1
|
Pascale JV, Wolf A, Kadish Y, Diegisser D, Kulaprathazhe MM, Yemane D, Ali S, Kim N, Baruch DE, Yahaya MAF, Dirice E, Adebesin AM, Falck JR, Schwartzman ML, Garcia V. 20-Hydroxyeicosatetraenoic acid (20-HETE): Bioactions, receptors, vascular function, cardiometabolic disease and beyond. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:229-255. [PMID: 37236760 PMCID: PMC10683332 DOI: 10.1016/bs.apha.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Vascular function is dynamically regulated and dependent on a bevy of cell types and factors that work in concert across the vasculature. The vasoactive eicosanoid, 20-Hydroxyeicosatetraenoic acid (20-HETE) is a key player in this system influencing the sensitivity of the vasculature to constrictor stimuli, regulating endothelial function, and influencing the renin angiotensin system (RAS), as well as being a driver of vascular remodeling independent of blood pressure elevations. Several of these bioactions are accomplished through the ligand-receptor pairing between 20-HETE and its high-affinity receptor, GPR75. This 20-HETE axis is at the root of various vascular pathologies and processes including ischemia induced angiogenesis, arteriogenesis, septic shock, hypertension, atherosclerosis, myocardial infarction and cardiometabolic diseases including diabetes and insulin resistance. Pharmacologically, several preclinical tools have been developed to disrupt the 20-HETE axis including 20-HETE synthesis inhibitors (DDMS and HET0016), synthetic 20-HETE agonist analogues (20-5,14-HEDE and 20-5,14-HEDGE) and 20-HETE receptor blockers (AAA and 20-SOLA). Systemic or cell-specific therapeutic targeting of the 20-HETE-GPR75 axis continues to be an invaluable approach as studies examine the molecular underpinnings activated by 20-HETE under various physiological settings. In particular, the development and characterization of 20-HETE receptor blockers look to be a promising new class of compounds that can provide a considerable benefit to patients suffering from these cardiovascular pathologies.
Collapse
Affiliation(s)
- Jonathan V Pascale
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Alexandra Wolf
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Yonaton Kadish
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Danielle Diegisser
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | | | - Danait Yemane
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Samir Ali
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Namhee Kim
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - David E Baruch
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Muhamad Afiq Faisal Yahaya
- Department of Basic Sciences, MAHSA University, Selangor Darul Ehsan, Malaysia; Department of Human Anatomy, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, Malaysia
| | - Ercument Dirice
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Adeniyi M Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States.
| |
Collapse
|
2
|
Azcona JA, Tang S, Berry E, Zhang FF, Garvey R, Falck JR, Schwartzman ML, Yi T, Jeitner TM, Guo AM. Neutrophil-derived Myeloperoxidase and Hypochlorous Acid Critically Contribute to 20-HETE Increases that Drive Post-Ischemic Angiogenesis. J Pharmacol Exp Ther 2022; 381:204-216. [DOI: 10.1124/jpet.121.001036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
|
3
|
Froogh G, Garcia V, Laniado Schwartzman M. The CYP/20-HETE/GPR75 axis in hypertension. ADVANCES IN PHARMACOLOGY 2022; 94:1-25. [PMID: 35659370 PMCID: PMC10123763 DOI: 10.1016/bs.apha.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a bioactive lipid generated from the ω-hydroxylation of arachidonic acid (AA) by enzymes of the cytochrome P450 (CYP) family, primarily the CYP4A and CYP4F subfamilies. 20-HETE is most notably identified as a modulator of vascular tone, regulator of renal function, and a contributor to the onset and development of hypertension and cardiovascular disease. 20-HETE-mediated signaling promotes hypertension by sensitizing the vasculature to constrictor stimuli, inducing endothelial dysfunction, and potentiating vascular inflammation. These bioactions are driven by the activation of the G-protein coupled receptor 75 (GPR75), a 20-HETE receptor (20HR). Given the capacity of 20-HETE signaling to drive pro-hypertensive mechanisms, the CYP/20-HETE/GPR75 axis has the potential to be a significant therapeutic target for the treatment of hypertension and cardiovascular diseases associated with increases in blood pressure. In this chapter, we review 20-HETE-mediated cellular mechanisms that promote hypertension, highlight important data in humans such as genetic variants in the CYP genes that potentiate 20-HETE production and describe recent findings in humans with 20HR/GPR75 mutations. Special emphasis is given to the 20HR and respective receptor blockers that have the potential to pave a path to translational and clinical studies for the treatment of 20-HETE-driven hypertension, and obesity/metabolic syndrome.
Collapse
|
4
|
Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021; 12:701390. [PMID: 34408653 PMCID: PMC8365470 DOI: 10.3389/fphar.2021.701390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Bara A Shraim
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Moaz O Moursi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Pascale JV, Lucchesi PA, Garcia V. Unraveling the Role of 12- and 20- HETE in Cardiac Pathophysiology: G-Protein-Coupled Receptors, Pharmacological Inhibitors, and Transgenic Approaches. J Cardiovasc Pharmacol 2021; 77:707-717. [PMID: 34016841 PMCID: PMC8523029 DOI: 10.1097/fjc.0000000000001013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
ABSTRACT Arachidonic acid-derived lipid mediators play crucial roles in the development and progression of cardiovascular diseases. Eicosanoid metabolites generated by lipoxygenases and cytochrome P450 enzymes produce several classes of molecules, including the epoxyeicosatrienoic acid (EET) and hydroxyeicosatetraenoic acids (HETE) family of bioactive lipids. In general, the cardioprotective effects of EETs have been documented across a number of cardiac diseases. In contrast, members of the HETE family have been shown to contribute to the pathogenesis of ischemic cardiac disease, maladaptive cardiac hypertrophy, and heart failure. The net effect of 12(S)- and 20-HETE depends upon the relative amounts generated, ratio of HETEs:EETs produced, timing of synthesis, as well as cellular and subcellular mechanisms activated by each respective metabolite. HETEs are synthesized by and affect multiple cell types within the myocardium. Moreover, cytochrome P450-derived and lipoxygenase- derived metabolites have been shown to directly influence cardiac myocyte growth and the regulation of cardiac fibroblasts. The mechanistic data uncovered thus far have employed the use of enzyme inhibitors, HETE antagonists, and the genetic manipulation of lipid-producing enzymes and their respective receptors, all of which influence a complex network of outcomes that complicate data interpretation. This review will summarize and integrate recent findings on the role of 12(S)-/20-HETE in cardiac diseases.
