapse
Affiliation(s)
- Allen C T Teng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada.
| | - Liyang Gu
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
| | - Michelle Di Paola
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
| | - Robert Lakin
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Zachary J Williams
- The Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute at Virginia Tech. Carilion, Roanoke, VA, 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
| | - Aaron Au
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wenliang Chen
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Neal I Callaghan
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Farigol Hakem Zadeh
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Meena Fatah
- The Labatt Family Heart Centre (Dept. of Pediatrics) and Translational Medicine, The Hospital for Sick Children & Research Institute, University of Toronto, Toronto, ON., M5G 1X8, Canada
| | - Diptendu Chatterjee
- The Labatt Family Heart Centre (Dept. of Pediatrics) and Translational Medicine, The Hospital for Sick Children & Research Institute, University of Toronto, Toronto, ON., M5G 1X8, Canada
| | - L Jane Jourdan
- The Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute at Virginia Tech. Carilion, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Jack Liu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Craig A Simmons
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Christopher M Yip
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Robert G Gourdie
- The Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute at Virginia Tech. Carilion, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Robert M Hamilton
- The Labatt Family Heart Centre (Dept. of Pediatrics) and Translational Medicine, The Hospital for Sick Children & Research Institute, University of Toronto, Toronto, ON., M5G 1X8, Canada
| | - Anthony O Gramolini
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
9
|
Qian SS, Crandell I, Hanlon A, Joseph M, Poelzing S. Predictive Capability of Metabolic Panels for Postoperative Atrial Fibrillation in Cardiac Surgery Patients. J Surg Res 2022; 278:271-281. [PMID: 35636203 PMCID: PMC9764088 DOI: 10.1016/j.jss.2022.04.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Postoperative atrial fibrillation (POAF) occurs in up to 65% of cardiac surgery patients and is associated with an increased risk for stroke and mortality. Electrolyte disturbances in sodium (Na+), potassium (K+), total calcium (Ca2+), chloride (Cl-), and magnesium (Mg2+) are predisposing factors for POAF, but these imbalances are yet to be used to predict POAF. The purpose of this study is to determine whether the development of POAF can be predicted by blood plasma ionic composition. METHODS Metabolic panels of patients with no prior history of atrial fibrillation who did (n = 763) and did not develop POAF (n = 2144) after cardiac surgery were obtained from the Carilion Clinic electronic medical record system. We initially evaluated serum Na+, K+, Ca2+, Cl-, and Mg2+ in the two groups using descriptive statistics via scatter and spaghetti plots and then with predictive modeling via logistic regression and random forest models. RESULTS Neither scatter nor spaghetti plots of electrolyte data revealed a significant difference between those who did and did not develop POAF. Two logistic regression models and two random forest models with POAF status as the outcome were generated using the first observation for each electrolyte and the coefficient of the linear regression, which was obtained from a linear fit of the scatter plot. The random forest model using the first observation had a sensitivity of only 12.2%, but all four models had specificities more than 97%. CONCLUSIONS Neither of the two logistic regression nor two random forest models were able to effectively predict the development of POAF from plasma ionic concentrations, but the random forest models effectively classified patients who would not develop POAF.
Collapse
Affiliation(s)
- Steve S Qian
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida.
| | - Ian Crandell
- Virginia Tech Center for Biostatistics and Health Data Science, Roanoke, Virginia
| | - Alexandra Hanlon
- Virginia Tech Center for Biostatistics and Health Data Science, Roanoke, Virginia
| | - Mark Joseph
- Division of Cardiothoracic Surgery, Virginia Tech Carilion School of Medicine, Roanoke, Virginia; Fralin Biomedical Research Institute, Roanoke, Virginia
| | | |
Collapse
|
10
|
Lin J, Abraham A, George SA, Greer-Short A, Blair GA, Moreno A, Alber BR, Kay MW, Poelzing S. Ephaptic Coupling Is a Mechanism of Conduction Reserve During Reduced Gap Junction Coupling. Front Physiol 2022; 13:848019. [PMID: 35600295 PMCID: PMC9117633 DOI: 10.3389/fphys.2022.848019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Many cardiac pathologies are associated with reduced gap junction (GJ) coupling, an important modulator of cardiac conduction velocity (CV). However, the relationship between phenotype and functional expression of the connexin GJ family of proteins is controversial. For example, a 50% reduction of GJ coupling has been shown to have little impact on myocardial CV due to a concept known as conduction reserve. This can be explained by the ephaptic coupling (EpC) theory whereby conduction is maintained by a combination of low GJ coupling and increased electrical fields generated in the sodium channel rich clefts between neighboring myocytes. At the same time, low GJ coupling may also increase intracellular charge accumulation within myocytes, resulting in a faster transmembrane potential rate of change during depolarization (dV/dt_max) that maintains macroscopic conduction. To provide insight into the prevalence of these two phenomena during pathological conditions, we investigated the relationship between EpC and charge accumulation within the setting of GJ remodeling using multicellular simulations and companion perfused mouse heart experiments. Conduction along a fiber of myocardial cells was simulated for a range of GJ conditions. The model incorporated intercellular variations, including GJ coupling conductance and distribution, cell-to-cell separation in the intercalated disc (perinexal width—WP), and variations in sodium channel distribution. Perfused heart studies having conditions analogous to those of the simulations were performed using wild type mice and mice heterozygous null for the connexin gene Gja1. With insight from simulations, the relative contributions of EpC and charge accumulation on action potential parameters and conduction velocities were analyzed. Both simulation and experimental results support a common conclusion that low GJ coupling decreases and narrowing WP increases the rate of the AP upstroke when sodium channels are densely expressed at the ends of myocytes, indicating that conduction reserve is more dependent on EpC than charge accumulation during GJ uncoupling.
