1
|
Hickey AJR, Harford AR, Blier PU, Devaux JB. What causes cardiac mitochondrial failure at high environmental temperatures? J Exp Biol 2024; 227:jeb247432. [PMID: 39412006 DOI: 10.1242/jeb.247432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Although a mechanism accounting for hyperthermic death at critical temperatures remains elusive, the mitochondria of crucial active excitable tissues (i.e. heart and brain) may well be key to this process. Mitochondria produce ∼90% of the ATP required by cells to maintain cellular integrity and function. They also integrate into biosynthetic pathways that support metabolism as a whole, allow communication within the cell, and regulate cellular health and death pathways. We have previously shown that cardiac and brain mitochondria demonstrate decreases in the efficiency of, and absolute capacity for ATP synthesis as temperatures rise, until ultimately there is too little ATP to support cellular demands, and organ failure follows. Importantly, substantial decreases in ATP synthesis occur at temperatures immediately below the temperature of heart failure, and this suggests a causal role of mitochondria in hyperthermic death. However, what causes mitochondria to fail? Here, we consider the answers to this question. Mitochondrial dysfunction at high temperature has classically been attributed to elevated leak respiration suspected to result from increased movement of protons (H+) through the inner mitochondrial membrane (IMM), thereby bypassing the ATP synthases. In this Commentary, we introduce some alternative explanations for elevated leak respiration. We first consider respiratory complex I and then propose that a loss of IMM structure occurs as temperatures rise. The loss of the cristae folds of the IMM may affect the efficiency of H+ transport, increasing H+ conductance either through the IMM or into the bulk water phases of mitochondria. In either case, O2 consumption increases while ATP synthesis decreases.
Collapse
Affiliation(s)
- Anthony J R Hickey
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| | - Alice R Harford
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| | - Pierre U Blier
- Department of Biology, Chemistry and Geography, University of Quebec at Rimouski, 300 Allée des Ursulines, QC, Canada, G5L 3A1
| | - Jules B Devaux
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Jusic A, Erpapazoglou Z, Dalgaard LT, Lakkisto P, de Gonzalo-Calvo D, Benczik B, Ágg B, Ferdinandy P, Fiedorowicz K, Schroen B, Lazou A, Devaux Y. Guidelines for mitochondrial RNA analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102262. [PMID: 39091381 PMCID: PMC11292373 DOI: 10.1016/j.omtn.2024.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mitochondria are the energy-producing organelles of mammalian cells with critical involvement in metabolism and signaling. Studying their regulation in pathological conditions may lead to the discovery of novel drugs to treat, for instance, cardiovascular or neurological diseases, which affect high-energy-consuming cells such as cardiomyocytes, hepatocytes, or neurons. Mitochondria possess both protein-coding and noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and piwi-interacting RNAs, encoded by the mitochondria or the nuclear genome. Mitochondrial RNAs are involved in anterograde-retrograde communication between the nucleus and mitochondria and play an important role in physiological and pathological conditions. Despite accumulating evidence on the presence and biogenesis of mitochondrial RNAs, their study continues to pose significant challenges. Currently, there are no standardized protocols and guidelines to conduct deep functional characterization and expression profiling of mitochondrial RNAs. To overcome major obstacles in this emerging field, the EU-CardioRNA and AtheroNET COST Action networks summarize currently available techniques and emphasize critical points that may constitute sources of variability and explain discrepancies between published results. Standardized methods and adherence to guidelines to quantify and study mitochondrial RNAs in normal and disease states will improve research outputs, their reproducibility, and translation potential to clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Zoi Erpapazoglou
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bettina Benczik
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | | | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - on behalf of EU-CardioRNA COST Action CA17129
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - AtheroNET COST Action CA21153
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Nakamura E, Aoki T, Endo Y, Kazmi J, Hagiwara J, Kuschner CE, Yin T, Kim J, Becker LB, Hayashida K. Organ-Specific Mitochondrial Alterations Following Ischemia-Reperfusion Injury in Post-Cardiac Arrest Syndrome: A Comprehensive Review. Life (Basel) 2024; 14:477. [PMID: 38672748 PMCID: PMC11050834 DOI: 10.3390/life14040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction, which is triggered by systemic ischemia-reperfusion (IR) injury and affects various organs, is a key factor in the development of post-cardiac arrest syndrome (PCAS). Current research on PCAS primarily addresses generalized mitochondrial responses, resulting in a knowledge gap regarding organ-specific mitochondrial dynamics. This review focuses on the organ-specific mitochondrial responses to IR injury, particularly examining the brain, heart, and kidneys, to highlight potential therapeutic strategies targeting mitochondrial dysfunction to enhance outcomes post-IR injury. METHODS AND RESULTS We conducted a narrative review examining recent advancements in mitochondrial research related to IR injury. Mitochondrial responses to IR injury exhibit considerable variation across different organ systems, influenced by unique mitochondrial structures, bioenergetics, and antioxidative capacities. Each organ demonstrates distinct mitochondrial behaviors that have evolved to fulfill specific metabolic and functional needs. For example, cerebral mitochondria display dynamic responses that can be both protective and detrimental to neuronal activity and function during ischemic events. Cardiac mitochondria show vulnerability to IR-induced oxidative stress, while renal mitochondria exhibit a unique pattern of fission and fusion, closely linked to their susceptibility to acute kidney injury. This organ-specific heterogeneity in mitochondrial responses requires the development of tailored interventions. Progress in mitochondrial medicine, especially in the realms of genomics and metabolomics, is paving the way for innovative strategies to combat mitochondrial dysfunction. Emerging techniques such as mitochondrial transplantation hold the potential to revolutionize the management of IR injury in resuscitation science. CONCLUSIONS The investigation into organ-specific mitochondrial responses to IR injury is pivotal in the realm of resuscitation research, particularly within the context of PCAS. This nuanced understanding holds the promise of revolutionizing PCAS management, addressing the unique mitochondrial dysfunctions observed in critical organs affected by IR injury.
Collapse
Affiliation(s)
- Eriko Nakamura
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Yusuke Endo
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jacob Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jun Hagiwara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Cyrus E. Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
4
|
McCully JD, del Nido PJ, Emani SM. Mitochondrial transplantation: the advance to therapeutic application and molecular modulation. Front Cardiovasc Med 2023; 10:1268814. [PMID: 38162128 PMCID: PMC10757322 DOI: 10.3389/fcvm.2023.1268814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Mitochondrial transplantation provides a novel methodology for rescue of cell viability and cell function following ischemia-reperfusion injury and applications for other pathologies are expanding. In this review we present our methods and acquired data and evidence accumulated to support the use of mitochondrial transplantation.
Collapse
Affiliation(s)
- James D. McCully
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Pedro J. del Nido
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Sitaram M. Emani
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Hernandez-Resendiz S, Prakash A, Loo SJ, Semenzato M, Chinda K, Crespo-Avilan GE, Dam LC, Lu S, Scorrano L, Hausenloy DJ. Targeting mitochondrial shape: at the heart of cardioprotection. Basic Res Cardiol 2023; 118:49. [PMID: 37955687 PMCID: PMC10643419 DOI: 10.1007/s00395-023-01019-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
There remains an unmet need to identify novel therapeutic strategies capable of protecting the myocardium against the detrimental effects of acute ischemia-reperfusion injury (IRI), to reduce myocardial infarct (MI) size and prevent the onset of heart failure (HF) following acute myocardial infarction (AMI). In this regard, perturbations in mitochondrial morphology with an imbalance in mitochondrial fusion and fission can disrupt mitochondrial metabolism, calcium homeostasis, and reactive oxygen species production, factors which are all known to be critical determinants of cardiomyocyte death following acute myocardial IRI. As such, therapeutic approaches directed at preserving the morphology and functionality of mitochondria may provide an important strategy for cardioprotection. In this article, we provide an overview of the alterations in mitochondrial morphology which occur in response to acute myocardial IRI, and highlight the emerging therapeutic strategies for targeting mitochondrial shape to preserve mitochondrial function which have the future therapeutic potential to improve health outcomes in patients presenting with AMI.
Collapse
Affiliation(s)
- Sauri Hernandez-Resendiz
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Aishwarya Prakash
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Sze Jie Loo
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | | | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Gustavo E Crespo-Avilan
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Linh Chi Dam
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Shengjie Lu
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Derek J Hausenloy
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore.
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.
- National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore.
- University College London, The Hatter Cardiovascular Institute, London, UK.
| |
Collapse
|
6
|
Li A, Shami GJ, Griffiths L, Lal S, Irving H, Braet F. Giant mitochondria in cardiomyocytes: cellular architecture in health and disease. Basic Res Cardiol 2023; 118:39. [PMID: 37775647 PMCID: PMC10541842 DOI: 10.1007/s00395-023-01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Giant mitochondria are frequently observed in different disease models within the brain, kidney, and liver. In cardiac muscle, these enlarged organelles are present across diverse physiological and pathophysiological conditions including in ageing and exercise, and clinically in alcohol-induced heart disease and various cardiomyopathies. This mitochondrial aberration is widely considered an early structural hallmark of disease leading to adverse organ function. In this thematic paper, we discuss the current state-of-knowledge on the presence, structure and functional implications of giant mitochondria in heart muscle. Despite its demonstrated reoccurrence in different heart diseases, the literature on this pathophysiological phenomenon remains relatively sparse since its initial observations in the early 60s. We review historical and contemporary investigations from cultured cardiomyocytes to human tissue samples to address the role of giant mitochondria in cardiac health and disease. Finally, we discuss their significance for the future development of novel mitochondria-targeted therapies to improve cardiac metabolism and functionality.
