1
|
Jeon H, Lee D, Kim JY, Shim JJ, Lee JH. Limosilactobacillus reuteri HY7503 and Its Cellular Proteins Alleviate Endothelial Dysfunction by Increasing Nitric Oxide Production and Regulating Cell Adhesion Molecule Levels. Int J Mol Sci 2024; 25:11326. [PMID: 39457107 PMCID: PMC11509054 DOI: 10.3390/ijms252011326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Endothelial dysfunction, which is marked by a reduction in nitric oxide (NO) production or an imbalance in relaxing and contracting factor levels, exacerbates atherosclerosis by promoting the production of cell adhesion molecules and cytokines. This study aimed to investigate the effects of Limosilactobacillus reuteri HY7503, a novel probiotic isolated from raw milk, on endothelial dysfunction. Five lactic acid bacterial strains were screened for their antioxidant, anti-inflammatory, and endothelium-protective properties; L. reuteri HY7503 had the most potent effect. In a mouse model of angiotensin II-induced endothelial dysfunction, L. reuteri HY7503 reduced vascular thickening (19.78%), increased serum NO levels (226.70%), upregulated endothelial NO synthase (eNOS) expression in the aortic tissue, and decreased levels of cell adhesion molecules (intercellular adhesion molecule-1 [ICAM-1] and vascular cell adhesion molecule-1 [VCAM-1]) and serum cytokines (tumor necrosis factor-alpha [TNF-α] and interleukin-6 [IL-6]). In TNF-α-treated human umbilical vein endothelial cells (HUVECs), L. reuteri HY7503 enhanced NO production and reduced cell adhesion molecule levels. In HUVECs, surface-layer proteins (SLPs) were more effective than extracellular vesicles (exosomes) in increasing NO production and decreasing cell adhesion molecule levels. These findings suggested that L. reuteri HY7503 may serve as a functional probiotic that alleviates endothelial dysfunction.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Gyeonggi-do, Republic of Korea; (H.J.); (D.L.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
2
|
Lu F, Lin Y, Zhou J, Chen Z, Liu Y, Zhong M, Wang L. Obesity and the obesity paradox in abdominal aortic aneurysm. Front Endocrinol (Lausanne) 2024; 15:1410369. [PMID: 39055063 PMCID: PMC11269098 DOI: 10.3389/fendo.2024.1410369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Obesity, characterized by its complexity and heterogeneity, has emerged as a significant public health concern. Its association with increased incidence and mortality of cardiovascular diseases stems not only from its complications and comorbidities but also from the endocrine effects of adipose tissue. Abdominal aortic aneurysm (AAA), a chronic inflammatory condition, has been closely linked to obesity. Intriguingly, mild obesity appears to confer a protective effect against AAA mortality, whereas severe obesity and being underweight do not, giving rise to the concept of the "obesity paradox". This review aims to provide an overview of obesity and its paradoxical relationship with AAA, elucidate its underlying mechanisms, and discuss the importance of preoperative weight loss in severely obese patients with AAA.
Collapse
Affiliation(s)
- Feng Lu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jianshun Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhen Chen
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yingying Liu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Maolin Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Rodrigues-Diez R, Ballesteros-Martinez C, Moreno-Carriles RM, Nistal F, Díaz Del Campo LS, Cachofeiro V, Dalli J, García-Redondo AB, Redondo JM, Salaices M, Briones AM. Resolvin D2 prevents vascular remodeling, hypercontractility and endothelial dysfunction in obese hypertensive mice through modulation of vascular and proinflammatory factors. Biomed Pharmacother 2024; 174:116564. [PMID: 38608525 DOI: 10.1016/j.biopha.2024.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.
Collapse
MESH Headings
- Animals
- Male
- Humans
- Docosahexaenoic Acids/pharmacology
- Hypertension/metabolism
- Hypertension/drug therapy
- Mice, Inbred C57BL
- Obesity/complications
- Obesity/metabolism
- Vascular Remodeling/drug effects
- Mice
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Diet, High-Fat/adverse effects
- Angiotensin II
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/drug therapy
- Inflammation Mediators/metabolism
- Mice, Obese
- Vasoconstriction/drug effects
- Inflammation/pathology
- Inflammation/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Constanza Ballesteros-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | | | - Francisco Nistal
- CIBER de Enfermedades Cardiovasculares, Spain; Cirugía Cardiovascular. Hospital Universitario "Marqués de Valdecilla", IDIVAL, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Lucía S Díaz Del Campo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | - Victoria Cachofeiro
- CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Juan M Redondo
- CIBER de Enfermedades Cardiovasculares, Spain; Grupo de Regulación Génica en remodelado cardiovascular e inflamación, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Cell-cell communication & inflammation unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain.