Collapse
Affiliation(s)
| | | | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY
| |
Collapse
|
6
|
Wang J, Lian G, Luo L, Wang T, Xu C, Wang H, Xie L. Role of 20-hydroxyeicosatetraenoic acid in pulmonary hypertension and proliferation of pulmonary arterial smooth muscle cells. Pulm Pharmacol Ther 2020; 64:101948. [PMID: 32949704 DOI: 10.1016/j.pupt.2020.101948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/30/2020] [Accepted: 09/13/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the level of 20-Hydroxyeicosatetraenoic acid (20-HETE) in model of pulmonary hypertension (PH) and its effect on the proliferation of pulmonary arterial smooth muscle cells (PASMCs). METHODS Twenty male Sprague-Dawley rats were randomly divided into two groups, including control group and PH group. PH was induced by intra-peritoneal injection of 20 mg/kg monocrotaline (MCT) twice in a week in 10 rats, and control rats were given equal amount of saline. Mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVHI) and pulmonary vascular remodeling index (WA%, WT%) were assessed at the week 4. The levels of 20-HETE were analysed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). EdU test was used to determine the proliferation of PASMCs. Intracellular levels of reactive oxygen species (ROS) were detected using DCFH-DA dye. RESULTS (1) Prominent right ventricular hypertrophy and pulmonary vascular remodeling were verified in PH rats; (2) 20-HETE levels in lung tissue and serum were significantly lifted in PH rats; (3) Increased 20-HETE levels in cell culture supernatants were significantly noted in hypoxia condition; (4) Proliferation of PASMCs was induced by 20-HETE and hypoxia, and was inhibited by HET0016; (5) Production of ROS was elevated by 20-HETE and hypoxia, and was reduced by HET0016; CONCLUSION: Vascular remodeling was demonstrated in PH rats. 20-HETE levels were significantly increased in PH rats and under hypoxia condition. PASMCs proliferation and ROS production were elevated by 20-HETE and could be inhibited by HET0016, a specific inhibitor of 20-HETE. Taken together, changes in the level of 20-HETE may be related to the excessive proliferation of PASMCs in PH rats.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.
| | - Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Tingjun Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Changsheng Xu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Huajun Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China.
| |
Collapse
|
7
|
Chen L, Tang S, Zhang FF, Garcia V, Falck JR, Schwartzman ML, Arbab AS, Guo AM. CYP4A/20-HETE regulates ischemia-induced neovascularization via its actions on endothelial progenitor and preexisting endothelial cells. Am J Physiol Heart Circ Physiol 2019; 316:H1468-H1479. [PMID: 30951365 PMCID: PMC6620690 DOI: 10.1152/ajpheart.00690.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) was recently identified as a novel contributor of ischemia-induced neovascularization based on the key observation that pharmacological interferences of CYP4A/20-HETE decrease ischemic neovascularization. The objective of the present study is to examine whether the underlying cellular mechanisms involve endothelial progenitor cells (EPCs) and preexisting endothelial cells (ECs). We found that ischemia leads to a time-dependent increase of cyp4a12 expression and 20-HETE production, which are endothelial in origin, using immunofluorescent microscopy, Western blot analysis, and LC-MS/MS. This is accompanied by increases in the tissue stromal cell-derived factor-1α (SDF-1α) expressions as well as SDF-1α plasma levels, EPC mobilization from bone marrow, and subsequent homing to ischemic tissues. Pharmacological interferences of CYP4A/20-HETE with a 20-HETE synthesis inhibitor, dibromo-dodecenyl-methylsulfimide (DDMS), or a 20-HETE antagonist, N-(20-hydroxyeicosa-6(Z), 15(Z)-dienoyl) glycine (6, 15-20-HEDGE), significantly attenuated these increases. Importantly, we also determined that 20-HETE plays a novel role in maintaining EPC functions and increasing the expression of Oct4, Sox2, and Nanog, which are indicative of increased progenitor cell stemness. Flow cytometric analysis revealed that pharmacological interferences of CYP4A/20-HETE decrease the EPC population in culture, whereas 20-HETE increases the cultured EPC population. Furthermore, ischemia also markedly increased the proliferation, oxidative stress, and ICAM-1 expression in the preexisting EC in the hindlimb gracilis muscles. We found that these increases were markedly negated by DDMS and 6, 15-20-HEDGE. Taken together, CYP4A/20-HETE regulates ischemia-induced compensatory neovascularization via its combined actions on promoting EPC and local preexisting EC responses that are associated with increased neovascularization. NEW & NOTEWORTHY CYP4A/20-hydroxyeicosatetraenoic acid (20-HETE) was recently discovered as a novel contributor of ischemia-induced neovascularization. However, the underlying molecular and cellular mechanisms are completely unknown. Here, we show that CYP4A/20-HETE regulates the ischemic neovascularization process via its combined actions on both endothelial progenitor cells (EPCs) and preexisting endothelial cells. Moreover, this is the first study, to the best of our knowledge, that associates CYP4A/20-HETE with EPC differentiation and stemness.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center , Guangzhou , People's Republic of China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Samantha Tang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Frank F Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - John R Falck
- University of Texas Southwestern Medical Center , Dallas, Texas
| | | | - Ali S Arbab
- Cancer Center, Augusta University , Augusta, Georgia
| | - Austin M Guo
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
8
|
Liu Y, Li Y, Zhan M, Liu Y, Li Z, Li J, Cheng G, Teng G, Lu L. Astrocytic cytochrome P450 4A/20-hydroxyeicosatetraenoic acid contributes to angiogenesis in the experimental ischemic stroke. Brain Res 2019; 1708:160-170. [DOI: 10.1016/j.brainres.2018.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/21/2022]
|
9
|
Abstract
20-HETE, the ω-hydroxylation product of arachidonic acid catalyzed by enzymes of the cytochrome P450 (CYP) 4A and 4F gene families, is a bioactive lipid mediator with potent effects on the vasculature including stimulation of smooth muscle cell contractility, migration and proliferation as well as activation of endothelial cell dysfunction and inflammation. Clinical studies have shown elevated levels of plasma and urinary 20-HETE in human diseases and conditions such as hypertension, obesity and metabolic syndrome, myocardial infarction, stroke, and chronic kidney diseases. Studies of polymorphic associations also suggest an important role for 20-HETE in hypertension, stroke and myocardial infarction. Animal models of increased 20-HETE production are hypertensive and are more susceptible to cardiovascular injury. The current review summarizes recent findings that focus on the role of 20-HETE in the regulation of vascular and cardiac function and its contribution to the pathology of vascular and cardiac diseases.
Collapse
Affiliation(s)
- Petra Rocic
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, United States
| | | |
Collapse
|
10
|
Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis. Int J Mol Sci 2017; 18:ijms18122661. [PMID: 29292756 PMCID: PMC5751263 DOI: 10.3390/ijms18122661] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Metastatic breast cancer (BC) (also referred to as stage IV) spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4) family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE), an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis.