Collapse
Affiliation(s)
- Amy Li
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia.
- Centre for Healthy Futures, Torrens University Australia, Surry Hills, NSW, Australia.
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia.
| | - Gerald J Shami
- School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Camperdown, NSW, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, NSW, Australia
| | - Lisa Griffiths
- Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, WA, Australia
| | - Sean Lal
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Filip Braet
- School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Camperdown, NSW, Australia.
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
7
|
Adams RA, Liu Z, Hsieh C, Marko M, Lederer WJ, Jafri MS, Mannella C. Structural Analysis of Mitochondria in Cardiomyocytes: Insights into Bioenergetics and Membrane Remodeling. Curr Issues Mol Biol 2023; 45:6097-6115. [PMID: 37504301 PMCID: PMC10378267 DOI: 10.3390/cimb45070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Mitochondria in mammalian cardiomyocytes display considerable structural heterogeneity, the significance of which is not currently understood. We use electron microscopic tomography to analyze a dataset of 68 mitochondrial subvolumes to look for correlations among mitochondrial size and shape, crista morphology and membrane density, and organelle location within rat cardiac myocytes. A tomographic analysis guided the definition of four classes of crista morphology: lamellar, tubular, mixed and transitional, the last associated with remodeling between lamellar and tubular cristae. Correlations include an apparent bias for mitochondria with lamellar cristae to be located in the regions between myofibrils and a two-fold larger crista membrane density in mitochondria with lamellar cristae relative to mitochondria with tubular cristae. The examination of individual cristae inside mitochondria reveals local variations in crista topology, such as extent of branching, alignment of fenestrations and progressive changes in membrane morphology and packing density. The findings suggest both a rationale for the interfibrillar location of lamellar mitochondria and a pathway for crista remodeling from lamellar to tubular morphology.
Collapse
Affiliation(s)
- Raquel A. Adams
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| | - Zheng Liu
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - Chongere Hsieh
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - Michael Marko
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - W. Jonathan Lederer
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - M. Saleet Jafri
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Carmen Mannella
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Morris S, Molina-Riquelme I, Barrientos G, Bravo F, Aedo G, Gómez W, Lagos D, Verdejo H, Peischard S, Seebohm G, Psathaki OE, Eisner V, Busch KB. Inner mitochondrial membrane structure and fusion dynamics are altered in senescent human iPSC-derived and primary rat cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148949. [PMID: 36493857 DOI: 10.1016/j.bbabio.2022.148949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Dysfunction of the aging heart is a major cause of death in the human population. Amongst other tasks, mitochondria are pivotal to supply the working heart with ATP. The mitochondrial inner membrane (IMM) ultrastructure is tailored to meet these demands and to provide nano-compartments for specific tasks. Thus, function and morphology are closely coupled. Senescent cardiomyocytes from the mouse heart display alterations of the inner mitochondrial membrane. To study the relation between inner mitochondrial membrane architecture, dynamics and function is hardly possible in living organisms. Here, we present two cardiomyocyte senescence cell models that allow in cellular studies of mitochondrial performance. We show that doxorubicin treatment transforms human iPSC-derived cardiomyocytes and rat neonatal cardiomyocytes in an aged phenotype. The treated cardiomyocytes display double-strand breaks in the nDNA, have β-galactosidase activity, possess enlarged nuclei, and show p21 upregulation. Most importantly, they also display a compromised inner mitochondrial structure. This prompted us to test whether the dynamics of the inner membrane was also altered. We found that the exchange of IMM components after organelle fusion was faster in doxorubicin-treated cells than in control cells, with no change in mitochondrial fusion dynamics at the meso-scale. Such altered IMM morphology and dynamics may have important implications for local OXPHOS protein organization, exchange of damaged components, and eventually the mitochondrial bioenergetics function of the aged cardiomyocyte.
Collapse
Affiliation(s)
- Silke Morris
- Institute of Integrative Cell Biology and Physiology, Schlossplatz 5, Faculty of Biology, University of Muenster, 48149 Muenster, North-Rhine-Westphalia, Germany
| | - Isidora Molina-Riquelme
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Gonzalo Barrientos
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Francisco Bravo
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Geraldine Aedo
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Wileidy Gómez
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Daniel Lagos
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Hugo Verdejo
- Facultad de Medicina, División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Stefan Peischard
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, North-Rhine-Westphalia, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, North-Rhine-Westphalia, Germany
| | - Olympia Ekaterini Psathaki
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, 49076 Osnabrück, Lower Saxony, Germany
| | - Verónica Eisner
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile.
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, Schlossplatz 5, Faculty of Biology, University of Muenster, 48149 Muenster, North-Rhine-Westphalia, Germany.
| |
Collapse
|
9
|
Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 2023; 8:114. [PMID: 36918543 PMCID: PMC10015017 DOI: 10.1038/s41392-023-01378-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.
Collapse
|
10
|
Germanova E, Khmil N, Pavlik L, Mikheeva I, Mironova G, Lukyanova L. The Role of Mitochondrial Enzymes, Succinate-Coupled Signaling Pathways and Mitochondrial Ultrastructure in the Formation of Urgent Adaptation to Acute Hypoxia in the Myocardium. Int J Mol Sci 2022; 23:ijms232214248. [PMID: 36430733 PMCID: PMC9696391 DOI: 10.3390/ijms232214248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
The effect of a single one-hour exposure to three modes of hypobaric hypoxia (HBH) differed in the content of O2 in inhaled air (FiO2-14%, 10%, 8%) in the development of mitochondrial-dependent adaptive processes in the myocardium was studied in vivo. The following parameters have been examined: (a) an urgent reaction of catalytic subunits of mitochondrial enzymes (NDUFV2, SDHA, Cyt b, COX2, ATP5A) in the myocardium as an indicator of the state of the respiratory chain electron transport function; (b) an urgent activation of signaling pathways dependent on GPR91, HIF-1α and VEGF, allowing us to assess their role in the formation of urgent mechanisms of adaptation to hypoxia in the myocardium; (c) changes in the ultrastructure of three subpopulations of myocardial mitochondria under these conditions. The studies were conducted on two rat phenotypes: rats with low resistance (LR) and high resistance (HR) to hypoxia. The adaptive and compensatory role of the mitochondrial complex II (MC II) in maintaining the electron transport and energy function of the myocardium in a wide range of reduced O2 concentrations in the initial period of hypoxic exposure has been established. The features of urgent reciprocal regulatory interaction of NAD- and FAD-dependent oxidation pathways in myocardial mitochondria under these conditions have been revealed. The data indicating the participation of GPR91, HIF-1a and VEGF in this process have been obtained. The ultrastructure of the mitochondrial subpopulations in the myocardium of LR and HR rats differed in normoxic conditions and reacted differently to hypoxia of varying severity. The parameters studied together are highly informative indicators of the quality of cardiac activity and metabolic biomarkers of urgent adaptation in various hypoxic conditions.
Collapse
Affiliation(s)
- Elita Germanova
- Institute of General Pathology and Pathophysiology, 8 Baltijskaya Str., Moscow 125315, Russia
| | - Natalya Khmil
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
| | - Lyubov Pavlik
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
| | - Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
| | - Galina Mironova
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
- Correspondence: (G.M.); (L.L.)
| | - Ludmila Lukyanova
- Institute of General Pathology and Pathophysiology, 8 Baltijskaya Str., Moscow 125315, Russia
- Correspondence: (G.M.); (L.L.)
| |
Collapse
|
11
|
Mendoza A, Karch J. Keeping the beat against time: Mitochondrial fitness in the aging heart. FRONTIERS IN AGING 2022; 3:951417. [PMID: 35958271 PMCID: PMC9360554 DOI: 10.3389/fragi.2022.951417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
The process of aging strongly correlates with maladaptive architectural, mechanical, and biochemical alterations that contribute to the decline in cardiac function. Consequently, aging is a major risk factor for the development of heart disease, the leading cause of death in the developed world. In this review, we will summarize the classic and recently uncovered pathological changes within the aged heart with an emphasis on the mitochondria. Specifically, we describe the metabolic changes that occur in the aging heart as well as the loss of mitochondrial fitness and function and how these factors contribute to the decline in cardiomyocyte number. In addition, we highlight recent pharmacological, genetic, or behavioral therapeutic intervention advancements that may alleviate age-related cardiac decline.
