1
|
Rubio NL, Pegolotti L, Pfaller MR, Darve EF, Marsden AL. Hybrid physics-based and data-driven modeling of vascular bifurcation pressure differences. Comput Biol Med 2025; 184:109420. [PMID: 39608038 DOI: 10.1016/j.compbiomed.2024.109420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
Reduced-order models allow for the simulation of blood flow in patient-specific vasculatures. They offer a significant reduction in computational cost and wait time compared to traditional computational fluid dynamics models. Unfortunately, due to the simplifications made in their formulations, reduced-order models can suffer from significantly reduced accuracy. One common simplifying assumption is that of continuity of static or total pressure over vascular bifurcations. In many cases, this assumption has been shown to introduce significant errors in pressure predictions. We propose a model to account for this pressure difference, with the ultimate goal of increasing the accuracy of cardiovascular reduced-order models. Our model successfully uses a structure common in existing reduced-order models in conjunction with machine-learning techniques to predict the pressure difference over a vascular bifurcation. We analyze the performance of our model on steady and transient flows, testing it on three bifurcation cohorts representing three different bifurcation geometric types. We find that our model makes significantly more accurate predictions than other models for approximating bifurcation pressure losses commonly used in the reduced-order cardiovascular modeling community. We also compare the efficacy of different machine-learning techniques and observe that a neural network performs most robustly. Additionally, we consider two different model modalities: one in which the model is fit using both steady and transient flows, and one in which it is optimized for performance in transient flows. We discuss the trade-off between the physical interpretability associated with the first option and the improved accuracy in transient flows associated with the latter option. We also demonstrate the model's ability to generalize by testing it on a combined dataset containing two different bifurcation types. This work marks a step towards improving the accuracy of cardiovascular reduced-order models, thereby increasing their utility for cardiovascular flow modeling.
Collapse
|
2
|
Rafiei D, Pahlevan NM. The global effect of aortic coarctation on carotid and renal pulsatile hemodynamics. PLoS One 2024; 19:e0310793. [PMID: 39689111 DOI: 10.1371/journal.pone.0310793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/08/2024] [Indexed: 12/19/2024] Open
Abstract
Coarctation of the aorta (CoA) is a congenital disease characterized by the narrowing of the aorta, typically the descending portion after the left subclavian artery. If left untreated, by the time individuals reach 50 years of age, the mortality rate can reach 90%. Previous studies have highlighted the adverse effects of CoA on local hemodynamics. However, no study has investigated the global hemodynamic effects of CoA in end-organ (brain and kidney) damage. Clinical studies have shown that coarctation acts as a reflection site, potentially damaging the hemodynamics of the brain and kidneys. Our goal in this study is to investigate the underlying mechanisms of these altered wave dynamics and their impacts on the pulsatile hemodynamics of end-organs. In this study, we use a physiologically accurate in-vitro experimental setup that simulates the hemodynamics of systemic circulation. Experiments are conducted across various cardiac outputs, heart rates, and coarctation degrees using aortas across a wide range of aortic stiffnesses. Our principal finding is that CoA increases cerebral blood flow and harmful pulsatile energy transmission to the brain. Conversely, both renal blood flow and pulsatile energy transmission to the kidneys are reduced in CoA at every level of aortic stiffness.
Collapse
Affiliation(s)
- Deniz Rafiei
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Niema M Pahlevan
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, United States of America
- Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Reavette RM, Ramakrishnan A, Rowland EM, Tang MX, Mayet J, Weinberg PD. Detecting heart failure from B-mode ultrasound characterization of arterial pulse waves. Am J Physiol Heart Circ Physiol 2024; 327:H80-H88. [PMID: 38787379 PMCID: PMC11398869 DOI: 10.1152/ajpheart.00219.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
This study investigated the sensitivity and specificity of identifying heart failure with reduced ejection fraction (HFrEF) from measurements of the intensity and timing of arterial pulse waves. Previously validated methods combining ultrafast B-mode ultrasound, plane-wave transmission, singular value decomposition (SVD), and speckle tracking were used to characterize the compression and decompression ("S" and "D") waves occurring in early and late systole, respectively, in the carotid arteries of outpatients with left ventricular ejection fraction (LVEF) < 40%, determined by echocardiography, and signs and symptoms of heart failure, or with LVEF ≥ 50% and no signs or symptoms of heart failure. On average, the HFrEF group had significantly reduced S-wave intensity and energy, a greater interval between the R wave of the ECG and the S wave, a reduced interval between the S and D waves, and an increase in the S-wave shift (SWS), a novel metric that characterizes the shift in timing of the S wave away from the R wave of the ECG and toward the D wave (all P < 0.01). Receiver operating characteristics (ROCs) were used to quantify for the first time how well wave metrics classified individual participants. S-wave intensity and energy gave areas under the ROC of 0.76-0.83, the ECG-S-wave interval gave 0.85-0.88, and the S-wave shift gave 0.88-0.92. Hence the methods, which are simple to use and do not require complex interpretation, provide sensitive and specific identification of HFrEF. If similar results were obtained in primary care, they could form the basis of techniques for heart failure screening.NEW & NOTEWORTHY We show that heart failure with reduced ejection fraction can be detected with excellent sensitivity and specificity in individual patients by using B-mode ultrasound to detect altered pulse wave intensity and timing in the carotid artery.
