1
|
Zhang C, Wang WS, Yao G, Zhu Y, Lin Y, Lu J, Sun K, Sun Y. Attenuation of palmitic acid-induced lysyl oxidase overexpression in the ovary contributes to the improvement of ovulation in obesity by metformin. Hum Reprod Open 2024; 2024:hoae002. [PMID: 38333108 PMCID: PMC10850847 DOI: 10.1093/hropen/hoae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
STUDY QUESTION Does palmitic acid (PA), the most common saturated free fatty acid (FFA) in individuals with obesity, contribute to anovulation through upregulation of the collagen-crosslinking enzyme lysyl oxidase (LOX) in the ovary? SUMMARY ANSWER Increased PA in individuals with obesity can cause LOX upregulation via the activation of hypoxia-inducible factor-1α (HIF-1α), resulting in abnormal collagen deposition in the ovary and anovulation, which can be ameliorated by metformin therapy. WHAT IS KNOWN ALREADY The underlying cause of anovulation in individuals with obesity is poorly defined, and accumulating evidence indicates that hormonal disturbance, insulin resistance, and inflammation may all play a role in the development of ovulation disorders in individuals with obesity. However, it remains to be determined whether PA plays a role in the regulation of LOX expression, thus disrupting ovarian extracellular matrix (ECM) remodelling in the ovary and resulting in impaired ovulation in individuals with obesity. STUDY DESIGN SIZE DURATION PA concentration and LOX protein abundance and activity in follicular fluid and ovarian tissue were compared between control (n = 21) subjects, patients with obesity with ovulation (n = 22), and patients with obesity with anovulation (n = 16). The effect of PA on LOX protein expression, and the underlying mechanism, was examined in primary human granulosa cells in vitro. The improvements in obesity conditions induced by LOX inhibition combined with metformin were investigated in a high-fat diet-induced obese rat model. PARTICIPANTS/MATERIALS SETTING METHODS The abundance of PA concentration and LOX activity was measured via a LOX activity assay and ELISA, respectively. The effect of PA on LOX protein expression was examined in the presence or absence of inhibitors of signalling molecules and siRNA-mediated knockdown of the putative transcription factor. Chromatin immunoprecipitation assays were subsequently conducted to further identify the responsible transcription factor. The role of metformin in the treatment of anovulation by LOX inhibition was investigated in a high-fat diet (HFD)-induced obese rat model. The numbers of retrieved total oocytes and metaphase II oocytes were recorded upon ovarian stimulation. Masson's trichrome staining was used to measure the total collagen content, and immunohistochemical staining and western blotting were used to measure LOX, HIF-1α, and collagen I and IV in the ovary. MAIN RESULTS AND THE ROLE OF CHANCE Significantly increased FFA, LOX, and collagen abundance were observed in the ovaries of obese women with anovulation, compared to healthy controls or obese women with ovulation. In a HFD-induced obese rat model, metformin corrected the distortion of ovarian morphology by decreasing LOX and collagen protein abundance in the ovary and improving oestrous cyclicity and ovulation. PA increased LOX expression via the activation of HIF-1α in human granulosa cells, which was attenuated by metformin. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Several other saturated and polyunsaturated FFAs, such as stearic acid and arachidonic acid, are also increased in the blood of individuals with obesity, and increased levels of other FFAs may also contribute to the development of anovulation in individuals with obesity, which needs to be further verified in the future. WIDER IMPLICATIONS OF THE FINDINGS Elevated PA in individuals with obesity can cause LOX dysregulation via activation of HIF-1α, resulting in abnormal collagen deposition in the ovary and anovulation. This dysregulation can be ameliorated by metformin therapy through its local effect on ECM remodelling in the ovary, which is independent of its systemic effect on insulin sensitivity and chronic inflammation. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Natural Science Foundation of China (grant numbers 82101730, 82130046, and 31900598) and Innovative Research Team of High-level local Universities in Shanghai (SHSMU-ZLCX20210201). All the authors declare no conflicts of interest in relation to this work.