Collapse
Affiliation(s)
- Arielys Mendoza
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Wang H, Han Y, Li S, Chen Y, Chen Y, Wang J, Zhang Y, Zhang Y, Wang J, Xia Y, Yuan J. Mitochondrial DNA Depletion Syndrome and Its Associated Cardiac Disease. Front Cardiovasc Med 2022; 8:808115. [PMID: 35237671 PMCID: PMC8882844 DOI: 10.3389/fcvm.2021.808115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/06/2022] Open
Abstract
Mitochondria is a ubiquitous, energy-supplying (ATP-based) organelle found in nearly all eukaryotes. It acts as a “power plant” by producing ATP through oxidative phosphorylation, providing energy for the cell. The bioenergetic functions of mitochondria are regulated by nuclear genes (nDNA). Mitochondrial DNA (mtDNA) and respiratory enzymes lose normal structure and function when nuclear genes encoding the related mitochondrial factors are impaired, resulting in deficiency in energy production. Massive generation of reactive oxygen species and calcium overload are common causes of mitochondrial diseases. The mitochondrial depletion syndrome (MDS) is associated with the mutations of mitochondrial genes in the nucleus. It is a heterogeneous group of progressive disorders characterized by the low mtDNA copy number. TK2, FBXL4, TYPM, and AGK are genes known to be related to MDS. More recent studies identified new mutation loci associated with this disease. Herein, we first summarize the structure and function of mitochondria, and then discuss the characteristics of various types of MDS and its association with cardiac diseases.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yijun Han
- Clinical Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yunan Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jing Wang
- Dongying Fifth People's Hospital, Dongying, China
| | - Yuqing Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yawen Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
- Yong Xia
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Jinxiang Yuan
| |
Collapse
|
13
|
Messerer J, Wrede C, Schipke J, Brandenberger C, Abdellatif M, Eisenberg T, Madeo F, Sedej S, Mühlfeld C. Spermidine supplementation influences mitochondrial number and morphology in the heart of aged mice. J Anat 2021; 242:91-101. [PMID: 34958481 PMCID: PMC9773166 DOI: 10.1111/joa.13618] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023] Open
Abstract
Aging is associated with cardiac hypertrophy and progressive decline in heart function. One of the hallmarks of cellular aging is the dysfunction of mitochondria. These organelles occupy around 1/4 to 1/3 of the cardiomyocyte volume. During cardiac aging, the removal of defective or dysfunctional mitochondria by mitophagy as well as the dynamic equilibrium between mitochondrial fusion and fission is distorted. Here, we hypothesized that these changes affect the number of mitochondria and alter their three-dimensional (3D) characteristics in aged mouse hearts. The polyamine spermidine stimulates both mitophagy and mitochondrial biogenesis, and these are associated with improved cardiac function and prolonged lifespan. Therefore, we speculated that oral spermidine administration normalizes the number of mitochondria and their 3D morphology in aged myocardium. Young (4-months old) and old (24-months old) mice, treated or not treated with spermidine, were used in this study (n = 10 each). The number of mitochondria in the left ventricles was estimated by design-based stereology using the Euler-Poincaré characteristic based on a disector at the transmission electron microscopic level. The 3D morphology of mitochondria was investigated by 3D reconstruction (using manual contour drawing) from electron microscopic z-stacks obtained by focused ion beam scanning electron microscopy. The volume of the left ventricle and cardiomyocytes were significantly increased in aged mice with or without spermidine treatment. Although the number of mitochondria was similar in young and old control mice, it was significantly increased in aged mice treated with spermidine. The interfibrillar mitochondria from old mice exhibited a lower degree of organization and a greater variation in shape and size compared to young animals. The mitochondrial alignment along the myofibrils in the spermidine-treated mice appeared more regular than in control aged mice, however, old mitochondria from animals fed spermidine also showed a greater diversity of shape and size than young mitochondria. In conclusion, mitochondria of the aged mouse left ventricle exhibited changes in number and 3D ultrastructure that is likely the structural correlate of dysfunctional mitochondrial dynamics. Spermidine treatment reduced, at least in part, these morphological changes, indicating a beneficial effect on cardiac mitochondrial alterations associated with aging.
Collapse
Affiliation(s)
- Jil Messerer
- Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany
| | - Christoph Wrede
- Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany,Research Core Unit Electron MicroscopyHannover Medical SchoolHannoverGermany
| | - Julia Schipke
- Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany,Biomedical Research in Endstage and Obstructive Lung Disease HannoverMember of the German Center for Lung Research (DZL)HannoverGermany
| | - Christina Brandenberger
- Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany,Biomedical Research in Endstage and Obstructive Lung Disease HannoverMember of the German Center for Lung Research (DZL)HannoverGermany
| | | | - Tobias Eisenberg
- BioTechMed GrazGrazAustria,Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria,Field of Excellence BioHealth—University of GrazGrazAustria
| | - Frank Madeo
- BioTechMed GrazGrazAustria,Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria,Field of Excellence BioHealth—University of GrazGrazAustria
| | - Simon Sedej
- Department of CardiologyMedical University of GrazGrazAustria,BioTechMed GrazGrazAustria,Faculty of MedicineUniversity of MariborMariborSlovenia
| | - Christian Mühlfeld
- Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany,Research Core Unit Electron MicroscopyHannover Medical SchoolHannoverGermany,Biomedical Research in Endstage and Obstructive Lung Disease HannoverMember of the German Center for Lung Research (DZL)HannoverGermany
| |
Collapse
|
14
|
Boulghobra D, Dubois M, Alpha-Bazin B, Coste F, Olmos M, Gayrard S, Bornard I, Meyer G, Gaillard JC, Armengaud J, Reboul C. Increased protein S-nitrosylation in mitochondria: a key mechanism of exercise-induced cardioprotection. Basic Res Cardiol 2021; 116:66. [PMID: 34940922 DOI: 10.1007/s00395-021-00906-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) activation in the heart plays a key role in exercise-induced cardioprotection during ischemia-reperfusion, but the underlying mechanisms remain unknown. We hypothesized that the cardioprotective effect of exercise training could be explained by the re-localization of eNOS-dependent nitric oxide (NO)/S-nitrosylation signaling to mitochondria. By comparing exercised (5 days/week for 5 weeks) and sedentary Wistar rats, we found that exercise training increased eNOS level and activation by phosphorylation (at serine 1177) in mitochondria, but not in the cytosolic subfraction of cardiomyocytes. Using confocal microscopy, we confirmed that NO production in mitochondria was increased in response to H2O2 exposure in cardiomyocytes from exercised but not sedentary rats. Moreover, by S-nitrosoproteomic analysis, we identified several key S-nitrosylated proteins involved in mitochondrial function and cardioprotection. In agreement, we also observed that the increase in Ca2+ retention capacity by mitochondria isolated from the heart of exercised rats was abolished by exposure to the NOS inhibitor L-NAME or to the reducing agent ascorbate, known to denitrosylate proteins. Pre-incubation with ascorbate or L-NAME also increased mitochondrial reactive oxygen species production in cardiomyocytes from exercised but not from sedentary animals. We confirmed these results using isolated hearts perfused with L-NAME before ischemia-reperfusion. Altogether, these results strongly support the hypothesis that exercise training increases eNOS/NO/S-nitrosylation signaling in mitochondria, which might represent a key mechanism of exercise-induced cardioprotection.
Collapse
Affiliation(s)
| | | | - Béatrice Alpha-Bazin
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Florence Coste
- LAPEC EA-4278, Avignon Université, 84000, Avignon, France
| | - Maxime Olmos
- LAPEC EA-4278, Avignon Université, 84000, Avignon, France
| | | | | | - Gregory Meyer
- LAPEC EA-4278, Avignon Université, 84000, Avignon, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Cyril Reboul
- LAPEC EA-4278, Avignon Université, 84000, Avignon, France. .,Cardiovascular Physiology Laboratory, UPR4278, UFR Sciences Technologies Santé, Centre INRAE-Site Agroparc, 228 route de l'Aérodrome, 84914, Avignon Cedex 9, France.
| |
Collapse
|
15
|
Bock T, Türk C, Aravamudhan S, Keufgens L, Bloch W, Rozsivalova DH, Romanello V, Nogara L, Blaauw B, Trifunovic A, Braun T, Krüger M. PERM1 interacts with the MICOS-MIB complex to connect the mitochondria and sarcolemma via ankyrin B. Nat Commun 2021; 12:4900. [PMID: 34385433 PMCID: PMC8361071 DOI: 10.1038/s41467-021-25185-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria subpopulations have distinct metabolic activity and sensitivity, though the mechanisms that localize SSM to peripheral areas of muscle fibers are poorly understood. A protein interaction study and complexome profiling identifies PERM1 interacts with the MICOS-MIB complex. Ablation of Perm1 in mice reduces muscle force, decreases mitochondrial membrane potential and complex I activity, and reduces the numbers of SSM in skeletal muscle. We demonstrate PERM1 interacts with the intracellular adaptor protein ankyrin B (ANKB) that connects the cytoskeleton to the plasma membrane. Moreover, we identify a C-terminal transmembrane helix that anchors PERM1 into the outer mitochondrial membrane. We conclude PERM1 functions in the MICOS-MIB complex and acts as an adapter to connect the mitochondria with the sarcolemma via ANKB.
Collapse
Affiliation(s)
- Theresa Bock
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Clara Türk
- BASF SE, Metabolomics and Proteomics, Ludwigshafen am Rhein, Germany
| | | | - Lena Keufgens
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Sport Medicine and Cardiovascular Research, German Sport University Cologne, Cologne, Germany
| | - Dieu Hien Rozsivalova
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Vanina Romanello
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, Padova, Italy
| | - Aleksandra Trifunovic
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
16
|
Fernandes Vileigas D, Cicogna AC. Effects of obesity on the cardiac proteome. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2020.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
17
|
Akande O, Chen Q, Toldo S, Lesnefsky EJ, Quader M. Ischemia and reperfusion injury to mitochondria and cardiac function in donation after circulatory death hearts- an experimental study. PLoS One 2020; 15:e0243504. [PMID: 33370296 PMCID: PMC7769461 DOI: 10.1371/journal.pone.0243504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
The ultimate treatment for patients with end-stage heart failure is heart transplantation. The number of donor hearts which are primarily procured from donation after brain death (DBD) donors is limited, but donation after circulatory death (DCD) donor hearts can increase the heart donor pool. However, ischemia and reperfusion injuries associated with the DCD process causes myocardial damage, limiting the use of DCD hearts in transplantation. Addressing this problem is critical in the exploration of DCD hearts as suitable donor hearts for transplantation. In this study, rat hearts were procured following the control beating-heart donor (CBD) or DCD donation process. Changes in mitochondria and cardiac function from DCD hearts subjected to 25 or 35 minutes of ischemia followed by 60 minutes of reperfusion were compared to CBD hearts. Following ischemia, rates of oxidative phosphorylation and calcium retention capacity were progressively impaired in DCD hearts compared to CBD hearts. Reperfusion caused additional mitochondrial dysfunction in DCD hearts. Developed pressure, inotropy and lusitropy, were significantly reduced in DCD hearts compared to CBD hearts. We, therefore, suggest that interventional strategies targeted before the onset of ischemia and at reperfusion could protect mitochondria, thus potentially making DCD hearts suitable for heart transplantation.