Collapse
Affiliation(s)
- Ryan M Reavette
- Department of Bioengineering, Imperial College, London, United Kingdom
| | - Anenta Ramakrishnan
- Department of Bioengineering, Imperial College, London, United Kingdom
- Department of Cardiology, The Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ethan M Rowland
- Department of Bioengineering, Imperial College, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College, London, United Kingdom
| | - Jamil Mayet
- Department of Cardiology, The Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Peter D Weinberg
- Department of Bioengineering, Imperial College, London, United Kingdom
| |
Collapse
|
4
|
Springall GAC, Goldsmith G, Zannino D, Cheong J, Mynard JP, Yeo M, Cheung MMH. Carotid wave analysis in young adults with a history of adolescent anorexia nervosa: a case control study. J Eat Disord 2024; 12:21. [PMID: 38308371 PMCID: PMC10835867 DOI: 10.1186/s40337-023-00963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/29/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Anorexia nervosa (AN) is associated with abnormalities that may increase the risk of future cardiovascular disease. This study assessed the cardiovascular health of individuals who recovered from AN during adolescence by conducting wave power analysis. METHODS Former AN patients discharged from the Royal Children's and Monash Children's Hospitals (N = 17) in Melbourne, Australia underwent ultrasound imaging of the right carotid artery. Wave power analysis was conducted to assess biomechanical interactions of the cardiovascular system. Patient measures were compared to healthy controls (N = 51). RESULTS Eighty-eight percent of the former AN patients and controls were female, aged approximately 25 years, with a healthy body mass index. Mean carotid flow and pulsatility index were not different between groups. Carotid arterial strain and distensibility were lower, and the wave speed and beta stiffness index higher in the former AN patients. Characteristic impedance was not different nor were the forward and backward wave amplitudes. However, wave reflection indices (ratios of backward-to-forward compression wave area, and wave-related effect on pressure and hydraulic power) were 12-18% lower in the former AN patients (p < 0.05). CONCLUSIONS Increased carotid artery stiffness and reduced wave reflection are evident in young adults who recovered from adolescent AN. This may relate to an adaptive process that helps to maintain or restore flow and characteristic impedance despite increased vessel stiffness, with this warranting future investigation.
Collapse
Affiliation(s)
- Gabriella A C Springall
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Greta Goldsmith
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Diana Zannino
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jeanie Cheong
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Neonatal Services, Royal Women's Hospital, Parkville, VIC, Australia
| | - Jonathan P Mynard
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Michele Yeo
- Department of Adolescent Medicine, Royal Children's Hospital, Parkville, VIC, Australia
| | - Michael M H Cheung
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Cardiology, Royal Children's Hospital, Parkville, VIC, Australia
| |
Collapse
|
5
|
Aghilinejad A, Amlani F, Mazandarani SP, King KS, Pahlevan NM. Mechanistic insights on age-related changes in heart-aorta-brain hemodynamic coupling using a pulse wave model of the entire circulatory system. Am J Physiol Heart Circ Physiol 2023; 325:H1193-H1209. [PMID: 37712923 PMCID: PMC10908406 DOI: 10.1152/ajpheart.00314.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Age-related changes in aortic biomechanics can impact the brain by reducing blood flow and increasing pulsatile energy transmission. Clinical studies have shown that impaired cardiac function in patients with heart failure is associated with cognitive impairment. Although previous studies have attempted to elucidate the complex relationship between age-associated aortic stiffening and pulsatility transmission to the cerebral network, they have not adequately addressed the effect of interactions between aortic stiffness and left ventricle (LV) contractility (neither on energy transmission nor on brain perfusion). In this study, we use a well-established and validated one-dimensional blood flow and pulse wave computational model of the circulatory system to address how age-related changes in cardiac function and vasculature affect the underlying mechanisms involved in the LV-aorta-brain hemodynamic coupling. Our results reveal how LV contractility affects pulsatile energy transmission to the brain, even with preserved cardiac output. Our model demonstrates the existence of an optimal heart rate (near the normal human heart rate) that minimizes pulsatile energy transmission to the brain at different contractility levels. Our findings further suggest that the reduction in cerebral blood flow at low levels of LV contractility is more prominent in the setting of age-related aortic stiffening. Maintaining optimal blood flow to the brain requires either an increase in contractility or an increase in heart rate. The former consistently leads to higher pulsatile power transmission, and the latter can either increase or decrease subsequent pulsatile power transmission to the brain.NEW & NOTEWORTHY We investigated the impact of major aging mechanisms of the arterial system and cardiac function on brain hemodynamics. Our findings suggest that aging has a significant impact on heart-aorta-brain coupling through changes in both arterial stiffening and left ventricle (LV) contractility. Understanding the underlying physical mechanisms involved here can potentially be a key step for developing more effective therapeutic strategies that can mitigate the contributions of abnormal LV-arterial coupling toward neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Arian Aghilinejad
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, United States
| | - Faisal Amlani
- Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay, Paris, France
| | - Sohrab P Mazandarani
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Kevin S King
- Barrow Neurological Institute, Phoenix, Arizona, United States
| | - Niema M Pahlevan
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
6
|
Fois M, Ridolfi L, Scarsoglio S. Arterial wave dynamics preservation upon orthostatic stress: a modelling perspective. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221257. [PMID: 36866075 PMCID: PMC9974293 DOI: 10.1098/rsos.221257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Pressure-flow travelling waves are a key topic for understanding arterial haemodynamics. However, wave transmission and reflection processes induced by body posture changes have not been thoroughly explored yet. Current in vivo research has shown that the amount of wave reflection detected at a central level (ascending aorta, aortic arch) decreases during tilting to the upright position, despite the widely proved stiffening of the cardiovascular system. It is known that the arterial system is optimized when in the supine position, i.e. propagation of direct waves is enabled and reflected waves are trapped, protecting the heart; however, it is not known whether this is preserved with postural changes. To shed light on these aspects, we propose a multi-scale modelling approach to inquire into posture-induced arterial wave dynamics elicited by simulated head-up tilting. In spite of remarkable adaptation of the human vasculature following posture changes, our analysis shows that, upon tilting from supine to upright: (i) vessel lumens at arterial bifurcations remain well matched in the forward direction, (ii) wave reflection at central level is reduced due to the backward propagation of weakened pressure waves produced by cerebral autoregulation, and (iii) backward wave trapping is preserved.
