1
|
Birkedal R, Branovets J, Vendelin M. Compartmentalization in cardiomyocytes modulates creatine kinase and adenylate kinase activities. FEBS Lett 2024; 598:2623-2640. [PMID: 39112921 DOI: 10.1002/1873-3468.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/21/2024] [Indexed: 11/12/2024]
Abstract
Intracellular molecules are transported by motor proteins or move by diffusion resulting from random molecular motion. Cardiomyocytes are packed with structures that are crucial for function, but also confine the diffusional spaces, providing cells with a means to control diffusion. They form compartments in which local concentrations are different from the overall, average concentrations. For example, calcium and cyclic AMP are highly compartmentalized, allowing these versatile second messengers to send different signals depending on their location. In energetic compartmentalization, the ratios of AMP and ADP to ATP are different from the average ratios. This is important for the performance of ATPases fuelling cardiac excitation-contraction coupling and mechanical work. A recent study suggested that compartmentalization modulates the activity of creatine kinase and adenylate kinase in situ. This could have implications for energetic signaling through, for example, AMP-activated kinase. It highlights the importance of taking compartmentalization into account in our interpretation of cellular physiology and developing methods to assess local concentrations of AMP and ADP to enhance our understanding of compartmentalization in different cell types.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| |
Collapse
|
2
|
Lygate CA. Maintaining energy provision in the heart: the creatine kinase system in ischaemia-reperfusion injury and chronic heart failure. Clin Sci (Lond) 2024; 138:491-514. [PMID: 38639724 DOI: 10.1042/cs20230616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
3
|
Laasmaa M, Branovets J, Stolova J, Shen X, Rätsepso T, Balodis MJ, Grahv C, Hendrikson E, Louch WE, Birkedal R, Vendelin M. Cardiomyocytes from female compared to male mice have larger ryanodine receptor clusters and higher calcium spark frequency. J Physiol 2023; 601:4033-4052. [PMID: 37561554 DOI: 10.1113/jp284515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Sex differences in cardiac physiology are receiving increased attention as it has become clear that men and women have different aetiologies of cardiac disease and require different treatments. There are experimental data suggesting that male cardiomyocytes exhibit larger Ca2+ transients due to larger Ca2+ sparks and a higher excitation-contraction coupling gain; in addition, they exhibit a larger response to adrenergic stimulation with isoprenaline (ISO). Here, we studied whether there are sex differences relating to structural organization of the transverse tubular network and ryanodine receptors (RyRs). Surprisingly, we found that female cardiomyocytes exhibited a higher spark frequency in a range of spark magnitudes. While overall RyR expression and phosphorylation were the same, female cardiomyocytes had larger but fewer RyR clusters. The density of transverse t-tubules was the same, but male cardiomyocytes had more longitudinal t-tubules. The Ca2+ transients were similar in male and female cardiomyocytes under control conditions and in the presence of ISO. The synchrony of the Ca2+ transients was similar between sexes as well. Overall, our data suggest subtle sex differences in the Ca2+ influx and efflux pathways and their response to ISO, but these differences are balanced, resulting in similar Ca2+ transients in field-stimulated male and female cardiomyocytes. The higher spark frequency in female cardiomyocytes is related to the organization of RyRs into larger, but fewer clusters. KEY POINTS: During a heartbeat, the force of contraction depends on the amplitude of the calcium transient, which in turn depends on the amount of calcium released as calcium sparks through ryanodine receptors in the sarcoplasmic reticulum. Previous studies suggest that cardiomyocytes from male compared to female mice exhibit larger calcium sparks, larger sarcoplasmic reticulum calcium release and greater response to adrenergic stimulation triggering a fight-or-flight response. In contrast, we show that cardiomyocytes from female mice have a higher spark frequency during adrenergic stimulation and similar spark morphology. The higher spark frequency is related to the organization of ryanodine receptors into fewer, but larger clusters in female compared to male mouse cardiomyocytes. Despite subtle sex differences in cardiomyocyte structure and calcium fluxes, the differences are balanced, leading to similar calcium transients in cardiomyocytes from male and female mice.