Collapse
Affiliation(s)
- Oluwatoyin Akande
- Department of Surgery, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Qun Chen
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Stefano Toldo
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Edward J. Lesnefsky
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Medical Service, McGuire Veterans Administration Medical Center, Richmond, VA, United States of America
| | - Mohammed Quader
- Department of Surgery, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Surgery, McGuire Veterans Administration Medical Center, Richmond, VA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kumar VK, Lackey A, Snyder J, Karhadkar S, Rao AD, DiCarlo A, Sato PY. Mitochondrial Membrane Intracellular Communication in Healthy and Diseased Myocardium. Front Cell Dev Biol 2020; 8:609241. [PMID: 33425917 PMCID: PMC7786191 DOI: 10.3389/fcell.2020.609241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Research efforts in the twenty-first century have been paramount to the discovery and development of novel pharmacological treatments in a variety of diseases resulting in improved life expectancy. Yet, cardiac disease remains a leading cause of morbidity and mortality worldwide. Over time, there has been an expansion in conditions such as atrial fibrillation (AF) and heart failure (HF). Although past research has elucidated specific pathways that participate in the development of distinct cardiac pathologies, the exact mechanisms of action leading to disease remain to be fully characterized. Protein turnover and cellular bioenergetics are integral components of cardiac diseases, highlighting the importance of mitochondria and endoplasmic reticulum (ER) in driving cellular homeostasis. More specifically, the interactions between mitochondria and ER are crucial to calcium signaling, apoptosis induction, autophagy, and lipid biosynthesis. Here, we summarize mitochondrial and ER functions and physical interactions in healthy physiological states. We then transition to perturbations that occur in response to pathophysiological challenges and how this alters mitochondrial–ER and other intracellular organelle interactions. Finally, we discuss lifestyle interventions and innovative therapeutic targets that may be used to restore beneficial mitochondrial and ER interactions, thereby improving cardiac function.
Collapse
Affiliation(s)
- Vishnu K Kumar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Atreju Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jonathan Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sunil Karhadkar
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ajay D Rao
- Section of Endocrinology, Diabetes and Metabolism, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Antonio DiCarlo
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Priscila Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
19
|
Urbina-Varela R, Castillo N, Videla LA, del Campo A. Impact of Mitophagy and Mitochondrial Unfolded Protein Response as New Adaptive Mechanisms Underlying Old Pathologies: Sarcopenia and Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:E7704. [PMID: 33081022 PMCID: PMC7589512 DOI: 10.3390/ijms21207704] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are the first-line defense of the cell in the presence of stressing processes that can induce mitochondrial dysfunction. Under these conditions, the activation of two axes is accomplished, namely, (i) the mitochondrial unfolded protein response (UPRmt) to promote cell recovery and survival of the mitochondrial network; (ii) the mitophagy process to eliminate altered or dysfunctional mitochondria. For these purposes, the former response induces the expression of chaperones, proteases, antioxidant components and protein import and assembly factors, whereas the latter is signaled through the activation of the PINK1/Parkin and BNIP3/NIX pathways. These adaptive mechanisms may be compromised during aging, leading to the development of several pathologies including sarcopenia, defined as the loss of skeletal muscle mass and performance; and non-alcoholic fatty liver disease (NAFLD). These age-associated diseases are characterized by the progressive loss of organ function due to the accumulation of reactive oxygen species (ROS)-induced damage to biomolecules, since the ability to counteract the continuous and large generation of ROS becomes increasingly inefficient with aging, resulting in mitochondrial dysfunction as a central pathogenic mechanism. Nevertheless, the role of the integrated stress response (ISR) involving UPRmt and mitophagy in the development and progression of these illnesses is still a matter of debate, considering that some studies indicate that the prolonged exposure to low levels of stress may trigger these mechanisms to maintain mitohormesis, whereas others sustain that chronic activation of them could lead to cell death. In this review, we discuss the available research that contributes to unveil the role of the mitochondrial UPR in the development of sarcopenia, in an attempt to describe changes prior to the manifestation of severe symptoms; and in NAFLD, in order to prevent or reverse fat accumulation and its progression by means of suitable protocols to be addressed in future studies.
Collapse
Affiliation(s)
- Rodrigo Urbina-Varela
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| | - Nataly Castillo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Andrea del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| |
Collapse
|
20
|
Manolis AS, Manolis AA, Manolis TA, Apostolaki NE, Apostolopoulos EJ, Melita H, Katsiki N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med Res Rev 2020; 41:275-313. [PMID: 32959403 DOI: 10.1002/med.21732] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria provide energy to the cell during aerobic respiration by supplying ~95% of the adenosine triphosphate (ATP) molecules via oxidative phosphorylation. These organelles have various other functions, all carried out by numerous proteins, with the majority of them being encoded by nuclear DNA (nDNA). Mitochondria occupy ~1/3 of the volume of myocardial cells in adults, and function at levels of high-efficiency to promptly meet the energy requirements of the myocardial contractile units. Mitochondria have their own DNA (mtDNA), which contains 37 genes and is maternally inherited. Over the last several years, a variety of functions of these organelles have been discovered and this has led to a growing interest in their involvement in various diseases, including cardiovascular (CV) diseases. Mitochondrial dysfunction relates to the status where mitochondria cannot meet the demands of a cell for ATP and there is an enhanced formation of reactive-oxygen species. This dysfunction may occur as a result of mtDNA and/or nDNA mutations, but also as a response to aging and various disease and environmental stresses, leading to the development of cardiomyopathies and other CV diseases. Designing mitochondria-targeted therapeutic strategies aiming to maintain or restore mitochondrial function has been a great challenge as a result of variable responses according to the etiology of the disorder. There have been several preclinical data on such therapies, but clinical studies are scarce. A major challenge relates to the techniques needed to eclectically deliver the therapeutic agents to cardiac tissues and to damaged mitochondria for successful clinical outcomes. All these issues and progress made over the last several years are herein reviewed.
Collapse
Affiliation(s)
- Antonis S Manolis
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece
| | | | | | | | | | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology and Metabolism, Diabetes Center, Medical School, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
21
|
Chian CW, Lee YS, Lee YJ, Chen YH, Wang CP, Lee WC, Lee HJ. Cilostazol ameliorates diabetic nephropathy by inhibiting highglucose- induced apoptosis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:403-412. [PMID: 32830147 PMCID: PMC7445481 DOI: 10.4196/kjpp.2020.24.5.403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive oxygen species (ROS) and induce cell damage, causing mitochondrial dysfunction. Our previous study indicated that cilostazol (CTZ) can reduce ROS levels and decelerate DN progression in streptozotocin (STZ)-induced type 1 diabetes. This study investigated the potential mechanisms of CTZ in rats with DN and in high glucose-treated mesangial cells. Male Sprague-Dawley rats were fed 5 mg/kg/day of CTZ after developing STZ-induced diabetes mellitus. Electron microscopy revealed that CTZ reduced the thickness of the glomerular basement membrane and improved mitochondrial morphology in mesangial cells of diabetic kidney. CTZ treatment reduced excessive kidney mitochondrial DNA copy numbers induced by hyperglycemia and interacted with the intrinsic pathway for regulating cell apoptosis as an antiapoptotic mechanism. In high-glucose-treated mesangial cells, CTZ reduced ROS production, altered the apoptotic status, and down-regulated transforming growth factor beta (TGF-β) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB). Base on the results of our previous and current studies, CTZ deceleration of hyperglycemia-induced DN is attributable to ROS reduction and thereby maintenance of the mitochondrial function and reduction in TGF-β and NF-κB levels.
Collapse
Affiliation(s)
- Chien-Wen Chian
- Division of Nephrology, Department of Paediatrics, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yung-Shu Lee
- Department of Urology, Taipei City Hospital, Taipei 10341, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, Chung Shan Medical University Hospital, Taichung 40221, Taiwan
| | - Ya-Hui Chen
- Department of Medical Research, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chi-Ping Wang
- Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung 40221, Taiwan
| | - Wen-Chin Lee
- Division of Nephropathy, Department of Internal Medicine, Chang Bing Show-Chwan Memborial Hospital, Changhua 505, Taiwan
| | - Huei-Jane Lee
- Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung 40221, Taiwan
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung 40221, Taiwan
- Department of Biochemistry, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
| |
Collapse
|
22
|
Kruse R, Sahebekhtiari N, Højlund K. The Mitochondrial Proteomic Signatures of Human Skeletal Muscle Linked to Insulin Resistance. Int J Mol Sci 2020; 21:ijms21155374. [PMID: 32731645 PMCID: PMC7432338 DOI: 10.3390/ijms21155374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Mitochondria are essential in energy metabolism and cellular survival, and there is growing evidence that insulin resistance in chronic metabolic disorders, such as obesity, type 2 diabetes (T2D), and aging, is linked to mitochondrial dysfunction in skeletal muscle. Protein profiling by proteomics is a powerful tool to investigate mechanisms underlying complex disorders. However, despite significant advances in proteomics within the past two decades, the technologies have not yet been fully exploited in the field of skeletal muscle proteome. Area covered: Here, we review the currently available studies characterizing the mitochondrial proteome in human skeletal muscle in insulin-resistant conditions, such as obesity, T2D, and aging, as well as exercise-mediated changes in the mitochondrial proteome. Furthermore, we outline technical challenges and limitations and methodological aspects that should be considered when planning future large-scale proteomics studies of mitochondria from human skeletal muscle. Authors’ view: At present, most proteomic studies of skeletal muscle or isolated muscle mitochondria have demonstrated a reduced abundance of proteins in several mitochondrial biological processes in obesity, T2D, and aging, whereas the beneficial effects of exercise involve an increased content of muscle proteins involved in mitochondrial metabolism. Powerful mass-spectrometry-based proteomics now provides unprecedented opportunities to perform in-depth proteomics of muscle mitochondria, which in the near future is expected to increase our understanding of the complex molecular mechanisms underlying the link between mitochondrial dysfunction and insulin resistance in chronic metabolic disorders.