| |
Collapse
|
4
|
Guo J, Shi J, Qin M, Wang Y, Li Z, Shoji T, Ikezoe T, Ge Y, Xu B. Pharmacological Inhibition of Gasdermin D Suppresses Angiotensin II-Induced Experimental Abdominal Aortic Aneurysms. Biomolecules 2023; 13:899. [PMID: 37371479 PMCID: PMC10295961 DOI: 10.3390/biom13060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Gasdermin D, a molecule downstream of the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing inflammasome, forms the membrane pore for the secretion of interleukin (IL)-1β and IL-18, and also mediates pyroptosis. This study was to explore the influence of treatment with disulfiram, a small molecule inhibitor to gasdermin D, on the formation and progression of experimental abdominal aortic aneurysms (AAA). METHODS AAAs were induced in 10-week-old male apolipoprotein E deficient mice by subcutaneous infusion of angiotensin II (1000 ng/min/kg body weight) for 28 days via osmotic minipumps. Three days prior to angiotensin II infusion, disulfiram (50 mg/kg) or an equal volume of saline as the vehicle control was administered daily via oral gavage. The influence on experimental AAAs was analyzed by serial measurements of aortic diameters via ultrasonography, grading AAA severity and histopathology at sacrifice. Serum IL-1β and IL-18 levels, systolic blood pressure, total cholesterol, and triglyceride were also measured. Additional experiments assayed the influences on the cell viability and IL-1β secretion of in vitro activated macrophages. RESULTS Disulfiram significantly reduced the enlargement, incidence, and severity of angiotensin II-induced experimental AAAs with attenuation of medial elastin breaks, mural macrophage accumulation, and systolic blood pressure. The AAA suppression was also associated with reduced systemic levels of IL-1β but not IL-18. However, disulfiram treatment had no impact on body weight gain and lipid levels in aneurysmal mice. Additionally, disulfiram treatment also markedly reduced the secretion of IL-1β from activated macrophages with a limited effect on cell viability in vitro. CONCLUSIONS Gasdermin D inhibition by disulfiram attenuated angiotensin II-induced experimental AAAs with reduced systemic IL-1β levels and in vitro activated macrophage IL-1β secretion. Our study suggests that pharmacological gasdermin D inhibition may have translational potential for limiting clinical AAA progression.
Collapse
Affiliation(s)
- Jia Guo
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan 030001, China; (J.S.); (M.Q.)
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (T.S.); (T.I.); (B.X.)
| | - Jinyun Shi
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan 030001, China; (J.S.); (M.Q.)
| | - Min Qin
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan 030001, China; (J.S.); (M.Q.)
| | - Yan Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China;
| | - Zhidong Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China;
| | - Takahiro Shoji
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (T.S.); (T.I.); (B.X.)
| | - Toru Ikezoe
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (T.S.); (T.I.); (B.X.)
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China;
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (T.S.); (T.I.); (B.X.)
| |
Collapse
|
5
|
Stoll S, Sowah SA, Fink MA, Nonnenmacher T, Graf ME, Johnson T, Schlett CL, von Stackelberg O, Kirsten R, Bamberg F, Keller J, Ulrich CM, Kaaks R, Kauczor HU, Rengier F, Kühn T, Nattenmüller J. Changes in aortic diameter induced by weight loss: The HELENA trial- whole-body MR imaging in a dietary intervention trial. Front Physiol 2022; 13:976949. [PMID: 36203934 PMCID: PMC9531129 DOI: 10.3389/fphys.2022.976949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity-related metabolic disorders such as hypertension, hyperlipidemia and chronic inflammation have been associated with aortic dilatation and resulting in aortic aneurysms in many cases. Whether weight loss may reduce the risk of aortic dilatation is not clear. In this study, the diameter of the descending thoracic aorta, infrarenal abdominal aorta and aortic bifurcation of 144 overweight or obese non-smoking adults were measured by MR-imaging, at baseline, and 12 and 50 weeks after weight loss by calorie restriction. Changes in aortic diameter, anthropometric measures and body composition and metabolic markers were evaluated using linear mixed models. The association of the aortic diameters with the aforementioned clinical parameters was analyzed using Spearman`s correlation. Weight loss was associated with a reduction in the thoracic and abdominal aortic diameters 12 weeks after weight loss (predicted relative differences for Quartile 4: 2.5% ± 0.5 and -2.2% ± 0.8, p < 0.031; respectively). Furthermore, there was a nominal reduction in aortic diameters during the 50-weeks follow-up period. Aortic diameters were positively associated with weight, visceral adipose tissue, glucose, HbA1c and with both systolic and diastolic blood pressure. Weight loss induced by calorie restriction may reduce aortic diameters. Future studies are needed to investigate, whether the reduction of aortic diameters via calorie restriction may help to prevent aortic aneurysms.