Collapse
Affiliation(s)
- Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
- Institute for Experimental Medical Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Jekaterina Stolova
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Xin Shen
- Institute for Experimental Medical Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Triinu Rätsepso
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Mihkel Jaan Balodis
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Cärolin Grahv
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Eliise Hendrikson
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - William Edward Louch
- Institute for Experimental Medical Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
4
|
Birkedal R, Laasmaa M, Branovets J, Vendelin M. Ontogeny of cardiomyocytes: ultrastructure optimization to meet the demand for tight communication in excitation-contraction coupling and energy transfer. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210321. [PMID: 36189816 PMCID: PMC9527910 DOI: 10.1098/rstb.2021.0321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ontogeny of the heart describes its development from the fetal to the adult stage. In newborn mammals, blood pressure and thus cardiac performance are relatively low. The cardiomyocytes are thin, and with a central core of mitochondria surrounded by a ring of myofilaments, while the sarcoplasmic reticulum (SR) is sparse. During development, as blood pressure and performance increase, the cardiomyocytes become more packed with structures involved in excitation–contraction (e-c) coupling (SR and myofilaments) and the generation of ATP (mitochondria) to fuel the contraction. In parallel, the e-c coupling relies increasingly on calcium fluxes through the SR, while metabolism relies increasingly on fatty acid oxidation. The development of transverse tubules and SR brings channels and transporters interacting via calcium closer to each other and is crucial for e-c coupling. However, for energy transfer, it may seem counterintuitive that the increased structural density restricts the overall ATP/ADP diffusion. In this review, we discuss how this is because of the organization of all these structures forming modules. Although the overall diffusion across modules is more restricted, the energy transfer within modules is fast. A few studies suggest that in failing hearts this modular design is disrupted, and this may compromise intracellular energy transfer. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| |
Collapse
|
5
|
McAndrew DJ, Lake HA, Zervou S, Schwedhelm E, Schneider JE, Neubauer S, Lygate CA. Homoarginine and creatine deficiency do not exacerbate murine ischaemic heart failure. ESC Heart Fail 2022; 10:189-199. [PMID: 36178450 PMCID: PMC9871656 DOI: 10.1002/ehf2.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS Low levels of homoarginine and creatine are associated with heart failure severity in humans, but it is unclear to what extent they contribute to pathophysiology. Both are synthesized via L-arginine:glycine amidinotransferase (AGAT), such that AGAT-/- mice have a combined creatine and homoarginine deficiency. We hypothesized that this would be detrimental in the setting of chronic heart failure. METHODS AND RESULTS Study 1: homoarginine deficiency-female AGAT-/- and wild-type mice were given creatine-supplemented diet so that both had normal myocardial creatine levels, but only AGAT-/- had low plasma homoarginine. Myocardial infarction (MI) was surgically induced and left ventricular (LV) structure and function assessed at 6-7 weeks by in vivo imaging and haemodynamics. Study 2: homoarginine and creatine-deficiency-as before, but AGAT-/- mice were given creatine-supplemented diet until 1 week post-MI, when 50% were changed to a creatine-free diet. Both groups therefore had low homoarginine levels, but one group also developed lower myocardial creatine levels. In both studies, all groups had LV remodelling and dysfunction commensurate with the development of chronic heart failure, for example, LV dilatation and mean ejection fraction <20%. However, neither homoarginine deficiency alone or in combination with creatine deficiency had a significant effect on mortality, LV remodelling, or on any indices of contractile and lusitropic function. CONCLUSIONS Low levels of homoarginine and creatine do not worsen chronic heart failure arguing against a major causative role in disease progression. This suggests that it is unnecessary to correct hArg deficiency in patients with heart failure, although supra-physiological levels may still be beneficial.
Collapse
Affiliation(s)
- Debra J. McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| | - Hannah A. Lake
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jurgen E. Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,Experimental and Preclinical Imaging Centre (ePIC), Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| |
Collapse
|
6
|
Keceli G, Gupta A, Sourdon J, Gabr R, Schär M, Dey S, Tocchetti CG, Stuber A, Agrimi J, Zhang Y, Leppo M, Steenbergen C, Lai S, Yanek LR, O’Rourke B, Gerstenblith G, Bottomley PA, Wang Y, Paolocci N, Weiss RG. Mitochondrial Creatine Kinase Attenuates Pathologic Remodeling in Heart Failure. Circ Res 2022; 130:741-759. [PMID: 35109669 PMCID: PMC8897235 DOI: 10.1161/circresaha.121.319648] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abnormalities in cardiac energy metabolism occur in heart failure (HF) and contribute to contractile dysfunction, but their role, if any, in HF-related pathologic remodeling is much less established. CK (creatine kinase), the primary muscle energy reserve reaction which rapidly provides ATP at the myofibrils and regenerates mitochondrial ADP, is down-regulated in experimental and human HF. We tested the hypotheses that pathologic remodeling in human HF is related to impaired cardiac CK energy metabolism and that rescuing CK attenuates maladaptive hypertrophy in experimental HF. METHODS First, in 27 HF patients and 14 healthy subjects, we measured cardiac energetics and left ventricular remodeling using noninvasive magnetic resonance 31P spectroscopy and magnetic resonance imaging, respectively. Second, we tested the impact of metabolic rescue with cardiac-specific overexpression of either Ckmyofib (myofibrillar CK) or Ckmito (mitochondrial CK) on HF-related maladaptive hypertrophy in mice. RESULTS In people, pathologic left ventricular hypertrophy and dilatation correlate closely with reduced myocardial ATP levels and rates of ATP synthesis through CK. In mice, transverse aortic constriction-induced left ventricular hypertrophy and dilatation are attenuated by overexpression of CKmito, but not by overexpression of CKmyofib. CKmito overexpression also attenuates hypertrophy after chronic isoproterenol stimulation. CKmito lowers mitochondrial reactive oxygen species, tissue reactive oxygen species levels, and upregulates antioxidants and their promoters. When the CK capacity of CKmito-overexpressing mice is limited by creatine substrate depletion, the protection against pathologic remodeling is lost, suggesting the ADP regenerating capacity of the CKmito reaction rather than CK protein per se is critical in limiting adverse HF remodeling. CONCLUSIONS In the failing human heart, pathologic hypertrophy and adverse remodeling are closely related to deficits in ATP levels and in the CK energy reserve reaction. CKmito, sitting at the intersection of cardiac energetics and redox balance, plays a crucial role in attenuating pathologic remodeling in HF. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00181259.