Collapse
|
11
|
Joseph G, Soler A, Hutcheson R, Hunter I, Bradford C, Hutcheson B, Gotlinger KH, Jiang H, Falck JR, Proctor S, Schwartzman ML, Rocic P. Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction. Am J Physiol Heart Circ Physiol 2016; 312:H528-H540. [PMID: 28011587 PMCID: PMC5402017 DOI: 10.1152/ajpheart.00561.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022]
Abstract
Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO·- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS.NEW & NOTEWORTHY Elevated 20-hydroxyeicosatetraenoic acid (20-HETE) impairs coronary collateral growth (CCG) in metabolic syndrome by eliciting endothelial dysfunction and apoptosis via excessive neutrophil infiltration. 20-HETE antagonists completely restore coronary collateral growth in metabolic syndrome. microRNA-145 (miR-145) is an upstream regulator of 20-HETE production in metabolic syndrome; low expression of miR-145 in metabolic syndrome promotes elevated production of 20-HETE.
Collapse
Affiliation(s)
- Gregory Joseph
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Amanda Soler
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Rebecca Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Ian Hunter
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | | | - Brenda Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | | | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - John R Falck
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Spencer Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | | | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
12
|
Angara K, Rashid MH, Shankar A, Ara R, Iskander A, Borin TF, Jain M, Achyut BR, Arbab AS. Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies. Histol Histopathol 2016; 32:917-928. [PMID: 27990624 DOI: 10.14670/hh-11-856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is one hypervascular and hypoxic tumor known among solid tumors. Antiangiogenic therapeutics (AATs) have been tested as an adjuvant to normalize blood vessels and control abnormal vasculature. Evidence of relapse exemplified in the progressive tumor growth following AAT reflects development of resistance to AATs. Here, we identified that GBM following AAT (Vatalanib) acquired an alternate mechanism to support tumor growth, called vascular mimicry (VM). We observed that Vatalanib induced VM vessels are positive for periodic acid-Schiff (PAS) matrix but devoid of any endothelium on the inner side and lined by tumor cells on the outer-side. The PAS+ matrix is positive for basal laminae (laminin) indicating vascular structures. Vatalanib treated GBM displayed various stages of VM such as initiation (mosaic), sustenance, and full-blown VM. Mature VM structures contain red blood cells (RBC) and bear semblance to the functional blood vessel-like structures, which provide all growth factors to favor tumor growth. Vatalanib treatment significantly increased VM especially in the core of the tumor, where HIF-1α was highly expressed in tumor cells. VM vessels correlate with hypoxia and are characterized by co-localized MHC-1+ tumor and HIF-1α expression. Interestingly, 20-HETE synthesis inhibitor HET0016 significantly decreased GBM tumors through decreasing VM structures both at the core and at periphery of the tumors. In summary, AAT induced resistance characterized by VM is an alternative mechanism adopted by tumors to make functional vessels by transdifferentiation of tumor cells into endothelial-like cells to supply nutrients in the event of hypoxia. AAT induced VM is a potential therapeutic target of the novel formulation of HET0016. Our present study suggests that HET0016 has a potential to target therapeutic resistance and can be combined with other antitumor agents in preclinical and clinical trials.
Collapse
Affiliation(s)
- Kartik Angara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Mohammad H Rashid
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Adarsh Shankar
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Roxan Ara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Asm Iskander
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Thaiz F Borin
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Meenu Jain
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Bhagelu R Achyut
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
13
|
Gupta A, Bhatnagar S. Vasoregression: A Shared Vascular Pathology Underlying Macrovascular And Microvascular Pathologies? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:733-53. [PMID: 26669709 DOI: 10.1089/omi.2015.0128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vasoregression is a common phenomenon underlying physiological vessel development as well as pathological microvascular diseases leading to peripheral neuropathy, nephropathy, and vascular oculopathies. In this review, we describe the hallmarks and pathways of vasoregression. We argue here that there is a parallel between characteristic features of vasoregression in the ocular microvessels and atherosclerosis in the larger vessels. Shared molecular pathways and molecular effectors in the two conditions are outlined, thus highlighting the possible systemic causes of local vascular diseases. Our review gives us a system-wide insight into factors leading to multiple synchronous vascular diseases. Because shared molecular pathways might usefully address the diagnostic and therapeutic needs of multiple common complex diseases, the literature analysis presented here is of broad interest to readership in integrative biology, rational drug development and systems medicine.
Collapse
Affiliation(s)
- Akanksha Gupta
- 1 Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , Dwarka, New Delhi, India .,2 Department of Biotechnology, IMS Engineering College , Ghaziabad, India
| | - Sonika Bhatnagar
- 1 Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , Dwarka, New Delhi, India
| |
Collapse
|
14
|
The role of 20-HETE in cardiovascular diseases and its risk factors. Prostaglandins Other Lipid Mediat 2016; 125:108-17. [PMID: 27287720 DOI: 10.1016/j.prostaglandins.2016.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/20/2016] [Accepted: 05/31/2016] [Indexed: 01/03/2023]
Abstract
Arachidonic acid (AA) is metabolized in mammals by enzymes of the CYP4A and 4F families to 20-hydroxyeicosatetraeonic acid (20-HETE) which plays an important role in the regulation of renal function, vascular tone and arterial pressure. In the vasculature, 20-HETE is a potent vasoconstrictor, the up-regulation of which contributes to inflammation, oxidative stress, endothelial dysfunction and an increase in peripheral vascular resistance in models of obesity, diabetes, ischemia/reperfusion, and vascular oxidative stress. Recent studies have established a role for 20-HETE in normal and pathological angiogenic conditions. We discuss in this review the synthesis of 20-HETE and how it and various autacoids, especially the renin-angiotensin system, interact to promote hypertension, vasoconstriction, and vascular dysfunction. In addition, we examine the molecular mechanisms through which 20-HETE induces these actions and the clinical implication of inhibiting 20-HETE production and activity.