Collapse
Affiliation(s)
- Sibylle Stoll
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Heidelberg, Germany
| | - Solomon A. Sowah
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Matthias A. Fink
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Heidelberg, Germany
| | - Tobias Nonnenmacher
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Heidelberg, Germany
| | - Mirja E. Graf
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Theron Johnson
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Christopher L. Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Romy Kirsten
- National Center for Tumor Diseases (NCT), Liquid Biobank, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Cornelia M. Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Heidelberg, Germany
| | - Fabian Rengier
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Heidelberg, Germany
| | - Tilman Kühn
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Johanna Nattenmüller
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Johanna Nattenmüller,
| |
Collapse
|
6
|
Wang Y, Gao P, Li F, Du J. Insights on aortic aneurysm and dissection: Role of the extracellular environment in vascular homeostasis. J Mol Cell Cardiol 2022; 171:90-101. [DOI: 10.1016/j.yjmcc.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/06/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
|
7
|
Sawada H, Lu HS, Cassis LA, Daugherty A. Twenty Years of Studying AngII (Angiotensin II)-Induced Abdominal Aortic Pathologies in Mice: Continuing Questions and Challenges to Provide Insight Into the Human Disease. Arterioscler Thromb Vasc Biol 2022; 42:277-288. [PMID: 35045728 PMCID: PMC8866209 DOI: 10.1161/atvbaha.121.317058] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AngII (angiotensin II) infusion in mice has been used to provide mechanistic insight into human abdominal aortic aneurysms for over 2 decades. This is a technically facile animal model that recapitulates multiple facets of the human disease. Although numerous publications have reported abdominal aortic aneurysms with AngII infusion in mice, there remain many fundamental unanswered questions such as uniformity of describing the pathological characteristics and which cell type is stimulated by AngII to promote abdominal aortic aneurysms. Extrapolation of the findings to provide insight into the human disease has been hindered by the preponderance of studies designed to determine the effects on initiation of abdominal aortic aneurysms, rather than a more clinically relevant scenario of determining efficacy on the established disease. The purpose of this review is to enhance understanding of AngII-induced abdominal aortic pathologies in mice, thereby providing greater insight into the human disease.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
8
|
Maternal High-Fat Diet Promotes Abdominal Aortic Aneurysm Expansion in Adult Offspring by Epigenetic Regulation of IRF8-Mediated Osteoclast-like Macrophage Differentiation. Cells 2021; 10:cells10092224. [PMID: 34571873 PMCID: PMC8466477 DOI: 10.3390/cells10092224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Maternal high-fat diet (HFD) modulates vascular remodeling in adult offspring. Here, we investigated the impact of maternal HFD on abdominal aortic aneurysm (AAA) development. Female wild-type mice were fed an HFD or normal diet (ND). AAA was induced in eight-week-old pups using calcium chloride. Male offspring of HFD-fed dams (O-HFD) showed a significant enlargement in AAA compared with the offspring of ND-fed dams (O-ND). Positive-staining cells for tartrate-resistant acid phosphate (TRAP) and matrix metalloproteinase (MMP) activity were significantly increased in O-HFD. The pharmacological inhibition of osteoclastogenesis abolished the exaggerated AAA development in O-HFD. The in vitro tumor necrosis factor-α-induced osteoclast-like differentiation of bone marrow-derived macrophages showed a higher number of TRAP-positive cells and osteoclast-specific gene expressions in O-HFD. Consistent with an increased expression of nuclear factor of activated T cells 1 (NFATc1) in O-HFD, the nuclear protein expression of interferon regulatory factor 8 (IRF8), a transcriptional repressor, were much lower, with significantly increased H3K27me3 marks at the promoter region. The enhancer of zeste homolog 2 inhibitor treatment restored IRF8 expression, resulting in no difference in NFATc1 and TRAP expressions between the two groups. Our findings demonstrate that maternal HFD augments AAA expansion, accompanied by exaggerated osteoclast-like macrophage accumulation, suggesting the possibility of macrophage skewing via epigenetic reprogramming.
Collapse
|
9
|
Phie J, Thanigaimani S, Golledge J. Systematic Review and Meta-Analysis of Interventions to Slow Progression of Abdominal Aortic Aneurysm in Mouse Models. Arterioscler Thromb Vasc Biol 2021; 41:1504-1517. [PMID: 33567871 DOI: 10.1161/atvbaha.121.315942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- James Phie
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry (J.P., S.T., J.G.), James Cook University, Townsville, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry (J.P., S.T., J.G.), James Cook University, Townsville, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry (J.P., S.T., J.G.), James Cook University, Townsville, Australia.,Australian Institute of Tropical Health and Medicine (J.G.), James Cook University, Townsville, Australia.,Department of Vascular and Endovascular Surgery, Townsville University Hospital, Queensland, Australia (J.G.)