Collapse
Affiliation(s)
- Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Ashish Gupta
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Joevin Sourdon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Refaat Gabr
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, US
| | - Michael Schär
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Swati Dey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, US
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Annina Stuber
- École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Yi Zhang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Michelle Leppo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD US
| | - Shenghan Lai
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, US
| | - Lisa R. Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Brian O’Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Gary Gerstenblith
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Paul A. Bottomley
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Yibin Wang
- Departments of Anesthesiology and Medicine, University of California at Los Angeles, Los Angeles, CA, US
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Robert G. Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, US
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| |
Collapse
|
7
|
Lygate CA. The Pitfalls of in vivo Cardiac Physiology in Genetically Modified Mice - Lessons Learnt the Hard Way in the Creatine Kinase System. Front Physiol 2021; 12:685064. [PMID: 34054587 PMCID: PMC8160301 DOI: 10.3389/fphys.2021.685064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
In order to fully understand gene function, at some point, it is necessary to study the effects in an intact organism. The creation of the first knockout mouse in the late 1980's gave rise to a revolution in the field of integrative physiology that continues to this day. There are many complex choices when selecting a strategy for genetic modification, some of which will be touched on in this review, but the principal focus is to highlight the potential problems and pitfalls arising from the interpretation of in vivo cardiac phenotypes. As an exemplar, we will scrutinize the field of cardiac energetics and the attempts to understand the role of the creatine kinase (CK) energy buffering and transport system in the intact organism. This story highlights the confounding effects of genetic background, sex, and age, as well as the difficulties in interpreting knockout models in light of promiscuous proteins and metabolic redundancy. It will consider the dose-dependent effects and unintended consequences of transgene overexpression, and the need for experimental rigour in the context of in vivo phenotyping techniques. It is intended that this review will not only bring clarity to the field of cardiac energetics, but also aid the non-expert in evaluating and critically assessing data arising from in vivo genetic modification.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Branovets J, Karro N, Barsunova K, Laasmaa M, Lygate CA, Vendelin M, Birkedal R. Cardiac expression and location of hexokinase changes in a mouse model of pure creatine deficiency. Am J Physiol Heart Circ Physiol 2021; 320:H613-H629. [PMID: 33337958 DOI: 10.1152/ajpheart.00188.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Creatine kinase (CK) is considered the main phosphotransfer system in the heart, important for overcoming diffusion restrictions and regulating mitochondrial respiration. It is substrate limited in creatine-deficient mice lacking l-arginine:glycine amidinotransferase (AGAT) or guanidinoacetate N-methyltranferase (GAMT). Our aim was to determine the expression, activity, and mitochondrial coupling of hexokinase (HK) and adenylate kinase (AK), as these represent alternative energy transfer systems. In permeabilized cardiomyocytes, we assessed how much endogenous ADP generated by HK, AK, or CK stimulated mitochondrial respiration and how much was channeled to mitochondria. In whole heart homogenates, and cytosolic and mitochondrial fractions, we measured the activities of AK, CK, and HK. Lastly, we assessed the expression of the major HK, AK, and CK isoforms. Overall, respiration stimulated by HK, AK, and CK was ∼25, 90, and 80%, respectively, of the maximal respiration rate, and ∼20, 0, and 25%, respectively, was channeled to the mitochondria. The activity, distribution, and expression of HK, AK, and CK did not change in GAMT knockout (KO) mice. In AGAT KO mice, we found no changes in AK, but we found a higher HK activity in the mitochondrial fraction, greater expression of HK I, but a lower stimulation of respiration by HK. Our findings suggest that mouse hearts depend less on phosphotransfer systems to facilitate ADP flux across the mitochondrial membrane. In AGAT KO mice, which are a model of pure creatine deficiency, the changes in HK may reflect changes in metabolism as well as influence mitochondrial regulation and reactive oxygen species production.NEW & NOTEWORTHY In creatine-deficient AGAT-/- and GAMT-/- mice, the myocardial creatine kinase system is substrate limited. It is unknown whether subcellular localization and mitochondrial ADP channeling by hexokinase and adenylate kinase may compensate as alternative phosphotransfer systems. Our results show no changes in adenylate kinase, which is the main alternative to creatine kinase in heart. However, we found increased expression and activity of hexokinase I in AGAT-/- cardiomyocytes. This could affect mitochondrial regulation and reactive oxygen species production.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Niina Karro
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Karina Barsunova
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
9
|
Laasmaa M, Branovets J, Barsunova K, Karro N, Lygate CA, Birkedal R, Vendelin M. Altered calcium handling in cardiomyocytes from arginine-glycine amidinotransferase-knockout mice is rescued by creatine. Am J Physiol Heart Circ Physiol 2021; 320:H805-H825. [PMID: 33275525 DOI: 10.1152/ajpheart.00300.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 01/14/2023]
Abstract
The creatine kinase system facilitates energy transfer between mitochondria and the major ATPases in the heart. Creatine-deficient mice, which lack arginine-glycine amidinotransferase (AGAT) to synthesize creatine and homoarginine, exhibit reduced cardiac contractility. We studied how the absence of a functional CK system influences calcium handling in isolated cardiomyocytes from AGAT-knockouts and wild-type littermates as well as in AGAT-knockout mice receiving lifelong creatine supplementation via the food. Using a combination of whole cell patch clamp and fluorescence microscopy, we demonstrate that the L-type calcium channel (LTCC) current amplitude and voltage range of activation were significantly lower in AGAT-knockout compared with wild-type littermates. Additionally, the inactivation of LTCC and the calcium transient decay were significantly slower. According to our modeling results, these changes can be reproduced by reducing three parameters in knockout mice when compared with wild-type: LTCC conductance, the exchange constant of Ca2+ transfer between subspace and cytosol, and SERCA activity. Because tissue expression of LTCC and SERCA protein were not significantly different between genotypes, this suggests the involvement of posttranslational regulatory mechanisms or structural reorganization. The AGAT-knockout phenotype of calcium handling was fully reversed by dietary creatine supplementation throughout life. Our results indicate reduced calcium cycling in cardiomyocytes from AGAT-knockouts and suggest that the creatine kinase system is important for the development of calcium handling in the heart.NEW & NOTEWORTHY Creatine-deficient mice lacking arginine-glycine amidinotransferase exhibit compromised cardiac function. Here, we show that this is at least partially due to an overall slowing of calcium dynamics. Calcium influx into the cytosol via the L-type calcium current (LTCC) is diminished, and the rate of the sarcoendoplasmic reticulum calcium ATPase (SERCA) pumping calcium back into the sarcoplasmic reticulum is slower. The expression of LTCC and SERCA did not change, suggesting that the changes are regulatory.