Collapse
|
15
|
Fan F, Ge Y, Lv W, Elliott MR, Muroya Y, Hirata T, Booz GW, Roman RJ. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Front Biosci (Landmark Ed) 2016; 21:1427-63. [PMID: 27100515 DOI: 10.2741/4465] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome P450s enzymes catalyze the metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid and hydroxyeicosatetraeonic acid (HETEs). 20-HETE is a vasoconstrictor that depolarizes vascular smooth muscle cells by blocking K+ channels. EETs serve as endothelial derived hyperpolarizing factors. Inhibition of the formation of 20-HETE impairs the myogenic response and autoregulation of renal and cerebral blood flow. Changes in the formation of EETs and 20-HETE have been reported in hypertension and drugs that target these pathways alter blood pressure in animal models. Sequence variants in CYP4A11 and CYP4F2 that produce 20-HETE, UDP-glucuronosyl transferase involved in the biotransformation of 20-HETE and soluble epoxide hydrolase that inactivates EETs are associated with hypertension in human studies. 20-HETE contributes to the regulation of vascular hypertrophy, restenosis, angiogenesis and inflammation. It also promotes endothelial dysfunction and contributes to cerebral vasospasm and ischemia-reperfusion injury in the brain, kidney and heart. This review will focus on the role of 20-HETE in vascular dysfunction, inflammation, ischemic and hemorrhagic stroke and cardiac and renal ischemia reperfusion injury.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Matthew R Elliott
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Yoshikazu Muroya
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University School of Medicine, Sendai, Japan
| | - Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216,
| |
Collapse
|
16
|
20-HETE contributes to ischemia-induced angiogenesis. Vascul Pharmacol 2016; 83:57-65. [PMID: 27084395 DOI: 10.1016/j.vph.2016.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 01/26/2023]
Abstract
Angiogenesis is an important adaptation for recovery from peripheral ischemia. Here, we determined whether 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemia-induced angiogenesis and assessed its underlying molecular and cellular mechanisms using a mouse hindlimb-ischemia angiogenesis model. Hindlimb blood flow was measured by Laser Doppler Perfusion Imaging and microvessel density was determined by CD31 and tomato lectin staining. We found that systemic and local administration of a 20-HETE synthesis inhibitor, DDMS, or a 20-HETE antagonist, 6,15-20-HEDGE significantly reduced blood flow recovery and microvessel formation in response to ischemia. 20-HETE production, measured by LC/MS/MS, was markedly increased in ischemic muscles (91±11 vs. 8±2pg/mg in controls), which was associated with prominent upregulation of the 20-HETE synthase, CYP4A12. Immunofluorescence co-localized increased CYP4A12 expression in response to ischemia to CD31-positive EC in the ischemic hindlimb microvessels. We further showed that ischemia increased HIF-1α, VEGF, and VEGFR2 expression in gracilis muscles and that these increases were negated by DDMS and 6,15-20-HEDGE. Lastly, we showed that ERK1/2 of MAPK is a component of 20-HETE regulated ischemic angiogenesis. Taken together, these data indicate that 20-HETE is a critical contributor of ischemia-induced angiogenesis in vivo.
Collapse
|
17
|
Shankar A, Borin TF, Iskander A, Varma NR, Achyut BR, Jain M, Mikkelsen T, Guo AM, Chwang WB, Ewing JR, Bagher-Ebadian H, Arbab AS. Combination of vatalanib and a 20-HETE synthesis inhibitor results in decreased tumor growth in an animal model of human glioma. Onco Targets Ther 2016; 9:1205-19. [PMID: 27022280 PMCID: PMC4790509 DOI: 10.2147/ott.s93790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Due to the hypervascular nature of glioblastoma (GBM), antiangiogenic treatments, such as vatalanib, have been added as an adjuvant to control angiogenesis and tumor growth. However, evidence of progressive tumor growth and resistance to antiangiogenic treatment has been observed. To counter the unwanted effect of vatalanib on GBM growth, we have added a new agent known as N-hydroxy-N′-(4-butyl-2 methylphenyl)formamidine (HET0016), which is a selective inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis. The aims of the studies were to determine 1) whether the addition of HET0016 can attenuate the unwanted effect of vatalanib on tumor growth and 2) whether the treatment schedule would have a crucial impact on controlling GBM. Methods U251 human glioma cells (4×105) were implanted orthotopically. Two different treatment schedules were investigated. Treatment starting on day 8 (8–21 days treatment) of the tumor implantation was to mimic treatment following detection of tumor, where tumor would have hypoxic microenvironment and well-developed neovascularization. Drug treatment starting on the same day of tumor implantation (0–21 days treatment) was to mimic cases following radiation therapy or surgery. There were four different treatment groups: vehicle, vatalanib (oral treatment 50 mg/kg/d), HET0016 (intraperitoneal treatment 10 mg/kg/d), and combined (vatalanib and HET0016). Following scheduled treatments, all animals underwent magnetic resonance imaging on day 22, followed by euthanasia. Brain specimens were equally divided for immunohistochemistry and protein array analysis. Results Our results demonstrated a trend that HET0016, alone or in combination with vatalanib, is capable of controlling the tumor growth compared with that of vatalanib alone, indicating attenuation of the unwanted effect of vatalanib. When both vatalanib and HET0016 were administered together on the day of the tumor implantation (0–21 days treatment), tumor volume, tumor blood volume, permeability, extravascular and extracellular space volume, tumor cell proliferation, and cell migration were decreased compared with that of the vehicle-treated group. Conclusion HET0016 is capable of controlling tumor growth and migration, but these effects are dependent on the timing of drug administration. The addition of HET0016 to vatalanib may attenuate the unwanted effect of vatalanib.
Collapse
Affiliation(s)
- Adarsh Shankar
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Thaiz F Borin
- Laboratory of Molecular Investigation of Cancer (LIMC), Faculty of Medicine of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Brazil
| | - Asm Iskander
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Nadimpalli Rs Varma
- Department of Radiology, Cellular and Molecular Imaging Laboratory, Detroit, MI, USA
| | - Bhagelu R Achyut
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Meenu Jain
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Austin M Guo
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Wilson B Chwang
- Department of Radiology, Cellular and Molecular Imaging Laboratory, Detroit, MI, USA
| | - James R Ewing
- Department of Neurology and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Ali S Arbab
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
18
|
Hoopes SL, Garcia V, Edin ML, Schwartzman ML, Zeldin DC. Vascular actions of 20-HETE. Prostaglandins Other Lipid Mediat 2015; 120:9-16. [PMID: 25813407 DOI: 10.1016/j.prostaglandins.2015.03.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022]
Abstract
20-hydroxyeicosatetraenoic acid (20-HETE) is a metabolite of arachidonic acid that exhibits a myriad of biological effects in the vascular system. This review discusses the current knowledge related to the effects of 20-HETE on vascular reactivity, activation, and remodeling, as well as its role in vascular inflammation and angiogenesis. The information explaining how 20-HETE and the renin-angiotensin system interact to promote hypertension, vasoconstriction, and vascular dysfunction is summarized in this article. 20-HETE enhances vascular inflammation and injury in models of diabetes, ischemia/reperfusion, and cerebrovascular oxidative stress. Recent studies also established a role for 20-HETE in normal and pathological angiogenesis conditions. This review will also discuss the molecular mechanisms through which 20-HETE induces these vascular actions. Potential additional studies are suggested to address shortcomings in the current knowledge of 20-HETE in the vascular system.