Collapse
Affiliation(s)
- Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, United States
- *Correspondence: Joyce Lin, ; Steven Poelzing,
| | - Anand Abraham
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Sharon A. George
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Amara Greer-Short
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Grace A. Blair
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Angel Moreno
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Bridget R. Alber
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Matthew W. Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Steven Poelzing
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- *Correspondence: Joyce Lin, ; Steven Poelzing,
| |
Collapse
|
11
|
Wei N, Tolkacheva EG. Mechanisms of arrhythmia termination during acute myocardial ischemia: Role of ephaptic coupling and complex geometry of border zone. PLoS One 2022; 17:e0264570. [PMID: 35290386 PMCID: PMC8923475 DOI: 10.1371/journal.pone.0264570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial ischemia occurs when blood flow to the heart is reduced, preventing the heart muscle from receiving enough oxygen required for survival. Several anatomical and electrophysiological changes occur at the ischemic core (IC) and border zone (BZ) during myocardial ischemia, for example, gap junctional remodeling, changes in ionic channel kinetics and electrophysiologic changes in cell excitability, which promote the development of cardiac arrhythmia. Ephaptic coupling (EpC), which is an electrical field effect developed in the shared cleft space between adjacent cells, has been suggested to rescue the conduction when gap junctions are impaired, such as myocardial ischemia. In this manuscript, we explored the impact of EpC, electrophysiological and anatomical components of myocardial ischemia on reentry termination during non-ischemic and ischemic condition. Our results indicated that EpC and BZ with complex geometry have opposite effects on the reentry termination. In particular, the presence of homogeneous EpC terminates reentry, whereas BZ with complex geometry alone facilitates reentry by producing wave break-up and alternating conduction block. The reentry is terminated in the presence of homogeneous or heterogeneous EpC despite the presence of complex geometry of the BZ, independent of the location of BZ. The inhibition of reentry can be attributed to a current-to-load mismatch. Our results points to an antiarrhythmic role of EpC and a pro-arrhythmic role of BZ with complex geometry.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
12
|
Wu X, Hoeker GS, Blair GA, King DR, Gourdie RG, Weinberg SH, Poelzing S. Hypernatremia and intercalated disc edema synergistically exacerbate long-QT syndrome type 3 phenotype. Am J Physiol Heart Circ Physiol 2021; 321:H1042-H1055. [PMID: 34623182 DOI: 10.1152/ajpheart.00366.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac voltage-gated sodium channel gain-of-function prolongs repolarization in the long-QT syndrome type 3 (LQT3). Previous studies suggest that narrowing the perinexus within the intercalated disc, leading to rapid sodium depletion, attenuates LQT3-associated action potential duration (APD) prolongation. However, it remains unknown whether extracellular sodium concentration modulates APD prolongation during sodium channel gain-of-function. We hypothesized that elevated extracellular sodium concentration and widened perinexus synergistically prolong APD in LQT3. LQT3 was induced with sea anemone toxin (ATXII) in Langendorff-perfused guinea pig hearts (n = 34). Sodium concentration was increased from 145 to 160 mM. Perinexal expansion was induced with mannitol or the sodium channel β1-subunit adhesion domain antagonist (βadp1). Epicardial ventricular action potentials were optically mapped. Individual and combined effects of varying clefts and sodium concentrations were simulated in a computational model. With ATXII, both mannitol and βadp1 significantly widened the perinexus and prolonged APD, respectively. The elevated sodium concentration alone significantly prolonged APD as well. Importantly, the combination of elevated sodium concentration and perinexal widening synergistically prolonged APD. Computational modeling results were consistent with animal experiments. Concurrently elevating extracellular sodium and increasing intercalated disc edema prolongs repolarization more than the individual interventions alone in LQT3. This synergistic effect suggests an important clinical implication that hypernatremia in the presence of cardiac edema can markedly increase LQT3-associated APD prolongation. Therefore, to our knowledge, this is the first study to provide evidence of a tractable and effective strategy to mitigate LQT3 phenotype by means of managing sodium levels and preventing cardiac edema in patients.NEW & NOTEWORTHY This is the first study to demonstrate that the long-QT syndrome type 3 (LQT3) phenotype can be exacerbated or concealed by regulating extracellular sodium concentrations and/or the intercalated disc separation. The animal experiments and computational modeling in the current study reveal a critically important clinical implication: sodium dysregulation in the presence of edema within the intercalated disc can markedly increase the risk of arrhythmia in LQT3. These findings strongly suggest that maintaining extracellular sodium within normal physiological limits may be an effective and inexpensive therapeutic option for patients with congenital or acquired sodium channel gain-of-function diseases.