Collapse
Affiliation(s)
- Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Karina Barsunova
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Niina Karro
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and the British Heart Foundation Centre of Research Excellence, University of Oxford, Tallinn, United Kingdom
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
10
|
Marker enzyme activities in hindleg from creatine-deficient AGAT and GAMT KO mice - differences between models, muscles, and sexes. Sci Rep 2020; 10:7956. [PMID: 32409787 PMCID: PMC7224371 DOI: 10.1038/s41598-020-64740-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 11/10/2022] Open
Abstract
Creatine kinase (CK) functions as an energy buffer in muscles. Its substrate, creatine, is generated by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT). Creatine deficiency has more severe consequences for AGAT than GAMT KO mice. In the present study, to characterize their muscle phenotype further, we recorded the weight of tibialis anterior (TA), extensor digitorum longus (EDL), gastrocnemius (GAS), plantaris (PLA) and soleus (SOL) from creatine-deficient AGAT and GAMT, KO and WT mice. In GAS, PLA and SOL representing glycolytic, intermediate and oxidative muscle, respectively, we recorded the activities of pyruvate kinase (PK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome oxidase (CO). In AGAT KO compared to WT mice, muscle atrophy and differences in marker enzyme activities were more pronounced in glycolytic than oxidative muscle. In GAMT KO compared to WT, the atrophy was modest, differences in PK and LDH activities were minor, and CS and CO activities were slightly higher in all muscles. SOL from males had higher CS and CO activities compared to females. Our results add detail to the characterization of AGAT and GAMT KO skeletal muscle phenotypes and illustrate the importance of taking into account differences between muscles, and differences between sexes.
Collapse
|
11
|
Takeuchi A, Matsuoka S. Integration of mitochondrial energetics in heart with mathematical modelling. J Physiol 2020; 598:1443-1457. [DOI: 10.1113/jp276817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/23/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ayako Takeuchi
- Department of Integrative and Systems PhysiologyFaculty of Medical Sciencesand Life Science Innovation CenterUniversity of Fukui Fukui 910‐1193 Japan
| | - Satoshi Matsuoka
- Department of Integrative and Systems PhysiologyFaculty of Medical Sciencesand Life Science Innovation CenterUniversity of Fukui Fukui 910‐1193 Japan
| |
Collapse
|
12
|
Aksentijević D, Zervou S, Eykyn TR, McAndrew DJ, Wallis J, Schneider JE, Neubauer S, Lygate CA. Age-Dependent Decline in Cardiac Function in Guanidinoacetate- N-Methyltransferase Knockout Mice. Front Physiol 2020; 10:1535. [PMID: 32038270 PMCID: PMC6985570 DOI: 10.3389/fphys.2019.01535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 01/15/2023] Open
Abstract
Aim Guanidinoacetate N-methyltransferase (GAMT) is the second essential enzyme in creatine (Cr) biosynthesis. Short-term Cr deficiency is metabolically well tolerated as GAMT–/– mice exhibit normal exercise capacity and response to ischemic heart failure. However, we hypothesized long-term consequences of Cr deficiency and/or accumulation of the Cr precursor guanidinoacetate (GA). Methods Cardiac function and metabolic profile were studied in GAMT–/– mice >1 year. Results In vivo LV catheterization revealed lower heart rate and developed pressure in aging GAMT–/– but normal lung weight and survival versus age-matched controls. Electron microscopy indicated reduced mitochondrial volume density in GAMT–/– hearts (P < 0.001), corroborated by lower mtDNA copy number (P < 0.004), and citrate synthase activity (P < 0.05), however, without impaired mitochondrial respiration. Furthermore, myocardial energy stores and key ATP homeostatic enzymes were barely altered, while pathology was unrelated to oxidative stress since superoxide production and protein carbonylation were unaffected. Gene expression of PGC-1α was 2.5-fold higher in GAMT–/– hearts while downstream genes were not activated, implicating a dysfunction in mitochondrial biogenesis signaling. This was normalized by 10 days of dietary Cr supplementation, as were all in vivo functional parameters, however, it was not possible to differentiate whether relief from Cr deficiency or GA toxicity was causative. Conclusion Long-term Cr deficiency in GAMT–/– mice reduces mitochondrial volume without affecting respiratory function, most likely due to impaired biogenesis. This is associated with hemodynamic changes without evidence of heart failure, which may represent an acceptable functional compromise in return for reduced energy demand in aging mice.