| |
Collapse
|
10
|
Li X, Ballantyne LL, Yu Y, Funk CD. Perivascular adipose tissue-derived extracellular vesicle miR-221-3p mediates vascular remodeling. FASEB J 2019; 33:12704-12722. [PMID: 31469602 DOI: 10.1096/fj.201901548r] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adipose tissue-secreted extracellular vesicles (EVs) containing microRNAs (miRNAs) convey intercellular message signaling. The biogenesis of EV-miRNAs from perivascular adipose tissue (PVAT) and their roles in intercellular communication in response to obesity-associated inflammation have not yet been fully explored. By feeding mice a high-fat diet for 16 wk, we established obesity-associated, chronic low-grade inflammation in PVAT, characterized as hypertrophy of perivascular adipocytes, decreased adipogenesis, and proinflammatory macrophage infiltration. We show that PVAT-derived EVs and their encapsulated miRNAs can be taken up into vascular smooth muscle cells (VSMCs) in vivo and in vitro. miR-221-3p is one of the highly enriched miRNAs in obese PVAT and PVAT-derived EVs. Transfer and direct overexpression of miR-221-3p dramatically enhances VSMC proliferation and migration. Peroxisome proliferator-activated receptor γ coactivator 1α is identified as a miR-221-3p target in VSMC phenotypic modulation. Obese mice secrete abundant miRNA-containing EVs, evoking inflammatory responses in PVAT and vascular phenotypic switching in abdominal aorta of lean mice. Local delivery of miR-221-3p mimic in femoral artery causes vascular dysfunction by suppressing the contractile genes in the arterial wall. Our findings provide an EV-miR-221-3p-mediated mechanism by which PVAT triggers an early-stage vascular remodeling in the context of obesity-associated inflammation.-Li, X., Ballantyne, L. L., Yu, Y., Funk, C. D. Perivascular adipose tissue-derived extracellular vesicle miR-221-3p mediates vascular remodeling.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Laurel L Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
Apoloni RC, Zerati AE, Wolosker N, Saes GF, Wolosker M, Curado T, Puech-Leão P, De Luccia N. Analysis of the Correlation Between Central Obesity and Abdominal Aortic Diseases. Ann Vasc Surg 2018; 54:176-184. [PMID: 30103051 DOI: 10.1016/j.avsg.2018.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/23/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atherosclerosis and abdominal aortic aneurysms (AAAs) have several similar risk factors but different pathogenesis. Inflammation of the arteries is common to both. Central obesity can act as an endocrine organ through the secretion of inflammatory cytokines, and the perivascular fat has a local effect that could contribute to diseases of the abdominal aorta. Although the relation between central obesity and atherosclerosis occlusive arterial disease has been demonstrated, the correlation with AAA has conflicting results. The aim of this study was to analyze the correlation between central obesity and the presence of abdominal aortic diseases using computed tomography. METHODS Six hundred thirty-nine consecutive patients classified into 3 groups (AAA, aortic atherosclerotic occlusive disease (AAOD), and without aortic disease [control group]) who underwent computed tomography had the aorta diameter, the visceral fat area (VFA), and the subcutaneous fat area (SFA) measured at the level of third and fourth lumbar vertebrae. RESULTS VFA showed no difference between the groups. SFA was lower in atherosclerotic group (AAOD) than control (P < 0.01 in general and P < 0.04 in male). In AAA group, we found in men that the first tertile of aorta diameter had higher VFA than third tertile (P = 0.02). CONCLUSIONS There was no difference in VFA between patients in AAA, AAOD, and without aortic disease groups. In men with aneurysm, there was an inverse relationship between VFA and aortic diameter. In AAOD, visceral to subcutaneous ratio is higher due to lower SFA.
Collapse
Affiliation(s)
- Rafael Correa Apoloni
- Department of Vascular Surgery, Hospital das Clinicas University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Antonio Eduardo Zerati
- Department of Vascular Surgery, Hospital das Clinicas University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Nelson Wolosker
- Department of Vascular Surgery, Hospital das Clinicas University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Glauco Fernandes Saes
- Department of Vascular Surgery, Hospital das Clinicas University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Marina Wolosker
- Department of Vascular Surgery, Hospital das Clinicas University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Taina Curado
- Department of Vascular Surgery, Hospital das Clinicas University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Pedro Puech-Leão
- Department of Vascular Surgery, Hospital das Clinicas University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Nelson De Luccia
- Department of Vascular Surgery, Hospital das Clinicas University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
12
|
AT1-receptor blockade attenuates outward aortic remodeling associated with diet-induced obesity in mice. Clin Sci (Lond) 2017. [PMID: 28646121 DOI: 10.1042/cs20170131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The renin-angiotensin system (RAS) and obesity have been implicated in vascular outward remodeling, including aneurysms, but the precise mechanisms are not yet understood. We investigated the effect of the angiotensin receptor type 1 (AT1-receptor) antagonist telmisartan on aortic outward remodeling in a diet-induced obesity model in mice. C57/Black6J mice were fed either a low-fat diet (LFD) or a high-fat diet (HFD) for 14 weeks. One group of HFD mice was additionally exposed to telmisartan (3 mg/kg per day) for the last 4 weeks. HFD led to aortic outward remodeling, characterized by increased proteolysis, along with structural changes, such as fragmentation of elastic fibers and decreased elastin content. Vascular damage was associated with up-regulation of matrix metalloproteinase (MMP)-2 (MMP-2), MMP-3, MMP-12, cathepsin D, and cathepsin B. HFD aortae exhibited an enhanced inflammatory status, characterized by tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) colocalized with adipocytes in the adventitia. HFD resulted in a significant increase in aortic dimensions, evident by ultrasound measurements. Telmisartan abolished aortic dilatation and preserved elastin content. HFD induced enhanced expression of aortic MMP-2, MMP-9, and TNF-α was abrogated by telmisartan. Adventitial proteolytic and inflammatory factors were also examined in samples from human abdominal aneurysms. The expression of TNF-α, IL-1β, and MMP-9 was higher in the adventitial fat of diseased vessels compared with healthy tissues. Finally, adipocytes treated with TNF-α showed enhanced MMP-2, MMP-3, and cathepsin D, which was prevented by telmisartan. Taken together, HFD in mice induced aortic dilatation with up-regulation of matrix degrading and inflammatory pathways similar to those seen in human aortic aneurysmatic tissue. The HFD-induced vascular pathology was reduced by AT1-receptor antagonist telmisartan.