Collapse
Affiliation(s)
- Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Robert G Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Seth H Weinberg
- Department of Biomedical Engineering, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
13
|
Nowak MB, Veeraraghavan R, Poelzing S, Weinberg SH. Cellular Size, Gap Junctions, and Sodium Channel Properties Govern Developmental Changes in Cardiac Conduction. Front Physiol 2021; 12:731025. [PMID: 34759834 PMCID: PMC8573326 DOI: 10.3389/fphys.2021.731025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Electrical conduction in cardiac ventricular tissue is regulated via sodium (Na+) channels and gap junctions (GJs). We and others have recently shown that Na+channels preferentially localize at the site of cell-cell junctions, the intercalated disc (ID), in adult cardiac tissue, facilitating coupling via the formation of intercellular Na+nanodomains, also termed ephaptic coupling (EpC). Several properties governing EpC vary with age, including Na+channel and GJ expression and distribution and cell size. Prior work has shown that neonatal cardiomyocytes have immature IDs with Na+channels and GJs diffusively distributed throughout the sarcolemma, while adult cells have mature IDs with preferentially localized Na+channels and GJs. In this study, we perform an in silico investigation of key age-dependent properties to determine developmental regulation of cardiac conduction. Simulations predict that conduction velocity (CV) biphasically depends on cell size, depending on the strength of GJ coupling. Total cell Na+channel conductance is predictive of CV in cardiac tissue with high GJ coupling, but not correlated with CV for low GJ coupling. We find that ephaptic effects are greatest for larger cells with low GJ coupling typically associated with intermediate developmental stages. Finally, simulations illustrate how variability in cellular properties during different developmental stages can result in a range of possible CV values, with a narrow range for both neonatal and adult myocardium but a much wider range for an intermediate developmental stage. Thus, we find that developmental changes predict associated changes in cardiac conduction.
Collapse
Affiliation(s)
- Madison B. Nowak
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Virginia Polytechnic Institute and State University, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| |
Collapse
|
14
|
Nowak MB, Poelzing S, Weinberg SH. Mechanisms underlying age-associated manifestation of cardiac sodium channel gain-of-function. J Mol Cell Cardiol 2021; 153:60-71. [PMID: 33373643 PMCID: PMC8026540 DOI: 10.1016/j.yjmcc.2020.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Cardiac action potentials are initiated by sodium ion (Na+) influx through voltage-gated Na+ channels. Na+ channel gain-of-function (GOF) can arise in inherited conditions due to mutations in the gene encoding the cardiac Na+ channel, such as Long QT syndrome type 3 (LQT3). LQT3 can be a "concealed" disease, as patients with LQT3-associated mutations can remain asymptomatic until later in life; however, arrhythmias can also arise early in life in LQT3 patients, demonstrating a complex age-associated manifestation. We and others recently demonstrated that cardiac Na+ channels preferentially localize at the intercalated disc (ID) in adult cardiac tissue, which facilitates ephaptic coupling and formation of intercellular Na+ nanodomains that regulate pro-arrhythmic early afterdepolarization (EAD) formation in tissue with Na+ channel GOF. Several properties related to ephaptic coupling vary with age, such as cell size and Na+ channel and gap junction (GJ) expression and distribution: neonatal cells have immature IDs, with Na+ channels and GJs primarily diffusively distributed, while adult myocytes have mature IDs with preferentially localized Na+ channels and GJs. Here, we perform an in silico study varying critical age-dependent parameters to investigate mechanisms underlying age-associated manifestation of Na+ channel GOF in a model of guinea pig cardiac tissue. Simulations predict that total Na+ current conductance is a critical factor in action potential duration (APD) prolongation. We find a complex cell size/ Na+ channel expression relationship: increases in cell size (without concurrent increases in Na+ channel expression) suppress EAD formation, while increases in Na+ channel expression (without concurrent increases in cell size) promotes EAD formation. Finally, simulations with neonatal and early age-associated parameters predict normal APD with minimal dependence on intercellular cleft width; however, variability in cellular properties can lead to EADs presenting in early developmental stages. In contrast, for adult-associated parameters, EAD formation is highly dependent on cleft width, consistent with a mechanism underlying the age-associated manifestation of the Na+ channel GOF.
Collapse
Affiliation(s)
- Madison B Nowak
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America; Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, VA, United States of America
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America.
| |
Collapse
|
15
|
King DR, Entz M, Blair GA, Crandell I, Hanlon AL, Lin J, Hoeker GS, Poelzing S. The conduction velocity-potassium relationship in the heart is modulated by sodium and calcium. Pflugers Arch 2021; 473:557-571. [PMID: 33660028 PMCID: PMC7940307 DOI: 10.1007/s00424-021-02537-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/27/2023]
Abstract
The relationship between cardiac conduction velocity (CV) and extracellular potassium (K+) is biphasic, with modest hyperkalemia increasing CV and severe hyperkalemia slowing CV. Recent studies from our group suggest that elevating extracellular sodium (Na+) and calcium (Ca2+) can enhance CV by an extracellular pathway parallel to gap junctional coupling (GJC) called ephaptic coupling that can occur in the gap junction adjacent perinexus. However, it remains unknown whether these same interventions modulate CV as a function of K+. We hypothesize that Na+, Ca2+, and GJC can attenuate conduction slowing consequent to severe hyperkalemia. Elevating Ca2+ from 1.25 to 2.00 mM significantly narrowed perinexal width measured by transmission electron microscopy. Optically mapped, Langendorff-perfused guinea pig hearts perfused with increasing K+ revealed the expected biphasic CV-K+ relationship during perfusion with different Na+ and Ca2+ concentrations. Neither elevating Na+ nor Ca2+ alone consistently modulated the positive slope of CV-K+ or conduction slowing at 10-mM K+; however, combined Na+ and Ca2+ elevation significantly mitigated conduction slowing at 10-mM K+. Pharmacologic GJC inhibition with 30-μM carbenoxolone slowed CV without changing the shape of CV-K+ curves. A computational model of CV predicted that elevating Na+ and narrowing clefts between myocytes, as occur with perinexal narrowing, reduces the positive and negative slopes of the CV-K+ relationship but do not support a primary role of GJC or sodium channel conductance. These data demonstrate that combinatorial effects of Na+ and Ca2+ differentially modulate conduction during hyperkalemia, and enhancing determinants of ephaptic coupling may attenuate conduction changes in a variety of physiologic conditions.