Collapse
Affiliation(s)
- Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Navid Sahebekhtiari
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
- Correspondence: ; Tel.: +45-2532-06-48
| |
Collapse
|
23
|
Allen ME, Pennington ER, Perry JB, Dadoo S, Makrecka-Kuka M, Dambrova M, Moukdar F, Patel HD, Han X, Kidd GK, Benson EK, Raisch TB, Poelzing S, Brown DA, Shaikh SR. The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. Commun Biol 2020; 3:389. [PMID: 32680996 PMCID: PMC7368046 DOI: 10.1038/s42003-020-1101-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/23/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction contributes to cardiac pathologies. Barriers to new therapies include an incomplete understanding of underlying molecular culprits and a lack of effective mitochondria-targeted medicines. Here, we test the hypothesis that the cardiolipin-binding peptide elamipretide, a clinical-stage compound under investigation for diseases of mitochondrial dysfunction, mitigates impairments in mitochondrial structure-function observed after rat cardiac ischemia-reperfusion. Respirometry with permeabilized ventricular fibers indicates that ischemia-reperfusion induced decrements in the activity of complexes I, II, and IV are alleviated with elamipretide. Serial block face scanning electron microscopy used to create 3D reconstructions of cristae ultrastructure reveals that disease-induced fragmentation of cristae networks are improved with elamipretide. Mass spectrometry shows elamipretide did not protect against the reduction of cardiolipin concentration after ischemia-reperfusion. Finally, elamipretide improves biophysical properties of biomimetic membranes by aggregating cardiolipin. The data suggest mitochondrial structure-function are interdependent and demonstrate elamipretide targets mitochondrial membranes to sustain cristae networks and improve bioenergetic function.
Collapse
Affiliation(s)
- Mitchell E Allen
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC, USA
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Sahil Dadoo
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Maija Dambrova
- Latvian Institute for Organic Synthesis Riga Latvia, Norwich, UK
| | - Fatiha Moukdar
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Hetal D Patel
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Grahame K Kidd
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
- Renovo Neural Inc, Cleveland, OH, USA
| | | | - Tristan B Raisch
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
| | - Steven Poelzing
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
- Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Virginia Tech Center for Drug Discovery, Blacksburg, VA, USA
- Virginia Tech Metabolism Core Virginia Tech, Blacksburg, VA, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Kumar V, Santhosh Kumar TR, Kartha CC. Mitochondrial membrane transporters and metabolic switch in heart failure. Heart Fail Rev 2020; 24:255-267. [PMID: 30535838 DOI: 10.1007/s10741-018-9756-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction is widely recognized as a major factor for the progression of cardiac failure. Mitochondrial uptake of metabolic substrates and their utilization for ATP synthesis, electron transport chain activity, reactive oxygen species levels, ion homeostasis, mitochondrial biogenesis, and dynamics as well as levels of reactive oxygen species in the mitochondria are key factors which regulate mitochondrial function in the normal heart. Alterations in these functions contribute to adverse outcomes in heart failure. Iron imbalance and oxidative stress are also major factors for the evolution of cardiac hypertrophy, heart failure, and aging-associated pathological changes in the heart. Mitochondrial ATP-binding cassette (ABC) transporters have a key role in regulating iron metabolism and maintenance of redox status in cells. Deficiency of mitochondrial ABC transporters is associated with an impaired mitochondrial electron transport chain complex activity, iron overload, and increased levels of reactive oxygen species, all of which can result in mitochondrial dysfunction. In this review, we discuss the role of mitochondrial ABC transporters in mitochondrial metabolism and metabolic switch, alterations in the functioning of ABC transporters in heart failure, and mitochondrial ABC transporters as possible targets for therapeutic intervention in cardiac failure.
Collapse
Affiliation(s)
- Vikas Kumar
- Cardiovascular Diseases and Diabetes Biology group, Rajiv Gandhi Centre for Biotechnology (RGCB), Poojappura, Thycaud Post, Trivandrum, Kerala, 695014, India.,Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - T R Santhosh Kumar
- Cardiovascular Diseases and Diabetes Biology group, Rajiv Gandhi Centre for Biotechnology (RGCB), Poojappura, Thycaud Post, Trivandrum, Kerala, 695014, India.,Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.,Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India
| | - C C Kartha
- Cardiovascular Diseases and Diabetes Biology group, Rajiv Gandhi Centre for Biotechnology (RGCB), Poojappura, Thycaud Post, Trivandrum, Kerala, 695014, India.
| |
Collapse
|
25
|
The caveolar-mitochondrial interface: regulation of cellular metabolism in physiology and pathophysiology. Biochem Soc Trans 2020; 48:165-177. [PMID: 32010944 DOI: 10.1042/bst20190388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
The plasma membrane is an important cellular organelle that is often overlooked in terms of a primary factor in regulating physiology and pathophysiology. There is emerging evidence to suggest that the plasma membrane serves a greater purpose than a simple barrier or transporter of ions. New paradigms suggest that the membrane serves as a critical bridge to connect extracellular to intracellular communication particularly to regulate energy and metabolism by forming physical and biochemical associations with intracellular organelles. This review will focus on the relationship of a particular membrane microdomain - caveolae - with mitochondria and the particular implication of this to physiology and pathophysiology.
Collapse
|
26
|
Myocardial Adaptation in Pseudohypoxia: Signaling and Regulation of mPTP via Mitochondrial Connexin 43 and Cardiolipin. Cells 2019; 8:cells8111449. [PMID: 31744200 PMCID: PMC6912244 DOI: 10.3390/cells8111449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022] Open
Abstract
Therapies intended to mitigate cardiovascular complications cannot be applied in practice without detailed knowledge of molecular mechanisms. Mitochondria, as the end-effector of cardioprotection, represent one of the possible therapeutic approaches. The present review provides an overview of factors affecting the regulation processes of mitochondria at the level of mitochondrial permeability transition pores (mPTP) resulting in comprehensive myocardial protection. The regulation of mPTP seems to be an important part of the mechanisms for maintaining the energy equilibrium of the heart under pathological conditions. Mitochondrial connexin 43 is involved in the regulation process by inhibition of mPTP opening. These individual cardioprotective mechanisms can be interconnected in the process of mitochondrial oxidative phosphorylation resulting in the maintenance of adenosine triphosphate (ATP) production. In this context, the degree of mitochondrial membrane fluidity appears to be a key factor in the preservation of ATP synthase rotation required for ATP formation. Moreover, changes in the composition of the cardiolipin’s structure in the mitochondrial membrane can significantly affect the energy system under unfavorable conditions. This review aims to elucidate functional and structural changes of cardiac mitochondria subjected to preconditioning, with an emphasis on signaling pathways leading to mitochondrial energy maintenance during partial oxygen deprivation.
Collapse
|
27
|
Lu X, Thai PN, Lu S, Pu J, Bers DM. Intrafibrillar and perinuclear mitochondrial heterogeneity in adult cardiac myocytes. J Mol Cell Cardiol 2019; 136:72-84. [PMID: 31491377 DOI: 10.1016/j.yjmcc.2019.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Mitochondria are involved in multiple cellular functions, in addition to their core role in energy metabolism. Mitochondria localized in different cellular locations may have different morphology, Ca2+ handling and biochemical properties and may interact differently with other intracellular structures, causing functional specificity. However, most prior studies have utilized isolated mitochondria, removed from their intracellular environment. Mitochondria in cardiac ventricular myocytes are highly organized, with a majority squeezed between the myofilaments in longitudinal chains (intrafibrillar mitochondria, IFM). There is another population of perinuclear mitochondria (PNM) around and between the two nuclei typical in myocytes. Here, we take advantage of live myocyte imaging to test for quantitative morphological and functional differences between IFM and PNM with respect to calcium fluxes, membrane potential, sensitivity to oxidative stress, shape and dynamics. Our findings show higher mitochondrial Ca2+ uptake and oxidative stress sensitivity for IFM vs. PNM, which may relate to higher local energy demand supporting the contractile machinery. In contrast to IFM which are remarkably static, PNM are relatively mobile, appear to participate readily in fission/fusion dynamics and appear to play a central role in mitochondrial genesis and turnover. We conclude that while IFM may be physiologically tuned to support local myofilament energy demands, PNM may be more critical in mitochondrial turnover and regulation of nuclear function and import/export. Thus, important functional differences are present in intrafibrillar vs. perinuclear mitochondrial subpopulations.