Collapse
Affiliation(s)
- Samantha L Hoopes
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
19
|
Borin TF, Zuccari DAPC, Jardim-Perassi BV, Ferreira LC, Iskander ASM, Varma NRS, Shankar A, Guo AM, Scicli G, Arbab AS. HET0016, a selective inhibitor of 20-HETE synthesis, decreases pro-angiogenic factors and inhibits growth of triple negative breast cancer in mice. PLoS One 2014; 9:e116247. [PMID: 25549350 PMCID: PMC4280215 DOI: 10.1371/journal.pone.0116247] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/04/2014] [Indexed: 12/23/2022] Open
Abstract
A selective inhibitor of 20-HETE synthesis, HET0016, has been reported to inhibit angiogenesis. 20-HETE has been known as a second mitogenic messenger of angiogenesis inducing growth factors. HET0016 effects were analyzed on MDA-MB-231 derived breast cancer in mouse and invitro cell line. MDA-MB-231 tumor cells were implanted in animals’ right flank and randomly assigned to early (1 and 2), starting treatments on day 0, or delayed groups (3 and 4) on day 8 after implantation of tumor. Animals received HET0016 (10 mg/kg) treatment via intraperitoneal injection for 5 days/week for either 3 or 4 weeks. Control group received vehicle treatment. Tumor sizes were measured on days 7, 14, 21, and 28 and the animals were euthanized on day 22 and 29. Proteins were extracted from the whole tumor and from cells treated with 10 µM HET0016 for 4 and 24 hrs. Protein array kits of 20 different cytokines/factors were used. ELISA was performed to observe the HIF-1α and MMP-2 protein expression. Other markers were confirmed by IHC. HET0016 significantly inhibited tumor growth in all treatment groups at all-time points compared to control (p<0.05). Tumor growth was completely inhibited on three of ten animals on early treatment group. Treatment groups showed significantly lower expression of pro-angiogenic factors compared to control at 21 days; however, there was no significant difference in HIF-1α expression after treatments. Similar results were found invitro at 24 hrs of HET0016 treatment. After 28 days, significant increase of angiogenin, angiopoietin-1/2, EGF-R and IGF-1 pro-angiogenic factors were found (p<0.05) compared to control, as well as an higher intensity of all factors were found when compared to that of 21 day’s data, suggesting a treatment resistance. HET0016 inhibited tumor growth by reducing expression of different set of pro-angiogenic factors; however, a resistance to treatment seemed to happen after 21 days.
Collapse
Affiliation(s)
- Thaiz Ferraz Borin
- Laboratório de Investigação Molecular no Câncer (LIMC), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, 48202, United States of America
| | - Debora A. P. C. Zuccari
- Laboratório de Investigação Molecular no Câncer (LIMC), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil
| | - Bruna V. Jardim-Perassi
- Laboratório de Investigação Molecular no Câncer (LIMC), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil
| | - Lívia C. Ferreira
- Laboratório de Investigação Molecular no Câncer (LIMC), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil
| | - A. S. M. Iskander
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, 48202, United States of America
| | - Nadimpalli Ravi S. Varma
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, 48202, United States of America
| | - Adarsh Shankar
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, 48202, United States of America
| | - Austin M. Guo
- Department of Pharmacology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Guillermo Scicli
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, 48202, United States of America
| | - Ali S. Arbab
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, 48202, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
20-Hydroxy-5, 8, 11, 14-eicosatetraenoic acid (20-HETE) is a cytochrome P450 (CYP)-derived omega-hydroxylation metabolite of arachidonic acid. 20-HETE has been shown to play a complex role in blood pressure regulation. In the kidney tubules, 20-HETE inhibits sodium reabsorption and promotes natriuresis, thus, contributing to antihypertensive mechanisms. In contrast, in the microvasculature, 20-HETE has been shown to play a pressor role by sensitizing smooth muscle cells to constrictor stimuli and increasing myogenic tone, and by acting on the endothelium to further promote endothelial dysfunction and endothelial activation. In addition, 20-HETE induces endothelial angiotensin-converting enzyme, thus, setting forth a potential feed forward prohypertensive mechanism by stimulating the renin-angiotensin-aldosterone system. With the advancement of gene sequencing technology, numerous polymorphisms in the regulatory coding and noncoding regions of 20-HETE-producing enzymes, CYP4A11 and CYP4F2, have been associated with hypertension. This in-depth review article discusses the biosynthesis and function of 20-HETE in the cardiovascular system, the pharmacological agents that affect 20-HETE action, and polymorphisms of CYP enzymes that produce 20-HETE and are associated with systemic hypertension in humans.
Collapse
|
21
|
Cheng J, Edin ML, Hoopes SL, Li H, Bradbury JA, Graves JP, DeGraff LM, Lih FB, Garcia V, Shaik JSB, Tomer KB, Flake GP, Falck JR, Lee CR, Poloyac SM, Schwartzman ML, Zeldin DC. Vascular characterization of mice with endothelial expression of cytochrome P450 4F2. FASEB J 2014; 28:2915-31. [PMID: 24668751 DOI: 10.1096/fj.13-241927] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) 4A and 4F enzymes metabolize arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE). Although CYP4A-derived 20-HETE is known to have prohypertensive and proangiogenic properties, the effects of CYP4F-derived metabolites are not well characterized. To investigate the role of CYP4F2 in vascular disease, we generated mice with endothelial expression of human CYP4F2 (Tie2-CYP4F2-Tr). LC/MS/MS analysis revealed 2-foldincreases in 20-HETE levels in tissues and endothelial cells (ECs), relative to wild-type (WT) controls. Tie2-CYP4F2-Tr ECs demonstrated increases in growth (267.1 ± 33.4 vs. 205.0 ± 13% at 48 h) and tube formation (7.7 ± 1.1 vs. 1.6 ± 0.5 tubes/field) that were 20-HETE dependent and associated with up-regulation of prooxidant NADPH oxidase and proangiogenic VEGF. Increases in VEGF and NADPH oxidase levels were abrogated by inhibitors of NADPH oxidase and MAPK, respectively, suggesting the possibility of crosstalk between pathways. Interestingly, IL-6 levels in Tie2-CYP4F2-Tr mice (18.6 ± 2.7 vs. 7.9 ± 2.7 pg/ml) were up-regulated via NADPH oxidase- and 20-HETE-dependent mechanisms. Although Tie2-CYP4F2-Tr aortas displayed increased vasoconstriction, vasorelaxation and blood pressure were unchanged. Our findings indicate that human CYP4F2 significantly increases 20-HETE production, CYP4F2-derived 20-HETE mediates EC proliferation and angiogenesis via VEGF- and NADPH oxidase-dependent manners, and the Tie2-CYP4F2-Tr mouse is a novel model for examining the pathophysiological effects of CYP4F2-derived 20-HETE in the vasculature.-Cheng, J., Edin, M. L., Hoopes, S. L., Li, H., Bradbury, J. A., Graves, J. P., DeGraff, L. M., Lih, F. B., Garcia, V., Shaik, J. S. B., Tomer, K. B., Flake, G. P., Falck, J. R., Lee, C. R., Poloyac, S. M., Schwartzman, M. L., Zeldin, D. C. Vascular characterization of mice with endothelial expression of cytochrome P450 4F2.