Collapse
|
13
|
Quantitative Aortic Distensibility Measurement Using CT in Patients with Abdominal Aortic Aneurysm: Reproducibility and Clinical Relevance. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5436927. [PMID: 28484713 PMCID: PMC5412143 DOI: 10.1155/2017/5436927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/21/2022]
Abstract
Purpose. To investigate the reproducibility of aortic distensibility (D) measurement using CT and assess its clinical relevance in patients with infrarenal abdominal aortic aneurysm (AAA). Methods. 54 patients with infrarenal abdominal aortic aneurysm were studied to determine their distensibility by using 64-MDCT. Aortic cross-sectional area changes were determined at two positions of the aorta, immediately below the lowest renal artery (level 1.) and at the level of its maximal diameter (level 2.) by semiautomatic segmentation. Measurement reproducibility was assessed using intraclass correlation coefficient (ICC) and Bland-Altman analyses. Stepwise multiple regression analysis was performed to assess linear associations between aortic D and anthropometric and biochemical parameters. Results. A mean distensibility of Dlevel 1. = (1.05 ± 0.22) × 10−5 Pa−1 and Dlevel 2. = (0.49 ± 0.18) × 10−5 Pa−1 was found. ICC proved excellent consistency between readers over two locations: 0.92 for intraobserver and 0.89 for interobserver difference in level 1. and 0.85 and 0.79 in level 2. Multivariate analysis of all these variables showed sac distensibility to be independently related (R2 = 0.68) to BMI, diastolic blood pressure, and AAA diameter. Conclusions. Aortic distensibility measurement in patients with AAA demonstrated high inter- and intraobserver agreement and may be valuable when choosing the optimal dimensions graft for AAA before endovascular aneurysm repair.
Collapse
|
14
|
Sénémaud J, Caligiuri G, Etienne H, Delbosc S, Michel JB, Coscas R. Translational Relevance and Recent Advances of Animal Models of Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2017; 37:401-410. [DOI: 10.1161/atvbaha.116.308534] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 12/21/2016] [Indexed: 01/11/2023]
Abstract
Human abdominal aortic aneurysm (AAA) pathophysiology is not yet completely understood. In conductance arteries, the insoluble extracellular matrix, synthesized by vascular smooth muscle cells, assumes the function of withstanding the intraluminal arterial blood pressure. Progressive loss of this function through extracellular matrix proteolysis is a main feature of AAAs. As most patients are now treated via endovascular approaches, surgical AAA specimens have become rare. Animal models provide valuable complementary insights into AAA pathophysiology. Current experimental AAA models involve induction of intraluminal dilation (nondissecting AAAs) or a contained intramural rupture (dissecting models). Although the ideal model should reproduce the histological characteristics and natural history of the human disease, none of the currently available animal models perfectly do so. Experimental models try to represent the main pathophysiological determinants of AAAs: genetic or acquired defects in extracellular matrix, loss of vascular smooth muscle cells, and innate or adaptive immune response. Nevertheless, most models are characterized by aneurysmal stabilization and healing after a few weeks because of cessation of the initial stimulus. Recent studies have focused on ways to optimize existing models to allow continuous aneurysmal growth. This review aims to discuss the relevance and recent advances of current animal AAA models.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Jean Sénémaud
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| | - Giuseppina Caligiuri
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| | - Harry Etienne
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| | - Sandrine Delbosc
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| | - Jean-Baptiste Michel
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| | - Raphaël Coscas
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| |
Collapse
|
15
|
Liu Y, Wang TT, Zhang R, Fu WY, Wang X, Wang F, Gao P, Ding YN, Xie Y, Hao DL, Chen HZ, Liu DP. Calorie restriction protects against experimental abdominal aortic aneurysms in mice. J Exp Med 2016; 213:2473-2488. [PMID: 27670594 PMCID: PMC5068228 DOI: 10.1084/jem.20151794] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/26/2016] [Indexed: 12/29/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), characterized by a localized dilation of the abdominal aorta, is a life-threatening vascular pathology. Because of the current lack of effective treatment for AAA rupture, prevention is of prime importance for AAA management. Calorie restriction (CR) is a nonpharmacological intervention that delays the aging process and provides various health benefits. However, whether CR prevents AAA formation remains untested. In this study, we subjected Apoe-/- mice to 12 wk of CR and then examined the incidence of angiotensin II (AngII)-induced AAA formation. We found that CR markedly reduced the incidence of AAA formation and attenuated aortic elastin degradation in Apoe-/- mice. The expression and activity of Sirtuin 1 (SIRT1), a key metabolism/energy sensor, were up-regulated in vascular smooth muscle cells (VSMCs) upon CR. Importantly, the specific ablation of SIRT1 in smooth muscle cells abolished the preventive effect of CR on AAA formation in Apoe-/- mice. Mechanistically, VSMC-SIRT1-dependent deacetylation of histone H3 lysine 9 on the matrix metallopeptidase 2 (Mmp2) promoter was required for CR-mediated suppression of AngII-induced MMP2 expression. Together, our findings suggest that CR may be an effective intervention that protects against AAA formation.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ting-Ting Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ran Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wen-Yan Fu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Peng Gao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yang-Nan Ding