Collapse
Affiliation(s)
- Xiyuan Lu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital School of Medicine, Shanghai Cancer Institute, Jiaotong University, Shanghai, China; Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Phung N Thai
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Shan Lu
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital School of Medicine, Shanghai Cancer Institute, Jiaotong University, Shanghai, China
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
28
|
Lesus J, Arias K, Kulaga J, Sobkiv S, Patel A, Babu V, Kambalyal A, Patel M, Padron F, Mozaffari P, Jayakumar A, Ghatalah L, Laban N, Bahari R, Perkins G, Lysakowski A. Why study inner ear hair cell mitochondria? HNO 2019; 67:429-433. [PMID: 30969353 DOI: 10.1007/s00106-019-0662-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In several systems of the body (muscle, liver, nerves), new studies have examined the internal structure of mitochondria and brought to light striking new findings about how mitochondria are constructed and how their structure affects cell function. In the inner ear field, however, we have little structural knowledge about hair cell and supporting cell mitochondria, and virtually none about mitochondrial subtypes or how they function in health and disease. The need for such knowledge is discussed in this short review.
Collapse
Affiliation(s)
- J Lesus
- Dept. of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., M/C 512, 60612, Chicago, IL, USA
| | - K Arias
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - J Kulaga
- Dept. of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., M/C 512, 60612, Chicago, IL, USA
| | - S Sobkiv
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - A Patel
- Dept. of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., M/C 512, 60612, Chicago, IL, USA
| | - V Babu
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - A Kambalyal
- Dept. of Economics, University of Illinois at Chicago, Chicago, IL, USA
| | - M Patel
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - F Padron
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - P Mozaffari
- Dept. of Economics, University of Illinois at Chicago, Chicago, IL, USA
| | - A Jayakumar
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - L Ghatalah
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - N Laban
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - R Bahari
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - G Perkins
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego, La Jolla, CA, USA
| | - A Lysakowski
- Dept. of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., M/C 512, 60612, Chicago, IL, USA. .,Dept. of Otolaryngology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Cardiomyocyte mitochondrial dysfunction in diabetes and its contribution in cardiac arrhythmogenesis. Mitochondrion 2019; 46:6-14. [DOI: 10.1016/j.mito.2019.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/16/2019] [Accepted: 03/20/2019] [Indexed: 01/09/2023]
|
30
|
Lai N, M. Kummitha C, Rosca MG, Fujioka H, Tandler B, Hoppel CL. Isolation of mitochondrial subpopulations from skeletal muscle: Optimizing recovery and preserving integrity. Acta Physiol (Oxf) 2019; 225:e13182. [PMID: 30168663 DOI: 10.1111/apha.13182] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
AIM The subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria in skeletal muscle appear to have distinct biochemical properties affecting metabolism in health and disease. The isolation of mitochondrial subpopulations has been a long-time challenge while the presence of a continuous mitochondrial reticulum challenges the view of distinctive SSM and IFM bioenergetics. Here, a comprehensive approach is developed to identify the best conditions to separate mitochondrial fractions. METHODS The main modifications to the protocol to isolate SSM and IFM from rat skeletal muscle were: (a) decreased dispase content and homogenization speed; (b) trypsin treatment of SSM fractions; (c) recentrifugation of mitochondrial fractions at low speed to remove subcellular components. To identify the conditions preserving mitochondrial function, integrity, and maximizing their recovery, microscopy (light and electron) were used to monitor effectiveness and efficiency in separating mitochondrial subpopulations while respiratory and enzyme activities were employed to evaluate function, recovery, and integrity. RESULTS With the modifications described, the total mitochondrial yield increased with a recovery of 80% of mitochondria contained in the original skeletal muscle sample. The difference between SSM and IFM oxidative capacity (10%) with complex-I substrate was significant only with a saturated ADP concentration. The inner and outer membrane damage for both subpopulations was <1% and 8%, respectively, while the respiratory control ratio was 16. CONCLUSION Using a multidisciplinary approach, conditions were identified to maximize SSM and IFM recovery while preserving mitochondrial integrity, biochemistry, and morphology. High quality and recovery of mitochondrial subpopulations allow to study the relationship between these organelles and disease.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Electrical and Computer Engineering; Old Dominion University; Norfolk Virginia
- Biomedical Engineering Institute; Old Dominion University; Norfolk Virginia
- Department of Biomedical Engineering; Case Western Reserve University; Cleveland Ohio
| | - China M. Kummitha
- Department of Electrical and Computer Engineering; Old Dominion University; Norfolk Virginia
- Biomedical Engineering Institute; Old Dominion University; Norfolk Virginia
- Department of Biomedical Engineering; Case Western Reserve University; Cleveland Ohio
| | - Mariana G. Rosca
- Department of Foundational Sciences; Central Michigan University College of Medicine; Mount Pleasant Michigan
| | - Hisashi Fujioka
- Center for Mitochondrial Diseases; Case Western Reserve University; Cleveland Ohio
| | - Bernard Tandler
- Department of Biological Sciences; Case Western Reserve University School of Dental Medicine; Cleveland Ohio
| | - Charles L. Hoppel
- Center for Mitochondrial Diseases; Case Western Reserve University; Cleveland Ohio
- Department of Pharmacology; Case Western Reserve University; Cleveland Ohio
- Department of Medicine; School of Medicine; Case Western Reserve University; Cleveland Ohio
| |
Collapse
|
31
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
32
|
Wang Y, Li Y, He C, Gou B, Song M. Mitochondrial regulation of cardiac aging. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1853-1864. [PMID: 30593894 DOI: 10.1016/j.bbadis.2018.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Aging is associated with progressive decline in cardiac structure and function. Accumulating evidence in model organisms and humans links cardiac aging to mitochondrial regulation, encompassing a complex interplay of mitochondrial morphology, mitochondrial ROS, mitochondrial DNA mutations, mitochondrial unfolded protein response, nicotinamide adenine dinucleotide levels and sirtuins, as well as mitophagy. This review summarizes the recent discoveries on the mitochondrial regulation of cardiac aging and the possible molecular mechanisms underlying the anti-aging effects, as well as the potential interventions that alleviate aging-related cardiac diseases and attenuate cardiac aging via the regulation of mitochondria.
Collapse
Affiliation(s)
- Yuhan Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Forestry University, Beijing 100083, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Science and Technology of China, Anhui 230026, China
| | - Chuting He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Gou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Lee H, Yoon Y. Mitochondrial Membrane Dynamics-Functional Positioning of OPA1. Antioxidants (Basel) 2018; 7:antiox7120186. [PMID: 30544804 PMCID: PMC6316456 DOI: 10.3390/antiox7120186] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
The maintenance of mitochondrial energetics requires the proper regulation of mitochondrial morphology, and vice versa. Mitochondrial dynamins control mitochondrial morphology by mediating fission and fusion. One of them, optic atrophy 1 (OPA1), is the mitochondrial inner membrane remodeling protein. OPA1 has a dual role in maintaining mitochondrial morphology and energetics through mediating inner membrane fusion and maintaining the cristae structure. OPA1 is expressed in multiple variant forms through alternative splicing and post-translational proteolytic cleavage, but the functional differences between these variants have not been completely understood. Recent studies generated new information regarding the role of OPA1 cleavage. In this review, we will first provide a brief overview of mitochondrial membrane dynamics by describing fission and fusion that are mediated by mitochondrial dynamins. The second part describes OPA1-mediated fusion and energetic maintenance, the role of OPA1 cleavage, and a new development in OPA1 function, in which we will provide new insight for what OPA1 does and what proteolytic cleavage of OPA1 is for.
Collapse
Affiliation(s)
- Hakjoo Lee
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
34
|
Daghistani HM, Rajab BS, Kitmitto A. Three-dimensional electron microscopy techniques for unravelling mitochondrial dysfunction in heart failure and identification of new pharmacological targets. Br J Pharmacol 2018; 176:4340-4359. [PMID: 30225980 PMCID: PMC6887664 DOI: 10.1111/bph.14499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/30/2018] [Accepted: 08/18/2018] [Indexed: 12/23/2022] Open
Abstract
A hallmark of heart failure is mitochondrial dysfunction leading to a bioenergetics imbalance in the myocardium. Consequently, there is much interest in targeting mitochondrial abnormalities to attenuate the pathogenesis of heart failure. This review discusses (i) how electron microscopy (EM) techniques have been fundamental for the current understanding of mitochondrial structure–function, (ii) the paradigm shift in resolutions now achievable by 3‐D EM techniques due to the introduction of direct detection devices and phase plate technology, and (iii) the application of EM for unravelling mitochondrial pathological remodelling in heart failure. We further consider the tremendous potential of multi‐scale EM techniques for the development of therapeutics, structure‐based ligand design and for delineating how a drug elicits nanostructural effects at the molecular, organelle and cellular levels. In conclusion, 3‐D EM techniques have entered a new era of structural biology and are poised to play a pivotal role in discovering new therapies targeting mitochondria for treating heart failure. Linked Articles This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc
Collapse
Affiliation(s)
- Hussam M Daghistani
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bodour S Rajab
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
35
|
Kruse R, Højlund K. Proteomic study of skeletal muscle in obesity and type 2 diabetes: progress and potential. Expert Rev Proteomics 2018; 15:817-828. [PMID: 30251560 DOI: 10.1080/14789450.2018.1528147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Skeletal muscle is the major site of insulin-stimulated glucose uptake and imparts the beneficial effects of exercise, and hence is an important site of insulin resistance in obesity and type 2 diabetes (T2D). Despite extensive molecular biology-oriented research the molecular mechanisms underlying insulin resistance in skeletal muscle remain to be established. Areas covered: The proteomic capabilities have greatly improved over the last decades. This review summarizes the technical challenges in skeletal muscle proteomics studies as well as the results of quantitative proteomic studies of skeletal muscle in relation to obesity, T2D, and exercise. Expert commentary: Current available proteomic studies contribute to the view that insulin resistance in obesity and T2D is associated with increased glycolysis and reduced mitochondrial oxidative metabolism in skeletal muscle, and that the latter can be improved by exercise. Future proteomics studies should be designed to markedly intensify the identification of abnormalities in metabolic and signaling pathways in skeletal muscle of insulin-resistant individuals to increase the understanding of the pathogenesis of T2D, but more importantly to identify multiple novel targets of treatment of which at least some can be safely targeted by novel drugs to treat and prevent T2D and reduce risk of cardiovascular disease.