Collapse
Affiliation(s)
- D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Michael Entz
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Ian Crandell
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- School of Medicine, Virginia Tech Carilion, Roanoke, VA, USA.
| |
Collapse
|
16
|
Hoeker GS, James CC, Tegge AN, Gourdie RG, Smyth JW, Poelzing S. Attenuating loss of cardiac conduction during no-flow ischemia through changes in perfusate sodium and calcium. Am J Physiol Heart Circ Physiol 2020; 319:H396-H409. [PMID: 32678707 DOI: 10.1152/ajpheart.00112.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myocardial ischemia leads to conduction slowing, cell-to-cell uncoupling, and arrhythmias. We previously demonstrated that varying perfusate sodium (Na+) and calcium (Ca2+) attenuates conduction slowing and arrhythmias during simulated ischemia with continuous perfusion. Cardioprotection was selectively associated with widening of the perinexus, a gap junction adjacent nanodomain important to ephaptic coupling. It is unknown whether perfusate composition affects the perinexus or ischemic conduction during nonsimulated ischemia, when coronary flow is reduced or halted. We hypothesized that altering preischemic perfusate composition could facilitate perinexal expansion and attenuate conduction slowing during global ischemia. To test this hypothesis, ex vivo guinea pig hearts (n = 49) were Langendorff perfused with 145 or 153 mM Na+ and 1.25 or 2.0 mM Ca2+ and optically mapped during 30 min of no-flow ischemia. Altering Na+ and Ca2+ did not substantially affect baseline conduction. Increasing Na+ and decreasing Ca2+ both lowered pacing thresholds, whereas increasing Ca2+ narrowed perinexal width (Wp). A least squares mean estimate revealed that reduced perfusate Na+ and Ca2+ resulted in the most severe conduction slowing during ischemia. Increasing Na+ alone modestly attenuated conduction slowing, yet significantly delayed the median time to conduction block (10 to 16 min). Increasing both Na+ and Ca2+ selectively widened Wp during ischemia (22.7 vs. 15.7 nm) and attenuated conduction slowing to the greatest extent. Neither repolarization nor levels of total or phosphorylated connexin43 correlated with conduction slowing or block. Thus, perfusate-dependent widening of the perinexus preserved ischemic conduction and may be an adaptive response to ischemic stress.NEW & NOTEWORTHY Conduction slowing during acute ischemia creates an arrhythmogenic substrate. We have shown that extracellular ionic concentrations can alter conduction by modulating ephaptic coupling. Here, we demonstrate increased extracellular sodium and calcium significantly attenuate conduction slowing during no-flow ischemia. This effect was associated with selective widening of the perinexus, an intercalated disc nanodomain and putative cardiac ephapse. These findings suggest that acute changes in ephaptic coupling may serve as an adaptive response to ischemic stress.
Collapse
Affiliation(s)
- Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Carissa C James
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Allison N Tegge
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Robert G Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - James W Smyth
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Steven Poelzing
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
17
|
Nowak MB, Greer-Short A, Wan X, Wu X, Deschênes I, Weinberg SH, Poelzing S. Intercellular Sodium Regulates Repolarization in Cardiac Tissue with Sodium Channel Gain of Function. Biophys J 2020; 118:2829-2843. [PMID: 32402243 DOI: 10.1016/j.bpj.2020.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 11/30/2022] Open
Abstract
In cardiac myocytes, action potentials are initiated by an influx of sodium (Na+) ions via voltage-gated Na+ channels. Na+ channel gain of function (GOF), arising in both inherited conditions associated with mutation in the gene encoding the Na+ channel and acquired conditions associated with heart failure, ischemia, and atrial fibrillation, enhance Na+ influx, generating a late Na+ current that prolongs action potential duration (APD) and triggering proarrhythmic early afterdepolarizations (EADs). Recent studies have shown that Na+ channels are highly clustered at the myocyte intercalated disk, facilitating formation of Na+ nanodomains in the intercellular cleft between cells. Simulations from our group have recently predicted that narrowing the width of the intercellular cleft can suppress APD prolongation and EADs in the presence of Na+ channel mutations because of increased intercellular cleft Na+ ion depletion. In this study, we investigate the effects of modulating multiple extracellular spaces, specifically the intercellular cleft and bulk interstitial space, in a novel computational model and experimentally via osmotic agents albumin, dextran 70, and mannitol. We perform optical mapping and transmission electron microscopy in a drug-induced (sea anemone toxin, ATXII) Na+ channel GOF isolated heart model and modulate extracellular spaces via osmotic agents. Single-cell patch-clamp experiments confirmed that the osmotic agents individually do not enhance late Na+ current. Both experiments and simulations are consistent with the conclusion that intercellular cleft narrowing or expansion regulates APD prolongation; in contrast, modulating the bulk interstitial space has negligible effects on repolarization. Thus, we predict that intercellular cleft Na+ nanodomain formation and collapse critically regulates cardiac repolarization in the setting of Na+ channel GOF.