Collapse
Affiliation(s)
- Matteo Fois
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Luca Ridolfi
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Stefania Scarsoglio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| |
Collapse
|
7
|
Aghilinejad A, Alavi R, Rogers B, Amlani F, Pahlevan NM. Effects of vessel wall mechanics on non-invasive evaluation of cardiovascular intrinsic frequencies. J Biomech 2021; 129:110852. [PMID: 34775340 DOI: 10.1016/j.jbiomech.2021.110852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Intrinsic Frequency (IF) is a systems-based approach that provides valuable information for hemodynamic monitoring of the left ventricle (LV), the arterial system, and their coupling. Recent clinical studies have demonstrated the clinical significance of this method for prognosis and diagnosis of cardiovascular diseases. In IF analysis, two dominant instantaneous frequencies (ω1 and ω2) are extracted from arterial pressure waveforms. The value of ω1 is related to the dynamics of the LV and the value of ω2 is related to the dynamics of vascular function. This work investigates the effects of vessel wall mechanics on the accuracy and applicability of IFs extracted from vessel wall displacement waveforms compared to IFs extracted from pressure waveforms. In this study, we used a computational approach employing a fluid-structure interaction finite element method for various wall mechanics governed by linearly elastic, hyperelastic, and viscoelastic models. Results show that for vessels with elastic wall behavior, the error between displacement-based and pressure-based IFs is negligible. In the presence of stenosis or aneurysm in elastic arteries, the maximum errors associated with displacement-based IFs is less than 2%. For non-linear elastic and viscoelastic arteries, errors are more pronounced (where the former reaches up to 11% and the latter up to 27%). Our results ultimately suggest that displacement-based computations of ω1 and ω2 are accurate in vessels that exhibit elastic behavior (such as carotid arteries) and are suitable surrogates for pressure-based IFs. This is clinically significant because displacement-based IFs can be measured non-invasively.
Collapse
Affiliation(s)
- Arian Aghilinejad
- Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, USA
| | - Rashid Alavi
- Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, USA
| | - Bryson Rogers
- Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, USA
| | - Faisal Amlani
- Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, USA
| | - Niema M Pahlevan
- Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, USA; Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
8
|
Zhang X, Liu J, Cheng Z, Wu B, Xie J, Zhang L, Zhang Z, Liu H. Personalized 0D-1D multiscale hemodynamic modeling and wave dynamics analysis of cerebral circulation for an elderly patient with dementia. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3510. [PMID: 34293250 DOI: 10.1002/cnm.3510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 06/10/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Senile dementia is associated with pronounced alterations in cerebral circulation. A fundamental understanding of intracranial hemodynamics and wave dynamics is essential for assessing dementia risk. Recent findings suggest that higher carotid artery wave intensity (WI) can predict future cognitive impairments in the elderly. However, wave power (WP) is more advantageous for assessing the risk of cognitive impairment and dementia because of its conservative form, which allows quantification of detailed WP distribution among the entire cerebrovascular network. Unfortunately, intracranial hemodynamics and wave dynamics in elderly patients with dementia remain poorly understood due to ethical issues and technical challenges. In this paper, we proposed a novel and easily achievable personalized methodology for the 0D-1D model of cerebral circulation using widely available clinical data on transcranial Doppler ultrasonography velocity, cerebral artery anatomy from magnetic resonance imaging, and brachial artery pressure. Using the proposed model, we simulated the cerebral blood flows and compared the wave dynamics between a healthy elderly subject and one living with dementia. Moreover, we performed a variance-based global sensitivity analysis to quantify the model-predicted WI and WP sensitivity to the uncertainties of model inputs. This provided more precise information for model personalization and further insights into the wave dynamics of cerebral circulation. In conclusion, the proposed personalized model framework provides a practical approach for patient-specific modeling and WI/WP analysis of cerebral circulation through noninvasive clinical data. The wave dynamics features of higher WI and lower WP in cerebral arteries may be an invaluable biomarker for assessing dementia risk.