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yan Xie
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - De-Long Hao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
16
|
Trachet B, Fraga-Silva RA, Jacquet PA, Stergiopulos N, Segers P. Incidence, severity, mortality, and confounding factors for dissecting AAA detection in angiotensin II-infused mice: a meta-analysis. Cardiovasc Res 2015; 108:159-70. [PMID: 26307626 DOI: 10.1093/cvr/cvv215] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/25/2015] [Indexed: 01/25/2023] Open
Abstract
AIMS While angiotensin II-infused mice are the most popular model for preclinical aneurysm research, representative data on incidence, severity, and mortality of dissecting abdominal aortic aneurysms (AAAs) have never been established, and the influence of confounding factors is unknown. METHODS AND RESULTS We performed a meta-analysis including 194 manuscripts representing 1679 saline-infused, 4729 non-treated angiotensin II-infused, and 4057 treated angiotensin II-infused mice. Incidence (60%) and mortality (20%) rates are reported overall as well as for grade I (22%), grade II (26%), grade III (29%), and grade IV (24%) aneurysms. Dissecting AAA incidence was significantly (P < 0.05) influenced by sex, age, genetic background, infusion time, and dose of angiotensin II. Mortality was influenced by sex, genetic background, and dose, but not by age or infusion time. Surprisingly, both incidence and mortality were significantly different (P < 0.05) when comparing angiotensin II-infused mice in descriptive studies (56% incidence and 19% mortality) with angiotensin II-infused mice that served as control animals in treatment studies designed to either enhance (35% incidence and 13% mortality) or reduce (73% incidence and 25% mortality) dissecting AAA formation. After stratification to account for confounding factors (selection bias), the observed effect was still present for incidence, but not for mortality. Possible underlying causes are detection bias (non-uniform definition for detection and quantification of dissecting AAA in mice) or publication bias (studies with negative results, related to incidence in the control group, not being published). CONCLUSIONS Our data provide a new meta-analysis-based reference for incidence and mortality of dissecting AAA in angiotensin II-infused mice, and indicate that treatment studies using this mouse model should be interpreted with caution.
Collapse
Affiliation(s)
- Bram Trachet
- IBiTech - bioMMeda, Ghent University-iMinds Medical IT, Ghent, Belgium Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rodrigo A Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe A Jacquet
- Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrick Segers
- IBiTech - bioMMeda, Ghent University-iMinds Medical IT, Ghent, Belgium
| |
Collapse
|
17
|
Kaynar AM, Yende S, Zhu L, Frederick DR, Chambers R, Burton CL, Carter M, Stolz DB, Agostini B, Gregory AD, Nagarajan S, Shapiro SD, Angus DC. Effects of intra-abdominal sepsis on atherosclerosis in mice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:469. [PMID: 25182529 PMCID: PMC4172909 DOI: 10.1186/s13054-014-0469-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/22/2014] [Indexed: 11/10/2022]
Abstract
Introduction Sepsis and other infections are associated with late cardiovascular events. Although persistent inflammation is implicated, a causal relationship has not been established. We tested whether sepsis causes vascular inflammation and accelerates atherosclerosis. Methods We performed prospective, randomized animal studies at a university research laboratory involving adult male ApoE-deficient (ApoE−/−) and young C57B/L6 wild-type (WT) mice. In the primary study conducted to determine whether sepsis accelerates atherosclerosis, we fed ApoE−/− mice (N = 46) an atherogenic diet for 4 months and then performed cecal ligation and puncture (CLP), followed by antibiotic therapy and fluid resuscitation or a sham operation. We followed mice for up to an additional 5 months and assessed atheroma in the descending aorta and root of the aorta. We also exposed 32 young WT mice to CLP or sham operation and followed them for 5 days to determine the effects of sepsis on vascular inflammation. Results ApoE−/− mice that underwent CLP had reduced activity during the first 14 days (38% reduction compared to sham; P < 0.001) and sustained weight loss compared to the sham-operated mice (−6% versus +9% change in weight after CLP or sham surgery to 5 months; P < 0.001). Despite their weight loss, CLP mice had increased atheroma (46% by 3 months and 41% increase in aortic surface area by 5 months; P = 0.03 and P = 0.004, respectively) with increased macrophage infiltration into atheroma as assessed by immunofluorescence microscopy (0.52 relative fluorescence units (rfu) versus 0.97 rfu; P = 0.04). At 5 months, peritoneal cultures were negative; however, CLP mice had elevated serum levels of interleukin 6 (IL-6) and IL-10 (each at P < 0.05). WT mice that underwent CLP had increased expression of intercellular adhesion molecule 1 in the aortic lumen versus sham at 24 hours (P = 0.01) that persisted at 120 hours (P = 0.006). Inflammatory and adhesion genes (tumor necrosis factor α, chemokine (C-C motif) ligand 2 and vascular cell adhesion molecule 1) and the adhesion assay, a functional measure of endothelial activation, were elevated at 72 hours and 120 hours in mice that underwent CLP versus sham-operations (all at P <0.05). Conclusions Using a combination of existing murine models for atherosclerosis and sepsis, we found that CLP, a model of intra-abdominal sepsis, accelerates atheroma development. Accelerated atheroma burden was associated with prolonged systemic, endothelial and intimal inflammation and was not explained by ongoing infection. These findings support