Collapse
Affiliation(s)
- Madison B Nowak
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Amara Greer-Short
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Xiaoping Wan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| | - Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
| |
Collapse
|
18
|
Bonilla IM, Belevych AE, Baine S, Stepanov A, Mezache L, Bodnar T, Liu B, Volpe P, Priori S, Weisleder N, Sakuta G, Carnes CA, Radwański PB, Veeraraghavan R, Gyorke S. Enhancement of Cardiac Store Operated Calcium Entry (SOCE) within Novel Intercalated Disk Microdomains in Arrhythmic Disease. Sci Rep 2019; 9:10179. [PMID: 31308393 PMCID: PMC6629850 DOI: 10.1038/s41598-019-46427-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/07/2019] [Indexed: 01/27/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE), a major Ca2+ signaling mechanism in non-myocyte cells, has recently emerged as a component of Ca2+ signaling in cardiac myocytes. Though it has been reported to play a role in cardiac arrhythmias and to be upregulated in cardiac disease, little is known about the fundamental properties of cardiac SOCE, its structural underpinnings or effector targets. An even greater question is how SOCE interacts with canonical excitation-contraction coupling (ECC). We undertook a multiscale structural and functional investigation of SOCE in cardiac myocytes from healthy mice (wild type; WT) and from a genetic murine model of arrhythmic disease (catecholaminergic ventricular tachycardia; CPVT). Here we provide the first demonstration of local, transient Ca2+ entry (LoCE) events, which comprise cardiac SOCE. Although infrequent in WT myocytes, LoCEs occurred with greater frequency and amplitude in CPVT myocytes. CPVT myocytes also evidenced characteristic arrhythmogenic spontaneous Ca2+ waves under cholinergic stress, which were effectively prevented by SOCE inhibition. In a surprising finding, we report that both LoCEs and their underlying protein machinery are concentrated at the intercalated disk (ID). Therefore, localization of cardiac SOCE in the ID compartment has important implications for SOCE-mediated signaling, arrhythmogenesis and intercellular mechanical and electrical coupling in health and disease.
Collapse
Affiliation(s)
- Ingrid M Bonilla
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA.,Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Andriy E Belevych
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Stephen Baine
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Andrei Stepanov
- Laboratory of Cell Pathology, Institute RAS, Saint Petersburg, Russia
| | - Louisa Mezache
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Tom Bodnar
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Bin Liu
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Pompeo Volpe
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Silvia Priori
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Noah Weisleder
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Galina Sakuta
- Laboratory of Cell Pathology, Institute RAS, Saint Petersburg, Russia
| | - Cynthia A Carnes
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Division of Pharmacy Practice and Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Rengasayee Veeraraghavan
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA. .,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA.
| | - Sandor Gyorke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
The efficiency of heart protection with HTK or HTK-N depending on the type of ischemia. Bioelectrochemistry 2019; 125:58-69. [DOI: 10.1016/j.bioelechem.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 11/19/2022]
|
20
|
George SA, Hoeker G, Calhoun PJ, Entz M, Raisch TB, King DR, Khan M, Baker C, Gourdie RG, Smyth JW, Nielsen MS, Poelzing S. Modulating cardiac conduction during metabolic ischemia with perfusate sodium and calcium in guinea pig hearts. Am J Physiol Heart Circ Physiol 2019; 316:H849-H861. [PMID: 30707595 DOI: 10.1152/ajpheart.00083.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that altering extracellular sodium (Nao) and calcium (Cao) can modulate a form of electrical communication between cardiomyocytes termed "ephaptic coupling" (EpC), especially during loss of gap junction coupling. We hypothesized that altering Nao and Cao modulates conduction velocity (CV) and arrhythmic burden during ischemia. Electrophysiology was quantified by optically mapping Langendorff-perfused guinea pig ventricles with modified Nao (147 or 155 mM) and Cao (1.25 or 2.0 mM) during 30 min of simulated metabolic ischemia (pH 6.5, anoxia, aglycemia). Gap junction-adjacent perinexal width ( WP), a candidate cardiac ephapse, and connexin (Cx)43 protein expression and Cx43 phosphorylation at S368 were quantified by transmission electron microscopy and Western immunoblot analysis, respectively. Metabolic ischemia slowed CV in hearts perfused with 147 mM Nao and 2.0 mM Cao; however, theoretically increasing EpC with 155 mM Nao was arrhythmogenic, and CV could not be measured. Reducing Cao to 1.25 mM expanded WP, as expected during ischemia, consistent with reduced EpC, but attenuated CV slowing while delaying arrhythmia onset. These results were further supported by osmotically reducing WP with albumin, which exacerbated CV slowing and increased early arrhythmias during ischemia, whereas mannitol expanded WP, permitted conduction, and delayed the onset of arrhythmias. Cx43 expression patterns during the various interventions insufficiently correlated with observed CV changes and arrhythmic burden. In conclusion, decreasing perfusate calcium during metabolic ischemia enhances perinexal expansion, attenuates conduction slowing, and delays arrhythmias. Thus, perinexal expansion may be cardioprotective during metabolic ischemia. NEW & NOTEWORTHY This study demonstrates, for the first time, that modulating perfusate ion composition can alter cardiac electrophysiology during simulated metabolic ischemia.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Gregory Hoeker
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Patrick J Calhoun
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Department of Biological Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Michael Entz
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Tristan B Raisch
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - D Ryan King
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Momina Khan
- Department of Human Food Nutrition and Exercise, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Chandra Baker
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Robert G Gourdie
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - James W Smyth
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Department of Biological Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| |
Collapse
|
21
|
Cathey B, Obaid S, Zolotarev AM, Pryamonosov RA, Syunyaev RA, George SA, Efimov IR. Open-Source Multiparametric Optocardiography. Sci Rep 2019; 9:721. [PMID: 30679527 PMCID: PMC6346041 DOI: 10.1038/s41598-018-36809-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023] Open
Abstract
Since the 1970s fluorescence imaging has become a leading tool in the discovery of mechanisms of cardiac function and arrhythmias. Gradual improvements in fluorescent probes and multi-camera technology have increased the power of optical mapping and made a major impact on the field of cardiac electrophysiology. Tandem-lens optical mapping systems facilitated simultaneous recording of multiple parameters characterizing cardiac function. However, high cost and technological complexity restricted its proliferation to the wider biological community. We present here, an open-source solution for multiple-camera tandem-lens optical systems for multiparametric mapping of transmembrane potential, intracellular calcium dynamics and other parameters in intact mouse hearts and in rat heart slices. This 3D-printable hardware and Matlab-based RHYTHM 1.2 analysis software are distributed under an MIT open-source license. Rapid prototyping permits the development of inexpensive, customized systems with broad functionality, allowing wider application of this technology outside biomedical engineering laboratories.