Collapse
Affiliation(s)
- Dunja Aksentijević
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sevasti Zervou
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas R Eykyn
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Debra J McAndrew
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Julie Wallis
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jurgen E Schneider
- Experimental and Preclinical Imaging Centre, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Stefan Neubauer
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Craig A Lygate
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Laasmaa M, Lu P, Veletić M, Louch WE, Bergsland J, Balasingham I, Vendelin M. Energy-efficiency of Cardiomyocyte Stimulation with Rectangular Pulses. Sci Rep 2019; 9:13307. [PMID: 31527628 PMCID: PMC6746869 DOI: 10.1038/s41598-019-49791-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
In cardiac pacemaker design, energy expenditure is an important issue. This work aims to explore whether varying stimulation pulse configuration is a viable optimization strategy for reducing energy consumption by the pacemaker. A single cardiomyocyte was used as an experimental model. Each cardiomyocyte was stimulated with different stimulation protocols using rectangular waveforms applied in varying number, in short succession. The amplitude, the width of each pulse, and the interval between consecutive pulses were modified. The application of multiple pulses in a short sequence led to a reduction of the threshold voltage required for stimulation when compared to a single pulse. However, none of the employed multi-pulse sequences reduced the overall energy expenditure of cell stimulation when compared to a single pulse stimulation. Among multiple pulse protocols, a combination of two short pulses (1 ms) separated with a short interval (0.5 ms) had the same energy requirements as a single short pulse (1 ms), but required the application of significantly less voltage. While increasing the number of consecutive pulses does not reduce the energy requirements of the pacemaker, the reduction in threshold voltage can be considered in practice if lower stimulation voltages are desired.
Collapse
Affiliation(s)
- Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Pengfei Lu
- Intervention Centre, Oslo University Hospital (OUS), 0372, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo (UiO), 0372, Oslo, Norway
| | - Mladen Veletić
- Intervention Centre, Oslo University Hospital (OUS), 0372, Oslo, Norway.,Faculty of Electrical Engineering, University of Banja Luka (UNIBL), 78000, Banja Luka, Bosnia and Herzegovina
| | - William E Louch
- Institute for Experimental Medical Research, University of Oslo, Oslo, Norway
| | - Jacob Bergsland
- Intervention Centre, Oslo University Hospital (OUS), 0372, Oslo, Norway
| | - Ilangko Balasingham
- Intervention Centre, Oslo University Hospital (OUS), 0372, Oslo, Norway.,Department of Electronics and Telecommunications, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, 12618, Tallinn, Estonia.
| |
Collapse
|
14
|
Respiration of permeabilized cardiomyocytes from mice: no sex differences, but substrate-dependent changes in the apparent ADP-affinity. Sci Rep 2019; 9:12592. [PMID: 31467353 PMCID: PMC6715638 DOI: 10.1038/s41598-019-48964-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
Sex differences in cardiac physiology are getting increased attention. This study assessed whether isolated, permeabilized cardiomyocytes from male and female C57BL/6 mice differ in terms of their respiration with multiple substrates and overall intracellular diffusion restriction estimated by the apparent ADP-affinity of respiration. Using respirometry, we recorded 1) the activities of respiratory complexes I, II and IV, 2) the respiration rate with substrates fuelling either complex I, II, or I + II, and 3) the apparent ADP-affinity with substrates fuelling complex I and I + II. The respiration rates were normalized to protein content and citrate synthase (CS) activity. We found no sex differences in CS activity (a marker of mitochondrial content) normalized to protein content or in any of the respiration measurements. This suggests that cardiomyocytes from male and female mice do not differ in terms of mitochondrial respiratory capacity and apparent ADP-affinity. Pyruvate modestly lowered the respiration rate, when added to succinate, glutamate and malate. This may be explained by intramitochondrial compartmentalization caused by the formation of supercomplexes and their association with specific dehydrogenases. To our knowledge, we show for the first time that the apparent ADP-affinity was substrate-dependent. This suggests that substrates may change or regulate intracellular barriers in cardiomyocytes.
Collapse
|
15
|
Faller KME, Atzler D, McAndrew DJ, Zervou S, Whittington HJ, Simon JN, Aksentijevic D, Ten Hove M, Choe CU, Isbrandt D, Casadei B, Schneider JE, Neubauer S, Lygate CA. Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovasc Res 2019; 114:417-430. [PMID: 29236952 PMCID: PMC5982714 DOI: 10.1093/cvr/cvx242] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Aims Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dorothee Atzler
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Institute for Cardiovascular Prevention (IPEK), Pettenkoferstraße 8a & 9, 80336 Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians University, Goethestrasse 33, 80336 Munich, Germany
| | - Debra J McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Hannah J Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dunja Aksentijevic
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Michiel Ten Hove
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dirk Isbrandt
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,The Institute for Molecular and Behavioral Neuroscience, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jurgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
16
|
Laasmaa M, Karro N, Birkedal R, Vendelin M. IOCBIO Sparks detection and analysis software. PeerJ 2019; 7:e6652. [PMID: 30956900 PMCID: PMC6442673 DOI: 10.7717/peerj.6652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/19/2019] [Indexed: 12/01/2022] Open
Abstract
Analysis of calcium sparks in cardiomyocytes can provide valuable information about functional changes of calcium handling in health and disease. As a part of the calcium sparks analysis, sparks detection and characterization is necessary. Here, we describe a new open-source platform for automatic calcium sparks detection from line scan confocal images. The developed software is tailored for detecting only calcium sparks, allowing us to design a graphical user interface specifically for this task. The software enables detecting sparks automatically as well as adding, removing, or adjusting regions of interest marking each spark. The results of the analysis are stored in an SQL database, allowing simple integration with statistical tools. We have analyzed the performance of the algorithm using a large set of synthetic images with varying spark sizes and noise levels and also compared the analysis results with results obtained by software established in the field. The use of our software is illustrated by an analysis of the effect of isoprenaline (ISO) on spark frequency, amplitude, and spatial and temporal characteristics. For that, cardiomyocytes from C57BL/6 mice were used. We demonstrated an increase in spark frequency, tendency of having larger spark amplitudes, sparks with a longer duration, and occurrence of multiple sparks from the same site in the presence of ISO. We also show that the duration and the width of sparks with the same amplitude were similar in the absence and presence of ISO. The software was released as an open source repository and is available for free use and collaborative development.