Collapse
Affiliation(s)
- Rikke Kruse
- a The Section of Molecular Diabetes and Metabolism, Department of Clinical Research and Department of Molecular Medicine , University of Southern Denmark , Odense , Denmark.,b Steno Diabetes Center Odense , Odense University Hospital , Odense , Denmark
| | - Kurt Højlund
- a The Section of Molecular Diabetes and Metabolism, Department of Clinical Research and Department of Molecular Medicine , University of Southern Denmark , Odense , Denmark.,b Steno Diabetes Center Odense , Odense University Hospital , Odense , Denmark
| |
Collapse
|
36
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
37
|
Abstract
The spatial density of mitochondria was studied by thin-section electron microscopy in
smooth muscles of bladder, iris and gut in mice, rats, guinea-pigs and sheep. Morphometric
data included areas of muscle cell profiles (~6,000 muscle cells were measured) and areas
of their mitochondria (more than three times as many). The visual method delivers accurate
estimates of the extent of the chondrioma (the ensemble of mitochondria in a cell),
measuring all and only the mitochondria in each muscle cell and no other cells. The
digital records obtained can be used again for checks and new searches. Spatial density of
mitochondria varies between about 2 and 10% in different muscles in different species. In
contrast, there is consistency of mitochondrial density within a given muscle in a given
species. For each muscle in each species there is a characteristic mitochondrial density
with modest variation between experiments. On the basis of data from serial sections in
the rat detrusor muscle, mitochondrial density varies very little between the muscle
cells, each cell having a value close to that for the whole muscle. Mitochondrial density
is different in a given muscle, e.g., ileal circular muscle, from the four mammalian
species, with highest values in mouse and lowest in sheep; in mice the mitochondrial
density is nearly three time higher that in sheep. In a given species there are
characteristic variations between different muscles. For example, the bladder detrusor
muscle has markedly fewer mitochondria than the ileum, and the iris has markedly more.
Collapse
|
38
|
Abstract
Several interventions, such as ischemic preconditioning, remote pre/perconditioning, or postconditioning, are known to decrease lethal myocardial ischemia-reperfusion injury. While several signal transduction pathways become activated by such maneuvers, they all have a common end point, namely, the mitochondria. These organelles represent an essential target of the cardioprotective strategies, and the preservation of mitochondrial function is central for the reduction of ischemia-reperfusion injury. In the present review, we address the role of mitochondria in the different conditioning strategies; in particular, we focus on alterations of mitochondrial function in terms of energy production, formation of reactive oxygen species, opening of the mitochondrial permeability transition pore, and mitochondrial dynamics induced by ischemia-reperfusion.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig Universität , Giessen , Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| |
Collapse
|
39
|
Nagarse treatment of cardiac subsarcolemmal and interfibrillar mitochondria leads to artefacts in mitochondrial protein quantification. J Pharmacol Toxicol Methods 2018; 91:50-58. [DOI: 10.1016/j.vascn.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/05/2017] [Accepted: 01/17/2018] [Indexed: 12/30/2022]
|
40
|
Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med 2018; 50:121-127. [PMID: 29237304 DOI: 10.1080/07853890.2017.1417631] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality worldwide. Proper mitochondrial function is necessary in tissues and organs that are of high energy demand, including the heart. Mitochondria are very sensitive to nutrient and oxygen supply and undergo metabolic adaptation to the changing environment. In CVD, such an adaptation is impaired, which, in turn, leads to a progressive decline of the mitochondrial function associated with abnormalities in the respiratory chain and ATP synthesis, increased oxidative stress, and loss of the structural integrity of mitochondria. Uncoupling of the electron transport chain in dysfunctional mitochondria results in enhanced production of reactive oxygen species, depletion of cell ATP pool, extensive cell damage, and apoptosis of cardiomyocytes. Mitophagy is a process, during which cells clear themselves from dysfunctional and damaged mitochondria using autophagic mechanism. Deregulation of this process in the failing heart, accumulation of dysfunctional mitochondria makes the situation even more adverse. In cardiac pathology, aberrations of the activity of the respiratory chain and ATP production may be considered as a core of mitochondrial dysfunction. Indeed, therapeutic restoration of these key functional properties can be considered as a primary goal for improvement of mitochondrial dysfunction in CVD. Key messages Mitochondrial dysfunction plays a crucial role in cardiovascular disease pathogenesis. Cardiovascular disease is associated with altered mithochondrial biogenesis and clearance. In cardiovascular disease, impaired mitochondrial function results in decreased ATP production and enhanced ROS formation.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- a Department of Neurochemistry, Division of Basic and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia
| | - Tatiana P Shkurat
- b Department of Genetics, Southern Federal University , Rostov-on-Don , Russia
| | - Alexandra A Melnichenko
- c Laboratory of Angiopathology , Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russia
| | - Andrey V Grechko
- d Federal Scientific Clinical Center for Resuscitation and Rehabilitation , Moscow , Russia
| | - Alexander N Orekhov
- e Laboratory of Angiopathology , Institute of General Pathology and Pathophysiology, Russian Academy of Sciences , Moscow , Russia.,f Institute for Atherosclerosis Research, Skolkovo Innovative Center , Moscow , Russia
| |
Collapse
|
41
|
Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer 2018; 1869:189-199. [PMID: 29408395 DOI: 10.1016/j.bbcan.2018.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is a widely used antineoplastic agent for a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, DOX exhibits a dose-related toxicity that results in life-threatening cardiomyopathy. In addition to the heart, there is evidence that DOX toxicity extends to other organs. This general toxicity seems to be related to mitochondrial network structural, molecular and functional impairments. Several countermeasures for these negative effects have been proposed, being physical exercise, not only one of the most effective non-pharmacologic strategy but also widely recommended as booster against cancer-related fatigue. It is widely accepted that mitochondria are critical sensors of tissue functionality, both modulated by DOX and exercise. Therefore, this review focuses on the current understanding of the mitochondrial-mediated mechanisms underlying the protective effect of exercise against DOX-induced toxicity, not only limited to the cardiac tissue, but also in other tissues such as skeletal muscle, liver and brain. We here analyze recent developments regarding the beneficial effects of exercise targeting mitochondrial responsive phenotypes against redox changes, mitochondrial bioenergetics, apoptotic, dynamics and quality control signalling affected by DOX treatment.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Psychology, Education and Sport, University Lusófona of Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | - P J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
| | - P I Moreira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
42
|
Mouse cardiac mitochondria do not separate in subsarcolemmal and interfibrillar subpopulations. Mitochondrion 2018; 38:1-5. [DOI: 10.1016/j.mito.2017.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/30/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022]
|
43
|
Melatonin Efficacy in Obese Leptin-Deficient Mice Heart. Nutrients 2017; 9:nu9121323. [PMID: 29206172 PMCID: PMC5748773 DOI: 10.3390/nu9121323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Cardiomyocytes are particularly sensitive to oxidative damage due to the link between mitochondria and sarcoplasmic reticulum necessary for calcium flux and contraction. Melatonin, important indoleamine secreted by the pineal gland during darkness, also has important cardioprotective properties. We designed the present study to define morphological and ultrastructural changes in cardiomyocytes and mainly in mitochondria of an animal model of obesity (ob/ob mice), when treated orally or not with melatonin at 100 mg/kg/day for 8 weeks (from 5 up to 13 week of life). We observed that ob/ob mice mitochondria in sub-sarcolemmal and inter-myofibrillar compartments are often devoid of cristae with an abnormally large size, which are called mega-mitochondria. Moreover, in ob/ob mice the hypertrophic cardiomyocytes expressed high level of 4hydroxy-2-nonenal (4HNE), a marker of lipid peroxidation but scarce degree of mitofusin2, indicative of mitochondrial sufferance. Melatonin oral supplementation in ob/ob mice restores mitochondrial cristae, enhances mitofusin2 expression and minimizes 4HNE and p62/SQSTM1, an index of aberrant autophagic flux. At pericardial fat level, adipose tissue depot strictly associated with myocardium infarction, melatonin reduces adipocyte hypertrophy and inversely regulates 4HNE and adiponectin expressions. In summary, melatonin might represent a safe dietary adjuvant to hamper cardiac mitochondria remodeling and the hypoxic status that occur in pre-diabetic obese mice at 13 weeks of life.
Collapse
|
44
|
Gupte AA, Hamilton DJ. Mitochondrial Function in Non-ischemic Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:113-126. [PMID: 28551784 DOI: 10.1007/978-3-319-55330-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Provision for the continuous demand for energy from the beating heart relies heavily on efficient mitochondrial activity. Non-ischemic cardiomyopathy in which oxygen supply is not limiting results from etiologies such as pressure overload. It is associated with progressive development of metabolic stress culminating in energy depletion and heart failure. The mitochondria from the ventricular walls undergoing non-ischemic cardiomyopathy are subjected to long periods of adaptation to support the changing metabolic milieu, which has been described as mal-adaptation since it ultimately results in loss of cardiac contractile function. While the chronicity of exposure to metabolic stressors, co-morbidities and thereby adaptive changes in mitochondria maybe different between ischemic and non-ischemic heart failure, the resulting pathology is very similar, especially in late stage heart failure. Understanding of the mitochondrial changes in early-stage heart failure may guide the development of mitochondrial-targeted therapeutic options to prevent progression of non-ischemic heart failure. This chapter reviews findings of mitochondrial functional changes in animal models and humans with non-ischemic heart failure. While most animal models of non-ischemic heart failure exhibit cardiac mitochondrial dysfunction, studies in humans have been inconsistent despite confirmed reduction in ATP production. This chapter also reviews the possibility of impairment of substrate supply processes upstream of the mitochondria in heart failure, and discusses potential metabolism-targeted therapeutic options.