observations in humans and demonstrate the feasibility of a long-term follow-up murine model of sepsis. Electronic supplementary material The online version of this article (doi:10.1186/s13054-014-0469-1) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Cronin O, Liu D, Bradshaw B, Iyer V, Buttner P, Cunningham M, Walker PJ, Golledge J. Visceral adiposity is not associated with abdominal aortic aneurysm presence and growth. Vasc Med 2014; 19:272-280. [PMID: 24948557 DOI: 10.1177/1358863x14537883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies in rodent models and patients suggest that visceral adipose could play a direct role in the development and progression of abdominal aortic aneurysm (AAA). This study aimed to assess the association of visceral adiposity with AAA presence and growth. This study was a case-control investigation of patients that did (n=196) and did not (n=181) have an AAA who presented to The Townsville Hospital vascular clinic between 2003 and 2012. Cases were patients with AAA (infra-renal aortic diameter >30 mm) and controls were patients with intermittent claudication but no AAA (infra-renal aortic diameter <30 mm). All patients underwent computed tomography angiography (CTA). The visceral to total abdominal adipose volume ratio was estimated from CTAs by assessing total and visceral adipose deposits using an imaging software program. Measurements were assessed for reproducibility by repeat assessments on 15 patients. AAA risk factors were recorded at entry. Forty-five cases underwent two CTAs more than 6 months apart to assess AAA expansion. The association of visceral adiposity with AAA presence and growth was examined using logistic regression. Visceral adipose assessment by CTA was highly reproducible (mean coefficient of variation 1.0%). AAA was positively associated with older age and negatively associated with diabetes. The visceral to total abdominal adipose volume ratio was not significantly associated with AAA after adjustment for other risk factors. Patients with a visceral to total abdominal adipose volume ratio in quartile four had a 1.63-fold increased risk of AAA but with wide confidence intervals (95% CI 0.71-3.70; p=0.248). Visceral adiposity was not associated with AAA growth. In conclusion, this study suggests that visceral adiposity is not specifically associated with AAA presence or growth although larger studies are required to confirm these findings.
Collapse
Affiliation(s)
- Oliver Cronin
- Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - David Liu
- Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Barbara Bradshaw
- Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Vikram Iyer
- Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia School of Medicine and Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Petra Buttner
- Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, QLD, Australia
| | - Margaret Cunningham
- Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Philip J Walker
- Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia School of Medicine and Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia Department of Vascular Surgery, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, Australia
| |
Collapse
|
19
|
Li F, Downing BD, Smiley LC, Mund JA, Distasi MR, Bessler WK, Sarchet KN, Hinds DM, Kamendulis LM, Hingtgen CM, Case J, Clapp DW, Conway SJ, Stansfield BK, Ingram DA. Neurofibromin-deficient myeloid cells are critical mediators of aneurysm formation in vivo. Circulation 2013; 129:1213-24. [PMID: 24370551 DOI: 10.1161/circulationaha.113.006320] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in the development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. METHOD AND RESULTS With the use of an angiotensin II-induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show that loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1(+/-) aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin reduced aneurysm formation in Nf1(+/-) mice. CONCLUSION These data provide genetic and pharmacological evidence that Nf1(+/-) myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target.
Collapse
Affiliation(s)
- Fang Li
- Department of Pediatrics (F.L., B.D.D., L.C.S., J.A.M., M.R.D., W.K.B., K.N.S., D.M.H., J.C., D.W.C., S.J.C., B.K.S., D.A.I.), Wells Center for Pediatric Research (F.L., B.D.D., L.C.S., J.A.M., M.R.D., W.K.B., K.N.S., D.M.H., J.C., D.W.C., S.J.C., B.K.S., D.A.I.), Department of Biochemistry and Molecular Biology (B.D.D., D.W.C., S.J.C., D.A.I.), Microbiology and Immunology (M.R.D.), Pharmacology and Toxicology (L.M.K.), and Neurology (C.M.H.), Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lu H, Rateri DL, Bruemmer D, Cassis LA, Daugherty A. Novel mechanisms of abdominal aortic aneurysms. Curr Atheroscler Rep 2013; 14:402-12. [PMID: 22833280 DOI: 10.1007/s11883-012-0271-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are a common but asymptomatic disease that has high susceptibility to rupture. Current therapeutic options are limited to surgical procedures because no pharmacological approaches have been proven to decrease either expansion or rupture of human AAAs. The current dearth of effective medical treatment is attributed to insufficient understanding of the mechanisms underlying the initiation, propagation and rupture of AAAs. This review will emphasize recent advances in mechanistic studies that may provide insights into potential pharmacological treatments for this disease. While we primarily focus on recent salient findings, we also discuss mechanisms that continue to be controversial depending on models under study. Despite the progress on exploring mechanisms of experimental AAAs, ultimate validation of mechanisms will require completion of prospective double-blinded clinical trials. In addition, we advocate increased emphasis of collaborative studies using animal models and human tissues for determination of mechanisms that explore expansion and rupture of existing AAAs.