Collapse
Affiliation(s)
- Jennifer Cheng
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Samantha L Hoopes
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Hong Li
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - J Alyce Bradbury
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Joan P Graves
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Laura M DeGraff
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Fred B Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | | | - Kenneth B Tomer
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Gordon P Flake
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Lee
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA; and
| | - Samuel M Poloyac
- School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| |
Collapse
|
22
|
LU SHUAIJUN, ZHU CHANGLING, LONG ANXIONG, TAN LONGYI, LI QIAN, ZHU YULI. Effect of 20-hydroxyeicosatetraenoic acid on biological behavior of human villous trophoblasts and uterine vascular smooth muscle cells. Mol Med Rep 2014; 9:1889-94. [DOI: 10.3892/mmr.2014.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/12/2014] [Indexed: 11/05/2022] Open
|
23
|
Chen L, Ackerman R, Saleh M, Gotlinger KH, Kessler M, Mendelowitz LG, Falck JR, Arbab AS, Scicli AG, Schwartzman ML, Yang J, Guo AM. 20-HETE regulates the angiogenic functions of human endothelial progenitor cells and contributes to angiogenesis in vivo. J Pharmacol Exp Ther 2014; 348:442-51. [PMID: 24403517 DOI: 10.1124/jpet.113.210120] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circulating endothelial progenitor cells (EPC) contribute to postnatal neovascularization. We identified the cytochrome P450 4A/F-20-hydroxyeicosatetraenoic acid (CYP4A/F-20-HETE) system as a novel regulator of EPC functions associated with angiogenesis in vitro. Here, we explored cellular mechanisms by which 20-HETE regulates EPC angiogenic functions and assessed its contribution to EPC-mediated angiogenesis in vivo. Results showed that both hypoxia and vascular endothelial growth factor (VEGF) induce CYP4A11 gene and protein expression (the predominant 20-HETE synthases in human EPC), and this is accompanied by an increase in 20-HETE production by ~1.4- and 1.8-fold, respectively, compared with the control levels. Additional studies demonstrated that 20-HETE and VEGF have a synergistic effect on EPC proliferation, whereas 20-HETE antagonist 20-HEDGE or VEGF-neutralizing antibody negated 20-HETE- or VEGF-induced proliferation, respectively. These findings are consistent with the presence of a positive feedback regulation on EPC proliferation between the 20-HETE and the VEGF pathways. Furthermore, we found that 20-HETE induced EPC adhesion to fibronectin and endothelial cell monolayer by 40 ± 5.6 and 67 ± 10%, respectively, which was accompanied by a rapid induction of very late antigen-4 and chemokine receptor type 4 mRNA and protein expression. Basal and 20-HETE-stimulated increases in adhesion were negated by the inhibition of the CYP4A-20-HETE system. Lastly, EPC increased angiogenesis in vivo by 3.6 ± 0.2-fold using the Matrigel plug angiogenesis assay, and these increases were markedly reduced by the local inhibition of 20-HETE system. These results strengthened the notion that 20-HETE regulates the angiogenic functions of EPC in vitro and EPC-mediated angiogenesis in vivo.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacology, School of Medicine, Wuhan University, Wuhan, PR China (L.C., J.Y., A.M.G.); Department of Pharmacology, New York Medical College, Valhalla, New York (L.C., R.A.,M.S., K.H.G., M.L.S., A.M.G.); Department of Obstetrics and Gynecology, Westchester Medical Center, Valhalla, New York (M.K.); Obstetrics and Gynecology, Phelps Memorial Hospital Center, Sleepy Hollow, New York (L.G.M.); University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.); and Henry Ford Hospital, Detroit, Michigan (A.S.A., A.G.S.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Issan Y, Hochhauser E, Guo A, Gotlinger KH, Kornowski R, Leshem-Lev D, Lev E, Porat E, Snir E, Thompson CI, Abraham NG, Laniado-Schwartzman M. Elevated level of pro-inflammatory eicosanoids and EPC dysfunction in diabetic patients with cardiac ischemia. Prostaglandins Other Lipid Mediat 2013; 100-101:15-21. [PMID: 23291334 DOI: 10.1016/j.prostaglandins.2012.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Circulating endothelial progenitor cells (EPCs) are recruited from the blood system to sites of ischemia and endothelial damage, where they contribute to the repair and development of blood vessels. Since numerous eicosanoids including leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) have been shown to exert potent pro-inflammatory activities, we examined their levels in chronic diabetic patients with severe cardiac ischemia in conjunction with the level and function of EPCs. RESULTS Lipidomic analysis revealed a diabetes-specific increase (p<0.05) in inflammatory and angiogenic eicosanoids including the 5-lipoxygenase-derived LTB (4.11±1.17 vs. 0.96±0.27 ng/ml), the lipoxygenase/CYP-derived 12-HETE (117.08±35.05 vs. 24.34±10.03 ng/ml), 12-HETrE (17.56±4.43 vs. 4.15±2.07 ng/ml), and the CYP-derived 20-HETE (0.32±0.04 vs. 0.06±0.05 ng/ml) the level of which correlated with BMI (p=0.0027). In contrast, levels of the CYP-derived EETs were not significantly (p=0.36) different between these two groups. EPC levels and their colony-forming units were lower (p<0.05) with a reduced viability in diabetic patients compared with non-diabetics. EPC function (colony-forming units (CFUs) and MTT assay) also negatively correlated with the circulating levels of HgA1C. CONCLUSION This study demonstrates a close association between elevated levels of highly pro-inflammatory eicosonoids, diabetes and EPC dysfunction in patients with cardiac ischemia, indicating that chronic inflammation impact negatively on EPC function and angiogenic capacity in diabetes.