Collapse
Affiliation(s)
- Brianna Cathey
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA
| | - Sofian Obaid
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA
| | - Alexander M Zolotarev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Roman A Pryamonosov
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| | - Roman A Syunyaev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| | - Sharon A George
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA.
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA.
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
22
|
Gourdie RG. The Cardiac Gap Junction has Discrete Functions in Electrotonic and Ephaptic Coupling. Anat Rec (Hoboken) 2018; 302:93-100. [PMID: 30565418 DOI: 10.1002/ar.24036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
Connexin43-formed gap junctions have long been thought to contribute to cardiac conduction in the mammalian ventricle by providing direct electrotonic connectivity between the cytoplasms of neighboring cardiomyocytes. However, accumulating data from studies of non-mammalian hearts, Connexin 43 (Cx43) knockout mice and human Cx43 mutations have raised questions as to whether gap junctions are the sole means by which electrical coupling between cardiomyocytes is accomplished. Computational and experimental work over the last decade have indicated that intercellular propagation of action potentials in the heart may involve both electrotonic and ephaptic contributions-in what has been dubbed "mixed-mode" conduction. Interestingly, the Cx43 gap junction may provide a common structural platform in mammals that facilitates the operation of these two mechanisms. In addition to gap junction channels functioning in an electrotonic role, the perinexus region at the edge of gap junctions may be provide a niche for voltage-gated sodium channels from neighboring cells to be in sufficiently close proximity to enable ephaptic transmission of action potential. A novel role has recently been identified in this potential ephaptic mechanism for inter-membrane adhesion mediated by the beta subunit (beta1/Scn1b) of the sodium channel. The new perspective of the operational redundancy that is built into cardiac electrical connectivity could provide new understanding of arrhythmia mechanisms and holds the promise for new approach to anti-arrhythmic therapy. Anat Rec, 302:93-100, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert G Gourdie
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016.,Department of Emergency Medicine, Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, Virginia, 24016.,Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061
| |
Collapse
|
23
|
Abstract
A recently-described extracellular nanodomain, termed the perinexus, has been implicated in ephaptic coupling, which is an alternative mechanism for electrical conduction between cardiomyocytes. The current method for quantifying this space by manual segmentation is slow and has low spatial resolution.We developed an algorithm that uses serial image dilations of a binary outline to count the number of pixels between two opposing 2 dimensional edges.This algorithm requires fewer man hours and has a higher spatial resolution than the manual method while preserving the reproducibility of the manual process.In fact, experienced and novice investigators were able to recapitulate the results of a previous study with this new algorithm.The algorithm is limited by the human input needed to manually outline the perinexus and computational power mainly encumbered by a pre-existing pathfinding algorithm.However, the algorithm's high-throughput capabilities, high spatial resolution and reproducibility make it a versatile and robust measurement tool for use across a variety of applications requiring the measurement of the distance between any 2-dimensional (2D) edges.
Collapse
Affiliation(s)
- Tristan Raisch
- Virginia Tech Carilion Research Institute, Virginia Tech; Translational Biology, Medicine and Health, Virginia Tech
| | - Momina Khan
- Virginia Tech Carilion Research Institute, Virginia Tech
| | - Steven Poelzing
- Virginia Tech Carilion Research Institute, Virginia Tech; Translational Biology, Medicine and Health, Virginia Tech;
| |
Collapse
|
24
|
The role of the gap junction perinexus in cardiac conduction: Potential as a novel anti-arrhythmic drug target. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 144:41-50. [PMID: 30241906 DOI: 10.1016/j.pbiomolbio.2018.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/09/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease remains the single largest cause of natural death in the United States, with a significant cause of mortality associated with cardiac arrhythmias. Presently, options for treating and preventing myocardial electrical dysfunction, including sudden cardiac death, are limited. Recent studies have indicated that conduction of electrical activation in the heart may have an ephaptic component, wherein intercellular coupling occurs via electrochemical signaling across narrow extracellular clefts between cardiomyocytes. The perinexus is a 100-200 nm-wide stretch of closely apposed membrane directly adjacent to connexin 43 gap junctions. Electron and super-resolution microscopy studies, as well as biochemical analyses, have provided evidence that perinexal nanodomains may be candidate structures for facilitating ephaptic coupling. This work has included characterization of the perinexus as a region of close inter-membrane contact between cardiomyocytes (<30 nm) containing dense clusters of voltage-gated sodium channels. Here, we review what is known about perinexal structure and function and the potential that the perinexus may have novel and pivotal roles in disorders of cardiac conduction. Of particular interest is the prospect that cell adhesion mediated by the cardiac sodium channel β subunit (Scn1b) may be a novel anti-arrhythmic target.