Collapse
Affiliation(s)
- Hong Lu
- Saha Cardiovascular Research Center, Biomedical Biological Sciences Research Building, B243, University of Kentucky, Lexington, KY 40536-0509, USA.
| | | | | | | | | |
Collapse
|
21
|
Cronin O, Walker PJ, Golledge J. The association of obesity with abdominal aortic aneurysm presence and growth. Atherosclerosis 2013; 226:321-7. [DOI: 10.1016/j.atherosclerosis.2012.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/24/2012] [Accepted: 10/10/2012] [Indexed: 12/20/2022]
|
22
|
Bailey-Downs LC, Tucsek Z, Toth P, Sosnowska D, Gautam T, Sonntag WE, Csiszar A, Ungvari Z. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation. J Gerontol A Biol Sci Med Sci 2012; 68:780-92. [PMID: 23213032 DOI: 10.1093/gerona/gls238] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet-fed obese C57BL/6 mice. High-fat diet-induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet-induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals.
Collapse
Affiliation(s)
- Lora C Bailey-Downs
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Stackelberg O, Björck M, Sadr-Azodi O, Larsson SC, Orsini N, Wolk A. Obesity and abdominal aortic aneurysm. Br J Surg 2012. [DOI: 10.1002/bjs.8983] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Background
The relationship between obesity and abdominal aortic aneurysm (AAA) is unclear. An observational cohort study was undertaken to examine the associations between waist circumference as a measure of abdominal adiposity, and between body mass index (BMI) as a measure of total adiposity, and risk of AAA.
Methods
Data were used from the population-based Swedish Mammography Cohort and the Cohort of Swedish Men, involving 63 655 men and women, aged 46–84 years. Between 1998 and 2009, 597 patients with incident AAA defined by relevant clinical events were identified by linkage to the Swedish Inpatient Register and the Swedish Vascular Registry. Cox proportional hazards models were used to estimate relative risks (RRs) with 95 per cent confidence intervals.
Results
In multivariable analysis, individuals with an increased waist circumference had a 30 per cent higher risk of AAA (RR 1·30, 95 per cent confidence interval 1·05 to 1·60) compared with those with a normal waist circumference. The risk of AAA increased by 15 per cent (RR 1·15, 1·05 to 1·26) per 5-cm increment of waist circumference up to the level 100 cm for men and 88 cm for women. There was no association between BMI and risk of AAA.
Conclusion
Abdominal, but not total, adiposity was associated with an increased risk of incident AAA. A threshold was observed at a waist circumference of 100 cm for men and 88 cm for women.
Collapse
Affiliation(s)
- O Stackelberg
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Sweden
| | - M Björck
- Department of Surgical Sciences, Section of Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - O Sadr-Azodi
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Sweden
- Unit of Upper Gastrointestinal Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - S C Larsson
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Sweden
| | - N Orsini
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Sweden
| | - A Wolk
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Sweden
| |
Collapse
|
24
|
Involvement of the renin-angiotensin system in abdominal and thoracic aortic aneurysms. Clin Sci (Lond) 2012; 123:531-43. [PMID: 22788237 DOI: 10.1042/cs20120097] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aortic aneurysms are relatively common maladies that may lead to the devastating consequence of aortic rupture. AAAs (abdominal aortic aneurysms) and TAAs (thoracic aortic aneurysms) are two common forms of aneurysmal diseases in humans that appear to have distinct pathologies and mechanisms. Despite this divergence, there are numerous and consistent demonstrations that overactivation of the RAS (renin-angiotensin system) promotes both AAAs and TAAs in animal models. For example, in mice, both AAAs and TAAs are formed during infusion of AngII (angiotensin II), the major bioactive peptide in the RAS. There are many proposed mechanisms by which the RAS initiates and perpetuates aortic aneurysms, including effects of AngII on a diverse array of cell types and mediators. These experimental findings are complemented in humans by genetic association studies and retrospective analyses of clinical data that generally support a role of the RAS in both AAAs and TAAs. Given the lack of a validated pharmacological therapy for any form of aortic aneurysm, there is a pressing need to determine whether the consistent findings on the role of the RAS in animal models are translatable to humans afflicted with these diseases. The present review compiles the recent literature that has shown the RAS as a critical component in the pathogenesis of aortic aneurysms.
Collapse
|