Collapse
Affiliation(s)
- Xiancheng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zaiheng Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bokai Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lin Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
- The Faculty of Life and Health Sciences, and Translational Research Center for the Nervous System(TRCNS)of Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Haidar MA, van Buchem MA, Sigurdsson S, Gotal JD, Gudnason V, Launer LJ, Mitchell GF. Wave Reflection at the Origin of a First-Generation Branch Artery and Target Organ Protection: The AGES-Reykjavik Study. Hypertension 2021; 77:1169-1177. [PMID: 33689461 DOI: 10.1161/hypertensionaha.120.16696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael A Haidar
- From the Cardiovascular Engineering, Inc, Norwood, MA (M.A.H., J.D.G., G.F.M.)
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, the Netherlands (M.A.v.B.)
| | | | - John D Gotal
- From the Cardiovascular Engineering, Inc, Norwood, MA (M.A.H., J.D.G., G.F.M.)
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland (S.S., V.G.).,Faculty of Medicine, University of Iceland, Reykjavik (V.G.)
| | - Lenore J Launer
- Intramural Research Program, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD (L.J.L.)
| | - Gary F Mitchell
- From the Cardiovascular Engineering, Inc, Norwood, MA (M.A.H., J.D.G., G.F.M.)
| |
Collapse
|
10
|
Mynard JP, Kondiboyina A, Kowalski R, Cheung MMH, Smolich JJ. Measurement, Analysis and Interpretation of Pressure/Flow Waves in Blood Vessels. Front Physiol 2020; 11:1085. [PMID: 32973569 PMCID: PMC7481457 DOI: 10.3389/fphys.2020.01085] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
The optimal performance of the cardiovascular system, as well as the break-down of this performance with disease, both involve complex biomechanical interactions between the heart, conduit vascular networks and microvascular beds. ‘Wave analysis’ refers to a group of techniques that provide valuable insight into these interactions by scrutinizing the shape of blood pressure and flow/velocity waveforms. The aim of this review paper is to provide a comprehensive introduction to wave analysis, with a focus on key concepts and practical application rather than mathematical derivations. We begin with an overview of invasive and non-invasive measurement techniques that can be used to obtain the signals required for wave analysis. We then review the most widely used wave analysis techniques—pulse wave analysis, wave separation and wave intensity analysis—and associated methods for estimating local wave speed or characteristic impedance that are required for decomposing waveforms into forward and backward wave components. This is followed by a discussion of the biomechanical phenomena that generate waves and the processes that modulate wave amplitude, both of which are critical for interpreting measured wave patterns. Finally, we provide a brief update on several emerging techniques/concepts in the wave analysis field, namely wave potential and the reservoir-excess pressure approach.
Collapse
Affiliation(s)
- Jonathan P Mynard
- Heart Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Avinash Kondiboyina
- Heart Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Remi Kowalski
- Heart Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Michael M H Cheung
- Heart Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Joseph J Smolich
- Heart Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Kondiboyina A, Smolich JJ, Cheung MMH, Westerhof BE, Mynard JP. Conduit arterial wave reflection promotes pressure transmission but impedes hydraulic energy transmission to the microvasculature. Am J Physiol Heart Circ Physiol 2020; 319:H66-H75. [DOI: 10.1152/ajpheart.00733.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With aging, a reduction in the stiffness gradient between elastic and muscular arteries is thought to reduce wave reflection in conduit arteries, leading to increased pulsatile pressure transmission into the microvasculature. This assumes that wave reflection limits pressure transmission in arteries. However, using a computational model, we showed that wave reflection promotes pulsatile pressure transmission, although it does limit hydraulic energy transmission. Increased microvascular pulse pressure with aging is instead related to decreasing arterial compliance.
Collapse
Affiliation(s)
- Avinash Kondiboyina
- Heart Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Joseph J. Smolich
- Heart Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Michael M. H. Cheung
- Heart Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Cardiology, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Berend E. Westerhof
- Cardiovascular and Respiratory Physiology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jonathan P. Mynard
- Heart Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Cardiology, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Mynard JP, Smolich JJ. Minor impact of constraint from perivascular flow probes on wave intensity analysis. Proc Inst Mech Eng H 2020; 234:1277-1287. [PMID: 32408802 DOI: 10.1177/0954411920917853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Perivascular flow probes are considered the gold-standard for measuring volumetric blood flow in animal studies. Although flow probes are generally placed non-constrictively around the vessel of interest, pressure-elevating interventions performed during an experiment may lead to vessel expansion and some probe-vessel impingement, particularly in highly compliant vessels such as adult sheep aorta or major pulmonary arteries in fetus lambs. This study assessed to what extent such mild flow probe constraint may impact on wave intensity analysis. We also investigated whether errors arising from flow probe constraint could explain apparent pressure reflection indices (Rp > 1) that have been observed in fetus lamb pulmonary arteries under some experimental conditions. These questions were investigated with one-dimensional models of an adult sheep aorta and fetus lamb pulmonary artery, with a virtual flow probe incorporated as a non-linear external constraint term in the vessel constitutive equation. Model-derived flow and pressure were subjected to standard analysis procedures that would be applied experimentally (correcting for apparent velocity lags and calculating wave speed via the PU-loop method). For the adult sheep model, simulations covering a wide range of haemodynamic conditions revealed a mostly minor effect (<10%) of probe constraint on the intensity and pressure effects of the three major waves (forward compression wave, forward decompression wave, backward compression wave). Moreover, flow probe constraint had essentially no impact on Rp in the fetus lamb model, suggesting that such constraint is unlikely to be responsible for an observed Rp > 1. Mild flow probe constraint is likely to have little impact on wave intensity analysis.