Collapse
Affiliation(s)
- Yossi Issan
- Cardiac Research Laboratory at the Felsenstein Medical Research Institute, Rabin Medical Center, Petah-Tikva and the Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vascular Endothelium. TISSUE FUNCTIONING AND REMODELING IN THE CIRCULATORY AND VENTILATORY SYSTEMS 2013. [DOI: 10.1007/978-1-4614-5966-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Yao L, Nie X, Shi S, Song S, Hao X, Li S, Zhu D. Reciprocal regulation of HIF-1α and 15-LO/15-HETE promotes anti-apoptosis process in pulmonary artery smooth muscle cells during hypoxia. Prostaglandins Other Lipid Mediat 2012; 99:96-106. [PMID: 22982617 DOI: 10.1016/j.prostaglandins.2012.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/03/2012] [Accepted: 09/07/2012] [Indexed: 11/30/2022]
Abstract
15-Hydroxyeicosatetraenoic acid, a predominant metabolic product of arachidonic acid (AA) catalyzed by 15-lipoxygenase (15-LO), plays an important role in hypoxic pulmonary arterial hypertension (PAH). Hypoxia-inducible factor-1α (HIF-1α) as a critical oxygen-sensitive transcriptional factor participates in many physiological and pathological processes including PAH. Therefore, it is possible that there may be some connections between HIF-1α and 15-LO/15-HETE in hypoxic pulmonary artery smooth muscle cells. Our results showed that HIF-1α inhibitor or siRNA reduced hypoxia-induced upregulation of 15-LO and endogenous 15-HETE, meanwhile HIF-1α expression and transcriptional activity were induced by 15-HETE under both normoxic and hypoxic conditions. It suggests there exists a potential positive feedback regulatory loop between HIF-1α and 15-LO/15-HETE. Furthermore, cell viability assay and several cell apoptosis assays, including TUNEL assay, Western blot, nuclear morphology determination, mitochondrial potential analysis, indicated that blocking HIF-1α induced apoptosis, decreased cell viability and suppressed the anti-apoptosis effects of 15-HETE. Taken together, our data indicate that upregulation of 15-LO/15-HETE in response to hypoxia may be partially mediated by HIF-1α which is also regulated by 15-HETE in a positive feedback manner, and HIF-1α can effectively inhibit pulmonary artery smooth muscle cells apoptosis which leads to vascular remodeling. The feedback loop between HIF-1α and 15-LO/15-HETE would obviously reinforce hypoxia-induced anti-apoptosis effect and may become a novel target of therapy in PAH.
Collapse
Affiliation(s)
- Lan Yao
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Cheng J, Garcia V, Ding Y, Wu CC, Thakar K, Falck JR, Ramu E, Schwartzman ML. Induction of angiotensin-converting enzyme and activation of the renin-angiotensin system contribute to 20-hydroxyeicosatetraenoic acid-mediated endothelial dysfunction. Arterioscler Thromb Vasc Biol 2012; 32:1917-24. [PMID: 22723444 DOI: 10.1161/atvbaha.112.248344] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE 20-hydroxyeicosatetraenoic acid (20-HETE) promotes endothelial dysfunction by uncoupling endothelial NO synthase, stimulating O(2)(-) production, and reducing NO bioavailability. Moreover, 20-HETE-dependent vascular dysfunction and hypertension are associated with upregulation of the renin-angiotensin system This study was undertaken to examine the contribution of renin-angiotensin system to 20-HETE actions in the vascular endothelium. METHODS AND RESULTS In endothelial cells, 20-HETE induced angiotensin-converting enzyme (ACE) mRNA levels and increased ACE protein and activity by 2- to 3-fold; these effects were negated with addition of the 20-HETE antagonist, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20 HEDE). 20-HETE induced ACE expression was protein kinase C independent and epidermal growth factor receptor tyrosine kinase and IκB kinase β dependent. ACE short interfering RNA abolished 20-HETE-mediated inhibition of NO production and stimulation of O(2)(-) generation, whereas angiotensin II type 1 receptor short interfering RNA attenuated these effects by 40%. 20-HETE-stimulated O(2)(-) production was negated by 20-HEDE and was attenuated by lisinopril and losartan. Importantly, 20-HETE-mediated impairment of acetylcholine-induced relaxation in rat renal interlobar arteries was also attenuated by lisinopril and losartan. CONCLUSIONS These results indicate that ACE and angiotensin II type 1 receptor activation contribute to 20-HETE-mediated endothelial cell and vascular dysfunction and further enforce the notion that excessive production of 20-HETE within the vasculature leads to hypertension via mechanisms that include the induction of endothelial ACE, thus, perpetuating an increase in vascular angiotensin which, together with 20-HETE, promotes vascular dysfunction.
Collapse
Affiliation(s)
- Jennifer Cheng
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chiusa M, Hool SL, Truetsch P, Djafarzadeh S, Jakob SM, Seifriz F, Scherer SJ, Suter TM, Zuppinger C, Zbinden S. Cancer therapy modulates VEGF signaling and viability in adult rat cardiac microvascular endothelial cells and cardiomyocytes. J Mol Cell Cardiol 2012; 52:1164-75. [PMID: 22326847 DOI: 10.1016/j.yjmcc.2012.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/10/2012] [Accepted: 01/26/2012] [Indexed: 12/11/2022]
Abstract
This work was motivated by the incomplete characterization of the role of vascular endothelial growth factor-A (VEGF-A) in the stressed heart in consideration of upcoming cancer treatment options challenging the natural VEGF balance in the myocardium. We tested, if the cytotoxic cancer therapy doxorubicin (Doxo) or the anti-angiogenic therapy sunitinib alters viability and VEGF signaling in primary cardiac microvascular endothelial cells (CMEC) and adult rat ventricular myocytes (ARVM). ARVM were isolated and cultured in serum-free medium. CMEC were isolated from the left ventricle and used in the second passage. Viability was measured by LDH-release and by MTT-assay, cellular respiration by high-resolution oxymetry. VEGF-A release was measured using a rat specific VEGF-A ELISA-kit. CMEC were characterized by marker proteins including CD31, von Willebrand factor, smooth muscle actin and desmin. Both Doxo and sunitinib led to a dose-dependent reduction of cell viability. Sunitinib treatment caused a significant reduction of complex I and II-dependent respiration in cardiomyocytes and the loss of mitochondrial membrane potential in CMEC. Endothelial cells up-regulated VEGF-A release after peroxide or Doxo treatment. Doxo induced HIF-1α stabilization and upregulation at clinically relevant concentrations of the cancer therapy. VEGF-A release was abrogated by the inhibition of the Erk1/2 or the MAPKp38 pathway. ARVM did not answer to Doxo-induced stress conditions by the release of VEGF-A as observed in CMEC. VEGF receptor 2 amounts were reduced by Doxo and by sunitinib in a dose-dependent manner in both CMEC and ARVM. In conclusion, these data suggest that cancer therapy with anthracyclines modulates VEGF-A release and its cellular receptors in CMEC and ARVM, and therefore alters paracrine signaling in the myocardium.