Collapse
Affiliation(s)
- Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Niina Karro
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
17
|
Abstract
Isoforms of creatine kinase (CK) generate and use phosphocreatine, a concentrated and highly diffusible cellular "high energy" intermediate, for the main purpose of energy buffering and transfer in order to maintain cellular energy homeostasis. The mitochondrial CK isoform (mtCK) localizes to the mitochondrial intermembrane and cristae space, where it assembles into peripherally membrane-bound, large cuboidal homooctamers. These are part of proteolipid complexes wherein mtCK directly interacts with cardiolipin and other anionic phospholipids, as well as with the VDAC channel in the outer membrane. This leads to a stabilization and cross-linking of inner and outer mitochondrial membrane, forming so-called contact sites. Also the adenine nucleotide translocator of the inner membrane can be recruited into these proteolipid complexes, probably mediated by cardiolipin. The complexes have functions mainly in energy transfer to the cytosol and stimulation of oxidative phosphorylation, but also in restraining formation of reactive oxygen species and apoptosis. In vitro evidence indicates a putative role of mtCK in mitochondrial phospholipid distribution, and most recently a role in thermogenesis has been proposed. This review summarizes the essential structural and functional data of these mtCK complexes and describes in more detail the more recent advances in phospholipid interaction, thermogenesis, cancer and evolution of mtCK.
Collapse
|
18
|
Peterzan MA, Lygate CA, Neubauer S, Rider OJ. Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 2017. [PMID: 28646030 DOI: 10.1152/ajpheart.00731.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The energy starvation hypothesis proposes that maladaptive metabolic remodeling antedates, initiates, and maintains adverse contractile dysfunction in heart failure (HF). Better understanding of the cardiac metabolic phenotype and metabolic signaling could help identify the role metabolic remodeling plays within HF and the conditions known to transition toward HF, including "pathological" hypertrophy. In this review, we discuss metabolic phenotype and metabolic signaling in the contexts of pathological hypertrophy and HF. We discuss the significance of alterations in energy supply (substrate utilization, oxidative capacity, and phosphotransfer) and energy sensing using observations from human and animal disease models and models of manipulated energy supply/sensing. We aim to provide ways of thinking about metabolic remodeling that center around metabolic flexibility, capacity (reserve), and efficiency rather than around particular substrate preferences or transcriptomic profiles. We show that maladaptive metabolic remodeling takes multiple forms across multiple energy-handling domains. We suggest that lack of metabolic flexibility and reserve (substrate, oxidative, and phosphotransfer) represents a final common denominator ultimately compromising efficiency and contractile reserve in stressful contexts.
Collapse
Affiliation(s)
- Mark A Peterzan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
19
|
Metabolic compartmentation in rainbow trout cardiomyocytes: coupling of hexokinase but not creatine kinase to mitochondrial respiration. J Comp Physiol B 2016; 187:103-116. [PMID: 27522222 DOI: 10.1007/s00360-016-1025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 01/12/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) cardiomyocytes have a simple morphology with fewer membrane structures such as sarcoplasmic reticulum and t-tubules penetrating the cytosol. Despite this, intracellular ADP diffusion is restricted. Intriguingly, although diffusion is restricted, trout cardiomyocytes seem to lack the coupling between mitochondrial creatine kinase (CK) and respiration. Our aim was to study the distribution of diffusion restrictions in permeabilized trout cardiomyocytes and verify the role of CK. We found a high activity of hexokinase (HK), which led us to reassess the situation in trout cardiomyocytes. We show that diffusion restrictions are more prominent than previously thought. In the presence of a competitive ADP-trapping system, ADP produced by HK, but not CK, was channeled to the mitochondria. In agreement with this, we found no positively charged mitochondrial CK in trout heart homogenate. The results were best fit by a simple mathematical model suggesting that trout cardiomyocytes lack a functional coupling between ATPases and pyruvate kinase. The model simulations show that diffusion is restricted to almost the same extent in the cytosol and by the outer mitochondrial membrane. Furthermore, they confirm that HK, but not CK, is functionally coupled to respiration. In perspective, our results suggest that across a range of species, cardiomyocyte morphology and metabolism go hand in hand with cardiac performance, which is adapted to the circumstances. Mitochondrial CK is coupled to respiration in adult mammalian hearts, which are specialized to high, sustained performance. HK associates with mitochondria in hearts of trout and neonatal mammals, which are more hypoxia-tolerant.