Collapse
Affiliation(s)
- Jonathan P Mynard
- Heart Research, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia.,Department of Cardiology, Royal Children's Hospital, Parkville, VIC, Australia
| | - Joseph J Smolich
- Heart Research, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Hametner B, Bauer A, Wassertheurer S. Unveiling the Vascular Mechanisms Behind Long-Term Effects of Coarctation Treatment Using Pulse Wave Dynamics. J Am Heart Assoc 2020; 8:e012278. [PMID: 30929552 PMCID: PMC6509706 DOI: 10.1161/jaha.119.012278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
See Article by Martins et al and Kowalski et al
Collapse
Affiliation(s)
- Bernhard Hametner
- 1 Center for Health & Bioresources AIT Austrian Institute of Technology Vienna Austria
| | - Andreas Bauer
- 1 Center for Health & Bioresources AIT Austrian Institute of Technology Vienna Austria.,2 Institute for Analysis and Scientific Computing Vienna University of Technology Vienna Austria
| | | |
Collapse
|
14
|
Weber T, Chirinos JA. Pulsatile arterial haemodynamics in heart failure. Eur Heart J 2019; 39:3847-3854. [PMID: 29947746 DOI: 10.1093/eurheartj/ehy346] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Due to the cyclic function of the human heart, pressure and flow in the circulation are pulsatile rather than continuous. Addressing pulsatile haemodynamics starts with the most convenient measurement, brachial pulse pressure, which is widely available, related to development and treatment of heart failure (HF), but often confounded in patients with established HF. The next level of analysis consists of central (rather than brachial) pressures and, more importantly, of wave reflections. The latter are closely related to left ventricular late systolic afterload, ventricular remodelling, diastolic dysfunction, exercise capacity, and, in the long-term, the risk of new-onset HF. Wave reflection may also represent a suitable therapeutic target. Treatments for HF with preserved and reduced ejection fraction, based on a reduction of wave reflection, are emerging. A full understanding of ventricular-arterial coupling, however, requires dedicated analysis of time-resolved pressure and flow signals, which can be readily accomplished with contemporary non-invasive imaging and modelling techniques. This review provides a summary of our current understanding of pulsatile haemodynamics in HF.
Collapse
Affiliation(s)
- Thomas Weber
- Department of Cardiology, Klinikum Wels-Grieskirchen, Austria
| | - Julio A Chirinos
- University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Climie RE, Gallo A, Picone DS, Di Lascio N, van Sloten TT, Guala A, Mayer CC, Hametner B, Bruno RM. Measuring the Interaction Between the Macro- and Micro-Vasculature. Front Cardiovasc Med 2019; 6:169. [PMID: 31824963 PMCID: PMC6882776 DOI: 10.3389/fcvm.2019.00169] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
Structural and functional dysfunction in both the macro- and microvasculature are a feature of essential hypertension. In a healthy cardiovascular system, the elastic properties of the large arteries ensure that pulsations in pressure and flow generated by cyclic left ventricular contraction are dampened, so that less pulsatile pressure and flow are delivered at the microvascular level. However, in response to aging, hypertension, and other disease states, arterial stiffening limits the buffering capacity of the elastic arteries, thus exposing the microvasculature to increased pulsatile stress. This is thought to be particularly pertinent to high flow/low resistance organs such as the brain and kidney, which may be sensitive to excess pressure and flow pulsatility, damaging capillary networks, and resulting in target organ damage. In this review, we describe the clinical relevance of the pulsatile interaction between the macro- and microvasculature and summarize current methods for measuring the transmission of pulsatility between the two sites.