Collapse
Affiliation(s)
- Manuel Chiusa
- Bern University Hospital, Cardiology, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen L, Ackerman R, Guo AM. 20-HETE in neovascularization. Prostaglandins Other Lipid Mediat 2011; 98:63-8. [PMID: 22227460 DOI: 10.1016/j.prostaglandins.2011.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/09/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 4A/F (CYP4A/F) converts arachidonic acid (AA) to 20-HETE by ω-hydroxylation. The contribution of 20-HETE to the regulation of myogenic response, blood pressure, and mitogenic actions has been well summarized. This review focuses on the emerging role of 20-HETE in physiological and pathological vascularization. 20-HETE has been shown to regulate vascular smooth muscle cells (VSMC) and endothelial cells (EC) by affecting their proliferation, migration, survival, and tube formation. Furthermore, the proliferation, migration, secretion of proangiogenic molecules (such as HIF-1α, VEGF, SDF-1α), and tube formation of endothelial progenitor cells (EPC) are stimulated by 20-HETE. These effects are mediated through c-Src- and EGFR-mediated downstream signaling pathways, including MAPK and PI3K/Akt pathways, eNOS uncoupling, and NOX/ROS system activation. Therefore, the CYP4A/F-20-HETE system may be a therapeutic target for the treatment of abnormal angiogenic diseases.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
30
|
Wu CC, Schwartzman ML. The role of 20-HETE in androgen-mediated hypertension. Prostaglandins Other Lipid Mediat 2011; 96:45-53. [PMID: 21722750 PMCID: PMC3248593 DOI: 10.1016/j.prostaglandins.2011.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/25/2022]
Abstract
Androgen plays an important role in blood pressure regulation. Epidemiological studies have shown that men have a higher prevalence for developing hypertension than aged-matched, premenopausal women. Interestingly, postmenopausal women and women with polycystic ovary syndrome, both of which have increased endogenous androgen production, have elevated risks for hypertension suggesting that androgen may contribute to its development. Studies from our laboratory and others have provided substantial evidence that 20-hydroxyeicosatetraenoic acid (20-HETE) mediates the hypertension seen in rodents treated with androgen. 20-HETE is the cytochrome P450 (CYP)-derived ω-hydroxylated metabolite of arachidonic acid. 20-HETE plays a complex role in blood pressure regulation. In the kidney tubules, 20-HETE decreases blood pressure by promoting natriuresis, while in the microvasculature it has a pressor effect. In the microcirculation, 20-HETE participates in the regulation of vascular tone by sensitizing the smooth muscle cells to constrictor stimuli and contributes to myogenic, mitogenic and angiogenic responses. In addition, 20-HETE acts on the endothelium to promote endothelial dysfunction and endothelial activation. Recently, we have demonstrated that 20-HETE induces endothelial ACE thus setting forth a potential feed forward mechanism through activation of the renin-angiotensin-aldosterone system. In this review, we will discuss the pro-hypertensive effects of 20-HETE and its role in androgen-induced vascular dysfunction and hypertension.
Collapse
Affiliation(s)
- Cheng-Chia Wu
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA. chengchia
| | | |
Collapse
|
31
|
Guo AM, Janic B, Sheng J, Falck JR, Roman RJ, Edwards PA, Arbab AS, Scicli AG. The cytochrome P450 4A/F-20-hydroxyeicosatetraenoic acid system: a regulator of endothelial precursor cells derived from human umbilical cord blood. J Pharmacol Exp Ther 2011; 338:421-9. [PMID: 21527533 DOI: 10.1124/jpet.111.179036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endothelial progenitor cells (EPCs) contribute to physiological and pathological neovascularization. Previous data have suggested that the cytochrome P450 4A/F (CYP4A/F)-20-hydroxyeicosatetraenoic acid (20-HETE) system regulates neovascularization. Therefore, we studied whether the angiogenic effects of the CYP4A/F-20-HETE system involve regulation of EPC function. We extracted human umbilical cord blood and isolated EPCs, which express AC133(+)CD34(+) and kinase insert domain receptor (KDR) surface markers and contain mRNA and protein for CYP4A11 and CYP4A22 enzymes, as opposed to mesenchymal stem cells, which only express negligible amounts of CYP4A11/22. When EPCs were incubated with arachidonic acid, they produced 20-HETE, which stimulated the cells to proliferate and migrate, as did vascular endothelial growth factor. Incubation with 1 μM N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET0016), a selective inhibitor of 20-HETE synthesis, reduced the proliferative and migratory effects of vascular endothelial growth factor and also significantly abolished EPC migration mediated by stroma-derived factor-1α, as did (6,15) 20-hydroxyeicosadienoic acid. Coculturing EPCs and endothelial cells on a Matrigel matrix led to tube formation, which in turn was inhibited by both HET0016 and 20-hydroxyeicosadienoic acid. We concluded that the CYP4A/F-20-HETE system is expressed in EPCs and can act as both an autocrine and a paracrine regulatory factor.
Collapse
Affiliation(s)
- Austin M Guo
- Department of Pharmacology, New York Medical College, 15 Dana Rd., BSB 546A, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs), which are generated from the metabolism of arachidonic acid by cytochrome P450 (CYP) enzymes, possess a wide array of biological actions, including the regulation of blood flow to organs. 20-HETE and EETs are generated in various cell types in the brain and cerebral blood vessels, and contribute significantly to cerebral blood flow autoregulation and the coupling of regional brain blood flow to neuronal activity (neurovascular coupling). Investigations are beginning to unravel the molecular and cellular mechanisms by which these CYP eicosanoids regulate cerebral vascular function and the changes that occur in pathological states. Intriguingly, 20-HETE and the soluble epoxide hydrolase (sEH) enzyme that regulates EET levels have been explored as molecular therapeutic targets for cerebral vascular diseases. Inhibition of 20-HETE, or increasing EET levels by inhibiting the sEH enzyme, decreases cerebral damage following stroke. The improved outcome following cerebral ischaemia is a consequence of improving cerebral vascular structure or function and protecting neurons from cell death. Thus, the CYP eicosanoids are key regulators of cerebral vascular function and novel therapeutic targets for cardiovascular diseases and neurological disorders.
Collapse
|
33
|
|