Collapse
|
25
|
Raisch TB, Yanoff MS, Larsen TR, Farooqui MA, King DR, Veeraraghavan R, Gourdie RG, Baker JW, Arnold WS, AlMahameed ST, Poelzing S. Intercalated Disk Extracellular Nanodomain Expansion in Patients With Atrial Fibrillation. Front Physiol 2018; 9:398. [PMID: 29780324 PMCID: PMC5945828 DOI: 10.3389/fphys.2018.00398] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/04/2018] [Indexed: 12/29/2022] Open
Abstract
Aims: Atrial fibrillation (AF) is the most common sustained arrhythmia. Previous evidence in animal models suggests that the gap junction (GJ) adjacent nanodomain – perinexus – is a site capable of independent intercellular communication via ephaptic transmission. Perinexal expansion is associated with slowed conduction and increased ventricular arrhythmias in animal models, but has not been studied in human tissue. The purpose of this study was to characterize the perinexus in humans and determine if perinexal expansion associates with AF. Methods: Atrial appendages from 39 patients (pts) undergoing cardiac surgery were fixed for immunofluorescence and transmission electron microscopy (TEM). Intercalated disk distribution of the cardiac sodium channel Nav1.5, its β1 subunit, and connexin43 (C×43) was determined by confocal immunofluorescence. Perinexal width (Wp) from TEM was manually segmented by two blinded observers using ImageJ software. Results: Nav1.5, β1, and C×43 are co-adjacent within intercalated disks of human atria, consistent with perinexal protein distributions in ventricular tissue of other species. TEM revealed that the GJ adjacent intermembrane separation in an individual perinexus does not change at distances greater than 30 nm from the GJ edge. Importantly, Wp is significantly wider in patients with a history of AF than in patients with no history of AF by approximately 3 nm, and Wp correlates with age (R = 0.7, p < 0.05). Conclusion: Human atrial myocytes have voltage-gated sodium channels in a dynamic intercellular cleft adjacent to GJs that is consistent with previous descriptions of the perinexus. Further, perinexal width is greater in patients with AF undergoing cardiac surgery than in those without.
Collapse
Affiliation(s)
- Tristan B Raisch
- Virginia Tech Carilion Research Institute, Center for Heart and Regenerative Medicine, Virginia Tech, Blacksburg, VA, United States.,Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Matthew S Yanoff
- Virginia Tech Carilion Research Institute, Center for Heart and Regenerative Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Timothy R Larsen
- Department of Medicine, Section of Cardiology, Center for Atrial Fibrillation, Carilion Clinic, Roanoke, VA, United States
| | - Mohammed A Farooqui
- Department of Medicine, Section of Cardiology, Center for Atrial Fibrillation, Carilion Clinic, Roanoke, VA, United States
| | - D Ryan King
- Virginia Tech Carilion Research Institute, Center for Heart and Regenerative Medicine, Virginia Tech, Blacksburg, VA, United States.,Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States.,The Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Robert G Gourdie
- Virginia Tech Carilion Research Institute, Center for Heart and Regenerative Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Joseph W Baker
- Department of Surgery, Carilion Clinic, Roanoke, VA, United States
| | - William S Arnold
- Department of Surgery, Carilion Clinic, Roanoke, VA, United States
| | - Soufian T AlMahameed
- Department of Medicine, Section of Cardiology, Center for Atrial Fibrillation, Carilion Clinic, Roanoke, VA, United States
| | - Steven Poelzing
- Virginia Tech Carilion Research Institute, Center for Heart and Regenerative Medicine, Virginia Tech, Blacksburg, VA, United States.,Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
26
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
27
|
Entz M, King DR, Poelzing S. Design and validation of a tissue bath 3-D printed with PLA for optically mapping suspended whole heart preparations. Am J Physiol Heart Circ Physiol 2017; 313:H1190-H1198. [PMID: 28939646 DOI: 10.1152/ajpheart.00150.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 11/22/2022]
Abstract
With the sudden increase in affordable manufacturing technologies, the relationship between experimentalists and the designing process for laboratory equipment is rapidly changing. While experimentalists are still dependent on engineers and manufacturers for precision electrical, mechanical, and optical equipment, it has become a realistic option for in house manufacturing of other laboratory equipment with less precise design requirements. This is possible due to decreasing costs and increasing functionality of desktop three-dimensional (3-D) printers and 3-D design software. With traditional manufacturing methods, iterative design processes are expensive and time consuming, and making more than one copy of a custom piece of equipment is prohibitive. Here, we provide an overview to design a tissue bath and stabilizer for a customizable, suspended, whole heart optical mapping apparatus that can be produced significantly faster and less expensive than conventional manufacturing techniques. This was accomplished through a series of design steps to prevent fluid leakage in the areas where the optical imaging glass was attached to the 3-D printed bath. A combination of an acetone dip along with adhesive was found to create a water tight bath. Optical mapping was used to quantify cardiac conduction velocity and action potential duration to compare 3-D printed baths to a bath that was designed and manufactured in a machine shop. Importantly, the manufacturing method did not significantly affect conduction, action potential duration, or contraction, suggesting that 3-D printed baths are equally effective for optical mapping experiments.NEW & NOTEWORTHY This article details three-dimensional printable equipment for use in suspended whole heart optical mapping experiments. This equipment is less expensive than conventional manufactured equipment as well as easily customizable to the experimentalist. The baths can be waterproofed using only a three-dimensional printer, acetone, a glass microscope slide, c-clamps, and adhesive.