Collapse
|
20
|
Simson P, Jepihhina N, Laasmaa M, Peterson P, Birkedal R, Vendelin M. Restricted ADP movement in cardiomyocytes: Cytosolic diffusion obstacles are complemented with a small number of open mitochondrial voltage-dependent anion channels. J Mol Cell Cardiol 2016; 97:197-203. [PMID: 27261153 DOI: 10.1016/j.yjmcc.2016.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Abstract
Adequate intracellular energy transfer is crucial for proper cardiac function. In energy starved failing hearts, partial restoration of energy transfer can rescue mechanical performance. There are two types of diffusion obstacles that interfere with energy transfer from mitochondria to ATPases: mitochondrial outer membrane (MOM) with voltage-dependent anion channel (VDAC) permeable to small hydrophilic molecules and cytoplasmatic diffusion barriers grouping ATP-producers and -consumers. So far, there is no method developed to clearly distinguish the contributions of cytoplasmatic barriers and MOM to the overall diffusion restriction. Furthermore, the number of open VDACs in vivo remains unknown. The aim of this work was to establish the partitioning of intracellular diffusion obstacles in cardiomyocytes. We studied the response of mitochondrial oxidative phosphorylation of permeabilized rat cardiomyocytes to changes in extracellular ADP by recording 3D image stacks of NADH autofluorescence. Using cell-specific mathematical models, we determined the permeability of MOM and cytoplasmatic barriers. We found that only ~2% of VDACs are accessible to cytosolic ADP and cytoplasmatic diffusion barriers reduce the apparent diffusion coefficient by 6-10×. In cardiomyocytes, diffusion barriers in the cytoplasm and by the MOM restrict ADP/ATP diffusion to similar extents suggesting a major role of both barriers in energy transfer and other intracellular processes.
Collapse
Affiliation(s)
- Päivo Simson
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia
| | - Natalja Jepihhina
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia
| | - Pearu Peterson
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia.
| |
Collapse
|
21
|
Balestrino M, Sarocchi M, Adriano E, Spallarossa P. Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease. Amino Acids 2016; 48:1955-67. [DOI: 10.1007/s00726-016-2173-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
|
22
|
Joncquel-Chevalier Curt M, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vamecq J. Creatine biosynthesis and transport in health and disease. Biochimie 2015; 119:146-65. [DOI: 10.1016/j.biochi.2015.10.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022]
|
23
|
Fowler ED, Benoist D, Drinkhill MJ, Stones R, Helmes M, Wüst RCI, Stienen GJM, Steele DS, White E. Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension. J Mol Cell Cardiol 2015; 86:1-8. [PMID: 26116865 PMCID: PMC4564291 DOI: 10.1016/j.yjmcc.2015.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 02/01/2023]
Abstract
Our objective was to investigate the role of creatine kinase in the contractile dysfunction of right ventricular failure caused by pulmonary artery hypertension. Pulmonary artery hypertension and right ventricular failure were induced in rats by monocrotaline and compared to saline-injected control animals. In vivo right ventricular diastolic pressure-volume relationships were measured in anesthetized animals; diastolic force-length relationships in single enzymatically dissociated myocytes and myocardial creatine kinase levels by Western blot. We observed diastolic dysfunction in right ventricular failure indicated by significantly steeper diastolic pressure-volume relationships in vivo and diastolic force-length relationships in single myocytes. There was a significant reduction in creatine kinase protein expression in failing right ventricle. Dysfunction also manifested as a shorter diastolic sarcomere length in failing myocytes. This was associated with a Ca(2+)-independent mechanism that was sensitive to cross-bridge cycling inhibition. In saponin-skinned failing myocytes, addition of exogenous creatine kinase significantly lengthened sarcomeres, while in intact healthy myocytes, inhibition of creatine kinase significantly shortened sarcomeres. Creatine kinase inhibition also changed the relatively flat contraction amplitude-stimulation frequency relationship of healthy myocytes into a steeply negative, failing phenotype. Decreased creatine kinase expression leads to diastolic dysfunction. We propose that this is via local reduction in ATP:ADP ratio and thus to Ca(2+)-independent force production and diastolic sarcomere shortening. Creatine kinase inhibition also mimics a definitive characteristic of heart failure, the inability to respond to increased demand. Novel therapies for pulmonary artery hypertension are needed. Our data suggest that cardiac energetics would be a potential ventricular therapeutic target.
Collapse
Affiliation(s)
- Ewan D Fowler
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - David Benoist
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK; L'Institut de Rythmologie et Modélisation Cardiaque, Inserm U-1045, Université de Bordeaux, France
| | - Mark J Drinkhill
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - Rachel Stones
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - Michiel Helmes
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands; IonOptix LLC, Milton, MA, USA
| | - Rob C I Wüst
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands; Department of Physics and Astronomy, Faculty of Science, VU University, Amsterdam, The Netherlands
| | - Derek S Steele
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - Ed White
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK.
| |
Collapse
|
24
|
Guimarães-Ferreira L. Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles. EINSTEIN-SAO PAULO 2014; 12:126-31. [PMID: 24728259 PMCID: PMC4898252 DOI: 10.1590/s1679-45082014rb2741] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 12/12/2013] [Indexed: 02/03/2023] Open
Abstract
Adenosine triphosphate is the present energy currency in the body, and is used in various cellular and indispensable processes for the maintenance of cell homeostasis. The regeneration mechanisms of adenosine triphosphate, from the product of its hydrolysis - adenosine diphosphate - are therefore necessary. Phosphocreatine is known as its quickest form of regeneration, by means of the enzyme creatine kinase. Thus, the primary function of this system is to act as a temporal energy buffer. Nevertheless, over the years, several other functions were attributed to phosphocreatine. This occurs as various isoforms of creatine kinase isoforms have been identified with a distinct subcellular location and functionally coupled with the sites that generate and use energy, in the mitochondria and cytosol, respectively. The present study discussed the central and complex role that the phosphocreatine system performs in energy homeostasis in muscle cells, as well as its alterations in pathological conditions.