Collapse
Affiliation(s)
- Anisha A Gupte
- Center for Metabolism and Bioenergetics Research, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, USA.
| | - Dale J Hamilton
- Center for Metabolism and Bioenergetics Research, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, USA.,Houston Methodist, Department of Medicine, Houston, TX, USA
| |
Collapse
|
45
|
Garvin AM, Aurigemma NC, Hackenberger JL, Korzick DH. Age and ischemia differentially impact mitochondrial ultrastructure and function in a novel model of age-associated estrogen deficiency in the female rat heart. Pflugers Arch 2017; 469:1591-1602. [PMID: 28776263 DOI: 10.1007/s00424-017-2034-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022]
Abstract
Altered mitochondrial respiration, morphology, and quality control collectively contribute to mitochondrial dysfunction in the aged heart. Because myocardial infarction remains the leading cause of death in aged women, the present study utilized a novel rodent model to recapitulate human menopause to interrogate the combination of age and estrogen deficiency on mitochondrial ultrastructure and function with cardiac ischemia/reperfusion (I/R) injury. Female F344 rats were ovariectomized (OVX) at 15 months and studied at 24 months (MO OVX; n = 40) vs adult ovary intact (6 months; n = 41). Temporal declines in estrogen concomitant with increased visceral adipose tissue were observed in MO OVX vs adult. Following in vivo coronary artery ligation or sham surgery, state 3 mitochondrial respiration was selectively reduced by age in subsarcolemmal mitochondria (SSM) and by I/R in interfibrillar mitochondria (IFM); left ventricular maximum dP/dt was reduced in MO OVX (p < 0.05). Elevated cyclophilin D and exacerbated I/R-induced mitochondrial acetylation in MO OVX suggest permeability transition pore involvement and reduced protection vs adult (p < 0.05). Mitochondrial morphology by TEM revealed an altered time course of autophagy coordinate with attenuated Drp1 and LC3BII protein levels with age-associated estrogen loss (p < 0.05). Here, reductions in both SSM and IFM function may play an additive role in enhanced susceptibility to regional I/R injury in aged estrogen-deficient female hearts. Moreover, novel insight into altered cardiac mitochondrial quality control garnered here begins to unravel the potentially important regulatory role of mitochondrial dynamics on sustaining respiratory function in the aged female heart.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University, 106 Noll Laboratory, University Park, PA, 16802, USA
| | - Nicole C Aurigemma
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University, 106 Noll Laboratory, University Park, PA, 16802, USA
| | - Jenna L Hackenberger
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donna H Korzick
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University, 106 Noll Laboratory, University Park, PA, 16802, USA. .,Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
46
|
Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 2017; 8:349-369. [PMID: 28432755 PMCID: PMC5476857 DOI: 10.1002/jcsm.12178] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/23/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best-known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high-energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Maik Kosiol
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| |
Collapse
|
47
|
MacDonald JA, Fowle WH, Woods PhD DC. New insights on mitochondrial heterogeneity observed in prepared mitochondrial samples following a method for freeze-fracture and scanning electron microscopy. Micron 2017; 101:25-31. [PMID: 28609725 DOI: 10.1016/j.micron.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
Mitochondria are dynamic intracellular organelles with diverse roles in tissue- and cell type-specific processes, extending beyond bioenergetics. In keeping with this array of functions, mitochondria are described as heterogeneous both between and within tissue types based on multiple parameters, including a broad spectrum of morphological features, and new research points toward a need for the evaluation of mitochondria as isolated organelles. Although transmission electron microscopy (TEM) is commonly used for the evaluation of mitochondria in tissues and renders mitochondrial structures in ultra-thin sections in two-dimensions, additional information regarding complex features within these organelles can be ascertained using scanning electron microscopy (SEM), which allows for analysis of phenotypic differences in three-dimensions. One challenge in producing mitochondrial images for evaluation of ultrastructure using SEM has been the ability to reliably visualize important intramitochondrial features, the inner membrane and cristae structures, on a large-scale (e.g. multiple mitochondria) within a sample preparation, as mitochondria are enclosed within a double membrane. This can be overcome using a 'freeze-fracture' technique in which mitochondrial preparations are snap-frozen followed by application of intense pressure to break open the organelles, revealing the intact components within. Previously published reports using freeze-fracture strategies for mitochondrial SEM have demonstrated feasibility in whole tissue specimens, but a detailed methodology for SEM analysis on isolated mitochondrial fractions has not been reported. By combining previously reported tissue freeze-fracture strategies, along with utilizing the depth of field created by SEM, herein we present a complete method reliant on the freeze-fracture of mitochondrial fractions prepared by differential centrifugation to produce a comprehensive and direct evaluation of three-dimensional mitochondrial ultrastructure by SEM. Image analysis of internal mitochondrial features demonstrates heterogeneity in mitochondrial ultrastructure from a single sample preparation.
Collapse
Affiliation(s)
- Julie A MacDonald
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - William H Fowle
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dori C Woods PhD
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
48
|
Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial Metabolism in Aging Heart. Circ Res 2017; 118:1593-611. [PMID: 27174952 DOI: 10.1161/circresaha.116.307505] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Qun Chen
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Charles L Hoppel
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH.
| |
Collapse
|
49
|
Kalkhoran SB, Munro P, Qiao F, Ong SB, Hall AR, Cabrera-Fuentes H, Chakraborty B, Boisvert WA, Yellon DM, Hausenloy DJ. Unique morphological characteristics of mitochondrial subtypes in the heart: the effect of ischemia and ischemic preconditioning. Discoveries (Craiova) 2017; 5. [PMID: 28736742 DOI: 10.15190/d.2017.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Three subsets of mitochondria have been described in adult cardiomyocytes - intermyofibrillar (IMF), subsarcolemmal (SSM), and perinuclear (PN). They have been shown to differ in physiology, but whether they also vary in morphological characteristics is unknown. Ischemic preconditioning (IPC) is known to prevent mitochondrial dysfunction induced by acute myocardial ischemia/reperfusion injury (IRI), but whether IPC can also modulate mitochondrial morphology is not known. AIMS Morphological characteristics of three different subsets of adult cardiac mitochondria along with the effect of ischemia and IPC on mitochondrial morphology will be investigated. METHODS Mouse hearts were subjected to the following treatments (N=6 for each group): stabilization only, IPC (3x5 min cycles of global ischemia and reperfusion), ischemia only (20 min global ischemia); and IPC and ischemia. Hearts were then processed for electron microscopy and mitochondrial morphology was assessed subsequently. RESULTS In adult cardiomyocytes, IMF mitochondria were found to be more elongated and less spherical than PN and SSM mitochondria. PN mitochondria were smaller in size when compared to the other two subsets. SSM mitochondria had similar area to IMF mitochondria but their sphericity measures were similar to PN mitochondria. Ischemia was shown to increase the sphericity parameters of all 3 subsets of mitochondria; reduce the length of IMF mitochondria, and increase the size of PN mitochondria. IPC had no effect on mitochondrial morphology either at baseline or after ischemia. CONCLUSION The three subsets of mitochondria in the adult heart are morphologically different. IPC does not appear to modulate mitochondrial morphology in adult cardiomyocytes.
Collapse
Affiliation(s)
- Siavash Beikoghli Kalkhoran
- Hatter Cardiovascular Institute, University College London, UK.,National Institute of Health Research University College London Hospitals Biomedical Research Ctr., UK
| | - Peter Munro
- Institute of Ophthalmology, University College London, UK
| | - Fan Qiao
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore
| | - Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore
| | - Andrew R Hall
- Hatter Cardiovascular Institute, University College London, UK.,National Institute of Health Research University College London Hospitals Biomedical Research Ctr., UK
| | - Hector Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore.,Kazan Federal University, Department of Microbiology, Kazan, Russian Federation.,Escuela de Ingenieria y Ciencias, Centro de Biotecnologia-FEMSA, Tecnologico de Monterrey, Mexico
| | - Bibhas Chakraborty
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii
| | - Derek M Yellon
- Hatter Cardiovascular Institute, University College London, UK.,National Institute of Health Research University College London Hospitals Biomedical Research Ctr., UK
| | - Derek J Hausenloy
- Hatter Cardiovascular Institute, University College London, UK.,National Institute of Health Research University College London Hospitals Biomedical Research Ctr., UK.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,Barts Heart Centre, St Bartholomew's Hospital, London, UK
| |
Collapse
|
50
|
Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion 2017; 34:127-134. [PMID: 28342934 DOI: 10.1016/j.mito.2017.03.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 12/21/2022]
Abstract
Mitochondrial transplantation is a novel therapeutic intervention to treat ischemia/reperfusion related disorders. The method for mitochondrial transplantation is simple and rapid and can be delivered to the end organ either by direct injection or vascular infusion. In this review, we provide mechanistic and histological studies in large animal models and present data to show clinical efficacy in human patients.
Collapse
|