Collapse
Affiliation(s)
- Michael Entz
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.,Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia; and
| | - D Ryan King
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia; and.,Graduate program in Transnational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; .,Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia; and.,Graduate program in Transnational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
28
|
Greer-Short A, George SA, Poelzing S, Weinberg SH. Revealing the Concealed Nature of Long-QT Type 3 Syndrome. Circ Arrhythm Electrophysiol 2017; 10:e004400. [PMID: 28213505 DOI: 10.1161/circep.116.004400] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/13/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Gain-of-function mutations in the voltage-gated sodium channel (Nav1.5) are associated with the long-QT-3 (LQT3) syndrome. Nav1.5 is densely expressed at the intercalated disk, and narrow intercellular separation can modulate cell-to-cell coupling via extracellular electric fields and depletion of local sodium ion nanodomains. Models predict that significantly decreasing intercellular cleft widths slows conduction because of reduced sodium current driving force, termed "self-attenuation." We tested the novel hypothesis that self-attenuation can "mask" the LQT3 phenotype by reducing the driving force and late sodium current that produces early afterdepolarizations (EADs). METHODS AND RESULTS Acute interstitial edema was used to increase intercellular cleft width in isolated guinea pig heart experiments. In a drug-induced LQT3 model, acute interstitial edema exacerbated action potential duration prolongation and produced EADs, in particular, at slow pacing rates. In a computational cardiac tissue model incorporating extracellular electric field coupling, intercellular cleft sodium nanodomains, and LQT3-associated mutant channels, myocytes produced EADs for wide intercellular clefts, whereas for narrow clefts, EADs were suppressed. For both wide and narrow clefts, mutant channels were incompletely inactivated. However, for narrow clefts, late sodium current was reduced via self-attenuation, a protective negative feedback mechanism, masking EADs. CONCLUSIONS We demonstrated a novel mechanism leading to the concealing and revealing of EADs in LQT3 models. Simulations predict that this mechanism may operate independent of the specific mutation, suggesting that future therapies could target intercellular cleft separation as a compliment or alternative to sodium channels.
Collapse
Affiliation(s)
- Amara Greer-Short
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.)
| | - Sharon A George
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.)
| | - Steven Poelzing
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.).
| | - Seth H Weinberg
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.).
| |
Collapse
|
29
|
George SA, Calhoun PJ, Gourdie RG, Smyth JW, Poelzing S. TNFα Modulates Cardiac Conduction by Altering Electrical Coupling between Myocytes. Front Physiol 2017; 8:334. [PMID: 28588504 PMCID: PMC5440594 DOI: 10.3389/fphys.2017.00334] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Tumor Necrosis Factor α (TNFα) upregulation during acute inflammatory response has been associated with numerous cardiac effects including modulating Connexin43 and vascular permeability. This may in turn alter cardiac gap junctional (GJ) coupling and extracellular volume (ephaptic coupling) respectively. We hypothesized that acute exposure to pathophysiological TNFα levels can modulate conduction velocity (CV) in the heart by altering electrical coupling: GJ and ephaptic. Methods and Results: Hearts were optically mapped to determine CV from control, TNFα and TNFα + high calcium (2.5 vs. 1.25 mM) treated guinea pig hearts over 90 mins. Transmission electron microscopy was performed to measure changes in intercellular separation in the gap junction-adjacent extracellular nanodomain—perinexus (WP). Cx43 expression and phosphorylation were determined by Western blotting and Cx43 distribution by confocal immunofluorescence. At 90 mins, longitudinal and transverse CV (CVL and CVT, respectively) increased with control Tyrode perfusion but TNFα slowed CVT alone relative to control and anisotropy of conduction increased, but not significantly. TNFα increased WP relative to control at 90 mins, without significantly changing GJ coupling. Increasing extracellular calcium after 30 mins of just TNFα exposure increased CVT within 15 mins. TNFα + high calcium also restored CVT at 90 mins and reduced WP to control values. Interestingly, TNFα + high calcium also improved GJ coupling at 90 mins, which along with reduced WP may have contributed to increasing CV. Conclusions: Elevating extracellular calcium during acute TNFα exposure reduces perinexal expansion, increases ephaptic, and GJ coupling, improves CV and may be a novel method for preventing inflammation induced CV slowing.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States
| | - Patrick J Calhoun
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States
| | - Robert G Gourdie
- Department of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States.,Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| | - James W Smyth
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| | - Steven Poelzing
- Department of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States.,Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| |
Collapse
|
30
|
Belardinelli L, Maleckar MM, Giles WR. Ventricular Microanatomy, Arrhythmias, and the Electrochemical Driving Force for Na +: Is There a Need for Flipped Learning? Circ Arrhythm Electrophysiol 2017; 10:e004955. [PMID: 28213509 DOI: 10.1161/circep.117.004955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Luiz Belardinelli
- From the InCarda Therapeutics, Inc, Clinical Research and Development, Brisbane, CA (L.B.); Allen Institute for Cell Science, Seattle, WA (M.M.M.); and Faculties of Kinesiology and Medicine (W.R.G.), The University of Calgary, Alberta, Canada
| | - Mary M Maleckar
- From the InCarda Therapeutics, Inc, Clinical Research and Development, Brisbane, CA (L.B.); Allen Institute for Cell Science, Seattle, WA (M.M.M.); and Faculties of Kinesiology and Medicine (W.R.G.), The University of Calgary, Alberta, Canada
| | - Wayne R Giles
- From the InCarda Therapeutics, Inc, Clinical Research and Development, Brisbane, CA (L.B.); Allen Institute for Cell Science, Seattle, WA (M.M.M.); and Faculties of Kinesiology and Medicine (W.R.G.), The University of Calgary, Alberta, Canada.
| |
Collapse
|