Collapse
Affiliation(s)
- Rachel E Climie
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Paris Descartes University, Paris, France.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Menzies Institute for Medical Research, University of Tasmanian, Hobart, TAS, Australia
| | - Antonio Gallo
- Cardiovascular Prevention Unit, Department of Endocrinology and Metabolism, Pitié-Salpêtrière Hospital, Paris, France.,Laboratoire d'imagerie Biomédicale, INSERM 1146 - CNRS 7371, Sorbonne University, Paris, France
| | - Dean S Picone
- Menzies Institute for Medical Research, University of Tasmanian, Hobart, TAS, Australia
| | - Nicole Di Lascio
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Thomas T van Sloten
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Paris Descartes University, Paris, France.,Cardiovascular Research Institute Maastricht and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Guala
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research, Barcelona, Spain
| | - Christopher C Mayer
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Biomedical Systems, Vienna, Austria
| | - Bernhard Hametner
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Biomedical Systems, Vienna, Austria
| | - Rosa Maria Bruno
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Paris Descartes University, Paris, France
| |
Collapse
|
16
|
Vera L, Campos Arias D, Muylle S, Stergiopulos N, Segers P, van Loon G. A 1D computer model of the arterial circulation in horses: An important resource for studying global interactions between heart and vessels under normal and pathological conditions. PLoS One 2019; 14:e0221425. [PMID: 31433827 PMCID: PMC6703698 DOI: 10.1371/journal.pone.0221425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/06/2019] [Indexed: 11/18/2022] Open
Abstract
Arterial rupture in horses has been observed during exercise, after phenylephrine administration or during parturition (uterine artery). In human pathophysiological research, the use of computer models for studying arterial hemodynamics and understanding normal and abnormal characteristics of arterial pressure and flow waveforms is very common. The objective of this research was to develop a computer model of the equine arterial circulation, in order to study local intra-arterial pressures and flow dynamics in horses. Morphologically, large differences exist between human and equine aortic arch and arterial branching patterns. Development of the present model was based on post-mortem obtained anatomical data of the arterial tree (arterial lengths, diameters and branching angles); in vivo collected ultrasonographic flow profiles from the common carotid artery, external iliac artery, median artery and aorta; and invasively collected pressure curves from carotid artery and aorta. These data were used as input for a previously validated (in humans) 1D arterial network model. Data on terminal resistance and arterial compliance parameters were tuned to equine physiology. Given the large arterial diameters, Womersley theory was used to compute friction coefficients, and the input into the arterial system was provided via a scaled time-varying elastance model of the left heart. Outcomes showed plausible predictions of pressure and flow waveforms throughout the considered arterial tree. Simulated flow waveform morphology was in line with measured flow profiles. Consideration of gravity further improved model based predicted waveforms. Derived flow waveform patterns could be explained using wave power analysis. The model offers possibilities as a research tool to predict changes in flow profiles and local pressures as a result of strenuous exercise or altered arterial wall properties related to age, breed or gender.
Collapse
Affiliation(s)
- Lisse Vera
- Equine Cardioteam Ghent University, Dept. of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- * E-mail:
| | - Daimé Campos Arias
- IBiTech-bioMMeda, Ghent University, Ghent, Belgium
- Biomechanics and Biomaterials Research Group, CUJAE, Havana, Cuba
| | - Sofie Muylle
- Dept. of Morphology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Nikos Stergiopulos
- Laboratory of Hemodynamics and Cardiovascular Technology, EPFL, Lausanne, Switzerland
| | | | - Gunther van Loon
- Equine Cardioteam Ghent University, Dept. of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Kowalski R, Lee MGY, Doyle LW, Cheong JLY, Smolich JJ, d'Udekem Y, Mynard JP, Cheung MMH. Reduced Aortic Distensibility is Associated With Higher Aorto-Carotid Wave Transmission and Central Aortic Systolic Pressure in Young Adults After Coarctation Repair. J Am Heart Assoc 2019; 8:e011411. [PMID: 30929595 PMCID: PMC6509708 DOI: 10.1161/jaha.118.011411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/31/2019] [Indexed: 01/09/2023]
Abstract
Background The long-term prognosis of patients with repaired aortic coarctation is characterized by high rates of cardiovascular and cerebrovascular disease related to hypertension, the basis of which remains unclear. To define potential underlying mechanisms, we investigated aortic and carotid arterial biomechanics and wave dynamics, and determinants of aortic systolic blood pressure, in young adults after coarctation repair. Methods and Results Aortic arch and carotid biomechanics, wave intensity and wave power, and central aortic blood pressure, were derived from echocardiography and brachial blood pressure in 43 young adults after coarctation repair and 42 controls. Coarctation subjects had higher brachial and central systolic blood pressure ( P=0.04), while aortic compliance was lower and characteristic impedance (Zc) higher. Although carotid intima-media thickness was higher ( P<0.001), carotid biomechanics were no different. Carotid forward compression wave power was higher and was negatively correlated with aortic compliance ( R2=0.42, P<0.001) and distensibility ( R2=0.37, P=0.001) in coarctation subjects. Aortic wave power and wave reflection indices were no different in control and coarctation patients, but coarctation patients with elevated aortic Zc had greater aorto-carotid transmission of forward compression wave power ( P=0.006). Aortic distensibility was the only independent predictor of central aortic systolic blood pressure on multivariable analysis. Conclusions Young adults following coarctation repair had a less compliant aorta, but no change in carotid biomechanics. Reduced aortic distensibility was related to greater transmission of aortic forward wave energy into the carotid artery and higher central aortic systolic blood pressure. These findings suggest that reduced aortic distensibility may contribute to later cardiovascular and cerebrovascular disease after coarctation repair.