Collapse
|
25
|
Birkedal R, Laasmaa M, Vendelin M. The location of energetic compartments affects energetic communication in cardiomyocytes. Front Physiol 2014; 5:376. [PMID: 25324784 PMCID: PMC4178378 DOI: 10.3389/fphys.2014.00376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/10/2014] [Indexed: 01/08/2023] Open
Abstract
The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM). A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR) and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilized cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology Tallinn, Estonia
| |
Collapse
|
26
|
Tight coupling of Na+/K+-ATPase with glycolysis demonstrated in permeabilized rat cardiomyocytes. PLoS One 2014; 9:e99413. [PMID: 24932585 PMCID: PMC4059654 DOI: 10.1371/journal.pone.0099413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 05/14/2014] [Indexed: 12/19/2022] Open
Abstract
The effective integrated organization of processes in cardiac cells is achieved, in part, by the functional compartmentation of energy transfer processes. Earlier, using permeabilized cardiomyocytes, we demonstrated the existence of tight coupling between some of cardiomyocyte ATPases and glycolysis in rat. In this work, we studied contribution of two membrane ATPases and whether they are coupled to glycolysis--sarcoplasmic reticulum Ca2+ ATPase (SERCA) and plasmalemma Na+/K+-ATPase (NKA). While SERCA activity was minor in this preparation in the absence of calcium, major role of NKA was revealed accounting to ∼30% of the total ATPase activity which demonstrates that permeabilized cell preparation can be used to study this pump. To elucidate the contribution of NKA in the pool of ATPases, a series of kinetic measurements was performed in cells where NKA had been inhibited by 2 mM ouabain. In these cells, we recorded: ADP- and ATP-kinetics of respiration, competition for ADP between mitochondria and pyruvate kinase (PK), ADP-kinetics of endogenous PK, and ATP-kinetics of total ATPases. The experimental data was analyzed using a series of mathematical models with varying compartmentation levels. The results show that NKA is tightly coupled to glycolysis with undetectable flux of ATP between mitochondria and NKA. Such tight coupling of NKA to PK is in line with its increased importance in the pathological states of the heart when the substrate preference shifts to glucose.
Collapse
|
27
|
Carley AN, Taegtmeyer H, Lewandowski ED. Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart. Circ Res 2014; 114:717-29. [PMID: 24526677 DOI: 10.1161/circresaha.114.301863] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metabolic signaling mechanisms are increasingly recognized to mediate the cellular response to alterations in workload demand, as a consequence of physiological and pathophysiological challenges. Thus, an understanding of the metabolic mechanisms coordinating activity in the cytosol with the energy-providing pathways in the mitochondrial matrix becomes critical for deepening our insights into the pathogenic changes that occur in the stressed cardiomyocyte. Processes that exchange both metabolic intermediates and cations between the cytosol and mitochondria enable transduction of dynamic changes in contractile state to the mitochondrial compartment of the cell. Disruption of such metabolic transduction pathways has severe consequences for the energetic support of contractile function in the heart and is implicated in the pathogenesis of heart failure. Deficiencies in metabolic reserve and impaired metabolic transduction in the cardiomyocyte can result from inherent deficiencies in metabolic phenotype or maladaptive changes in metabolic enzyme expression and regulation in the response to pathogenic stress. This review examines both current and emerging concepts of the functional linkage between the cytosol and the mitochondrial matrix with a specific focus on metabolic reserve and energetic efficiency. These principles of exchange and transport mechanisms across the mitochondrial membrane are reviewed for the failing heart from the perspectives of chronic pressure overload and diabetes mellitus.
Collapse
Affiliation(s)
- Andrew N Carley
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago IL (A.N.C., E.D.L.); and Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston (H.T.)
| | | | | |
Collapse
|
28
|
Chakraborty J, Rajamma U, Mohanakumar KP. A mitochondrial basis for Huntington's disease: therapeutic prospects. Mol Cell Biochem 2013; 389:277-91. [PMID: 24374792 DOI: 10.1007/s11010-013-1951-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant disease, with overt movement dysfunctions. Despite focused research on the basis of neurodegeneration in HD for last few decades, the mechanism for the site-specific lesion of neurons in the brain is not clear. All the explanations that partially clarify the phenomenon of neurodegeneration leads to one organelle, mitochondrion, which is severely affected in HD at the level of electron transport chain, Ca(2+) buffering efficiency and morphology. But, with the existing knowledge, it is not clear whether the cell death processes in HD initiate from mitochondria, though the Huntingtin (Htt) aggregates show close proximity to this organelle, or do some extracellular stimuli like TNFα or FasL trigger the process. Mainly because of the disparity in the different available experimental models, the results are quite confusing or at least inconsistent to a great extent. The fact remains that the mutant Htt protein was seen to be associated with mitochondria directly, and as the striatum is highly enriched with dopamine and glutamate, it may make the striatal mitochondria more vulnerable because of the presence of dopa-quinones, and due to an imbalance in Ca(2+). The current therapeutic strategies are based on symptomatic relief, and, therefore, mainly target neurotransmitter(s) and their receptors to modulate behavioral outputs, but none of them targets mitochondria or try to address the basic molecular events that cause neurons to die in discrete regions of the brain, which could probably be resulting from grave mitochondrial dysfunctions. Therefore, targeting mitochondria for their protection, while addressing symptomatic recovery, holds a great potential to tone down the progression of the disease, and to provide better relief to the patients and caretakers.
Collapse
Affiliation(s)
- J Chakraborty
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Rooms 117&119, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | | | | |
Collapse
|