Collapse
Affiliation(s)
- Remi Kowalski
- Heart Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of CardiologyRoyal Children's HospitalParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
| | - Melissa G. Y. Lee
- Heart Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
| | - Lex W. Doyle
- Heart Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of Newborn ServicesRoyal Women's HospitalParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
- Department of Obstetrics and GynaecologyUniversity of MelbourneMelbourneAustralia
| | - Jeanie L. Y. Cheong
- Heart Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of Newborn ServicesRoyal Women's HospitalParkvilleVic.Australia
- Department of Obstetrics and GynaecologyUniversity of MelbourneMelbourneAustralia
| | - Joseph J. Smolich
- Heart Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
| | - Yves d'Udekem
- Heart Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of Cardiac SurgeryRoyal Children's HospitalParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
| | - Jonathan P. Mynard
- Heart Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - Michael M. H. Cheung
- Heart Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of CardiologyRoyal Children's HospitalParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
18
|
Kowalski R, Mynard JP, Smolich JJ, Cheung MMH. Comparison of invasive and non-invasive aortic wave intensity and wave power analyses in sheep. Physiol Meas 2019; 40:015005. [PMID: 30625426 DOI: 10.1088/1361-6579/aafcc4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Wave intensity (WI) and wave power (WP) analyses are powerful approaches for assessing ventricular-vascular interactions and arterial dynamics using invasive and non-invasive methods. However, in vivo comparison of these methods for large arteries is lacking. This study assessed agreement, correlation and relative changes in wave size in invasive and non-invasive aortic WI/WP analyses, and associated sources of error. APPROACH The proximal descending thoracic aorta (DTA) of nine wethers was instrumented with a micromanometer and perivascular transit-time flow probe to measure high-fidelity blood pressure (P) and flow (Q) for invasive WI/WP analyses at baseline and during haemodynamic perturbations produced by cardiac pacing, distal DTA constriction and dobutamine-induced inotropic stimulation. In 212 experimental runs, concurrent echocardiographic DTA diameter and velocity (U) data were acquired for non-invasive WI/WP analyses, with measurement of forward compression wave (FCW), backward compression wave (BCW) and forward decompression wave (FDW) cumulative intensity (CI), cumulative power (CP) and wave-related pressure changes (ΔP). MAIN RESULTS Although agreement between invasive and non-invasive FCW, BCW and FDW CI/CP measures was variable (bias -84% to +7%), correlation was good (R = 0.66-0.84), with lower bias and higher correlation for ΔP variables and similar relative changes in FCW and BCW CI/ΔP during haemodynamic perturbations. Main error sources were overestimation of invasive U due to assumed fixed vessel diameter, inaccuracies in non-invasive Q, and non-invasive underestimation of peak P/U and Q rates of change. SIGNIFICANCE Despite variable agreement, non-invasive CI/CP indices correlate well with invasive measurements, and detect relative changes in major waves induced by haemodynamic perturbations.
Collapse
Affiliation(s)
- Remi Kowalski
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia. Department of Cardiology, Royal Children's Hospital, University of Melbourne, Melbourne, Australia. Departments of Paediatrics, University of Melbourne, Melbourne, Australia
| | | | | | | |
Collapse
|
19
|
Londono-Hoyos F, Zamani P, Beraun M, Vasim I, Segers P, Chirinos JA. Effect of organic and inorganic nitrates on cerebrovascular pulsatile power transmission in patients with heart failure and preserved ejection fraction. Physiol Meas 2018; 39:044001. [PMID: 29488900 DOI: 10.1088/1361-6579/aab2ef] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Increased penetration of pulsatile power to the brain has been implicated in the pathogenesis of age-related cognitive dysfunction and dementia, a common comorbidity in patients with heart failure and preserved ejection fraction (HFpEF). However, there is a lack of knowledge on the effects of organic and inorganic nitrates administration in this population on the power carried by pressure and flow waves traveling through the proximal aorta and penetrating the carotid artery into the brain microvasculature. APPROACH We assessed aortic and carotid hemodynamics non-invasively in two sub-studies: (1) at baseline and after administration of 0.4 mg of sublingual nitroglycerine (an organic nitrate; n = 26); and (2) in a randomized controlled trial of placebo (PB) versus inorganic nitrate administration (beetroot-juice (BR), 12.9 mmol NO3; n = 16). MAIN RESULTS Wave and hydraulic power analysis demonstrated that NTG increased total hydraulic power (from 5.68% at baseline to 8.62%, P = 0.001) and energy penetration (from 8.69% to 11.63%; P = 0.01) from the aorta to the carotid, while inorganic nitrate administration did not induce significant changes in aortic and carotid wave power (power: 5.49%PB versus 6.25%BR, P = 0.49; energy: 8.89%PB versus 10.65%BR, P = 0.27). SIGNIFICANCE Organic nitrates, but not inorganic nitrates, increase the amount of hydraulic energy transmitted into the carotid artery in subjects with HFpEF. These findings may have implications for the adverse effect profiles of these agents (such as the differential incidence of headaches) and for the pulsatile hemodynamic stress of the brain microvasculature in this patient population.
Collapse
Affiliation(s)
- Francisco Londono-Hoyos
- University of Pennsylvania Perelman School of Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America. Institute Biomedical Technology (IBiTech)-bioMMeda Research Group-Ghent University, Ghent, Belgium. FLH and PZ contributed equally to this manuscript
| | | | | | | | | | | |
Collapse
|
20
|
Mynard JP, Penny DJ, Smolich JJ. Major influence of a 'smoke and mirrors' effect caused by wave reflection on early diastolic coronary arterial wave intensity. J Physiol 2018; 596:993-1017. [PMID: 29318640 DOI: 10.1113/jp274710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/02/2018] [Indexed: 01/25/2023] Open
Abstract
KEY POINTS Coronary wave intensity analysis (WIA) is an emerging technique for assessing upstream and downstream influences on myocardial perfusion. It is thought that a dominant backward decompression wave (BDWdia ) is generated by a distal suction effect, while early-diastolic forward decompression (FDWdia ) and compression (FCWdia ) waves originate in the aorta. We show that wave reflection also makes a substantial contribution to FDWdia , FCWdia and BDWdia , as quantified by a novel method. In 18 sheep, wave reflection accounted for ∼70% of BDWdia , whereas distal suction dominated in a computer model representing a hypertensive human. Non-linear addition/subtraction of mechanistically distinct waves (e.g. wave reflection and distal suction) obfuscates the true contribution of upstream and downstream forces on measured waves (the 'smoke and mirrors' effect). The mechanisms underlying coronary WIA are more complex than previously thought and the impact of wave reflection should be considered when interpreting clinical and experimental data. ABSTRACT Coronary arterial wave intensity analysis (WIA) is thought to provide clear insight into upstream and downstream forces on coronary flow, with a large early-diastolic surge in coronary flow accompanied by a prominent backward decompression wave (BDWdia ), as well as a forward decompression wave (FDWdia ) and forward compression wave (FCWdia ). The BDWdia is believed to arise from distal suction due to release of extravascular compression by relaxing myocardium, while FDWdia and FCWdia are thought to be transmitted from the aorta into the coronary arteries. Based on an established multi-scale computational model and high-fidelity measurements from the proximal circumflex artery (Cx) of 18 anaesthetized sheep, we present evidence that wave reflection has a major impact on each of these three waves, with a non-linear addition/subtraction of reflected waves obscuring the true influence of upstream and downstream forces through concealment and exaggeration, i.e. a 'smoke and mirrors' effect. We also describe methods, requiring additional measurement of aortic WIA, for unravelling the separate influences of wave reflection versus active upstream/downstream forces on coronary waves. Distal wave reflection accounted for ∼70% of the BDWdia in sheep, but had a lesser influence (∼25%) in the computer model representing a hypertensive human. Negative reflection of the BDWdia at the coronary-aortic junction attenuated the Cx FDWdia (by ∼40% in sheep) and augmented Cx FCWdia (∼5-fold), relative to the corresponding aortic waves. We conclude that wave reflection has a major influence on early-diastolic WIA, and thus needs to be considered when interpreting coronary WIA profiles.
Collapse
Affiliation(s)
- Jonathan P Mynard
- Heart Research, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia.,Department of Cardiology, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Daniel J Penny
- Heart Research, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia.,Department of Cardiology, Royal Children's Hospital, Parkville, VIC 3052, Australia.,Institute of Reproduction and Development, Monash University, Clayton, VIC, Australia
| | - Joseph J Smolich
- Heart Research, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia.,Institute of Reproduction and Development, Monash University, Clayton, VIC, Australia
| |
Collapse
|
21
|
Kowalski R, Beare R, Willemet M, Alastruey J, Smolich JJ, Cheung MMH, Mynard JP. Robust and practical non-invasive estimation of local arterial wave speed and mean blood velocity waveforms. Physiol Meas 2017; 38:2081-2099. [DOI: 10.1088/1361-6579/aa8de3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Abstract
PURPOSE OF REVIEW Arterial pulse waveform analysis has a long tradition but has not pervaded medical routine yet. This review aims to answer the question whether the methodology is ready for prime time use. The current methodological consensus is assessed, existing technologies for waveform measurement and pulse wave analysis are discussed, and further needs for a widespread use are proposed. RECENT FINDINGS A consensus document on the understanding and analysis of the pulse waveform was published recently. Although still some discrepancies remain, the analysis using both pressure and flow waves is favoured. However, devices which enable pulse wave measurement are limited, and the comparability between devices is not sufficiently given. Pulse waveform analysis has the potential for prime time. It is currently on a way towards broader use, but still needs to overcome challenges before settling its role in medical routine.
Collapse
|
23
|
Mynard JP, Smolich JJ. Wave potential: A unified model of arterial waves, reservoir phenomena and their interaction☆. Artery Res 2017. [DOI: 10.1016/j.artres.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
24
|
Mynard JP, Kowalski R, Cheung MMH, Smolich JJ. Beyond the aorta: partial transmission of reflected waves from aortic coarctation into supra-aortic branches modulates cerebral hemodynamics and left ventricular load. Biomech Model Mechanobiol 2016; 16:635-650. [DOI: 10.1007/s10237-016-0842-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
|