Collapse
Affiliation(s)
- Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Guangxin Yao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yanan Zhu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei, China
| | - Yikai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiangwen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
2
|
Phungphong S, Kijtawornrat A, Kampaengsri T, Wattanapermpool J, Bupha-Intr T. Comparison of exercise training and estrogen supplementation on mast cell-mediated doxorubicin-induced cardiotoxicity. Am J Physiol Regul Integr Comp Physiol 2020; 318:R829-R842. [PMID: 32159365 DOI: 10.1152/ajpregu.00224.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac inflammation has been proposed as one of the primary mechanisms of anthracycline-induced acute cardiotoxicity. A reduction in cardiac inflammation might also reduce cardiotoxicity. This study aimed to evaluate the potential of estrogen therapy and regular exercise on attenuating cardiac inflammation in the context of doxorubicin-induced cardiomyopathy. Ovariectomized rats were randomly allocated into estrogen supplementation, exercise training, and mast cell stabilizer treatment groups. Eight weeks after ovariectomy, rats received six cumulative doses of doxorubicin for two weeks. Echocardiography demonstrated a progressive decrease in ejection fraction in doxorubicin-treated rats without hypertrophic effect. This systolic defect was completely prevented by either estrogen supplementation or mast cell stabilizer treatment but not by regular exercise. As a heart disease indicator, increased β-myosin heavy chain expression induced by doxorubicin could only be prevented by estrogen supplementation. Decrease in shortening and intracellular Ca2+ transients of cardiomyocytes were due to absence of female sex hormones without further effects of doxorubicin. Again, estrogen supplementation and mast cell stabilizer treatment prevented these changes but exercise training did not. Histological analysis indicated that the hyperactivation of cardiac mast cells in ovariectomized rats was augmented by doxorubicin. Estrogen supplementation and mast cell stabilizer treatment completely prevented both increases in mast cell density and degranulation, whereas exercise training partially attenuated the hyperactivation. Our results, therefore, suggest that estrogen supplementation acts similarly to mast cell stabilizers in attenuating the effects of doxorubicin. Ineffectiveness of regular exercise in preventing the acute cardiotoxicity of doxorubicin might be due to a lesser effect on preventing cardiac inflammation.
Collapse
Affiliation(s)
- Sukanya Phungphong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Ahmad S, Wright KN, Sun X, Groban L, Ferrario CM. Mast cell peptidases (carboxypeptidase A and chymase)-mediated hydrolysis of human angiotensin-(1-12) substrate. Biochem Biophys Res Commun 2019; 518:651-656. [PMID: 31466718 PMCID: PMC6763271 DOI: 10.1016/j.bbrc.2019.08.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
Angiotensin processing peptidases (carboxypeptidase A (CPA) and chymase) are stored in cardiac mast cell (MC) secretory granules in large quantity and are co-released into the extracellular environment after activation/degranulation. In the human heart, chymase is primarily responsible for angiotensin II (Ang II) generation from the alternate substrate angiotensin-(1-12) (Ang-(1-12)). We investigated the individual and combined hydrolytic specificity of CPA and chymase enzymes (1:1 and 1:⅓ ratio) in the processing of the human Ang-(1-12) (hAng-(1-12)) substrate. To determine the Km and Vmax, the CPA and recombinant human chymase (rhChymase) enzymes were incubated with increasing concentrations of hAng-(1-12) substrate (0-300 μM). We found that CPA alone sequentially metabolized hAng-(1-12) substrate into angiotensin-(1-9) (Ang-(1-9), 53%), Ang II (22%) and angiotensin-(1-7) (Ang-(1-7), 11%) during a 15 min incubation. In the presence of rhChymase alone, 125I-hAng-(1-12) was directly metabolized into Ang II (89%) and no further hydrolysis of Ang II was detected. In the presence of both CPA + rhChymase enzymes (1:1 or 1:⅓ ratio), the amount of Ang II formation from 125I-hAng-(1-12) within a 5 min incubation period were 68% or 65%, respectively. In the presence of both (CPA + rhChymase), small amounts of Ang-(1-9) and Ang-(1-7) were generated from 125I-hAng-(1-12). The Km and Vmax values were 150 ± 5 μM and 384 ± 23 nM/min/mg of CPA and 40 ± 9 μM and 116 ± 20 nM/min/mg of rhChymase. The catalytic efficiency (Vmax/Km ratio) was higher for rhChymase/hAng-(1-12) compared to CPA/hAng-(1-12). Compared to CPA, chymase has a much higher affinity to hydrolyze the hAng-(1-12) substrate directly into Ang II. In addition, Ang II and Ang-(1-7) are the end products of chymase and CPA, respectively. Overall, our findings suggest that the Ang II generation from hAng-(1-12) is primarily mediated by chymase rather than CPA.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Kendra N Wright
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Xuming Sun
- Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Leanne Groban
- Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; Internal Medicine/Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Carlos M Ferrario
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
4
|
Kala P, Červenka L, Škaroupková P, Táborský M, Kompanowska-Jezierska E, Sadowski J. Sex-linked differences in the mortality in Ren-2 transgenic hypertensive rats with aorto-caval fistula: effects of treatment with angiotensin converting enzyme alone and combined with inhibitor of soluble epoxide hydrolase. Physiol Res 2019; 68:589-601. [DOI: 10.33549/physiolres.934094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We found recently that in Ren-2 transgenic hypertensive rats (TGR) addition of soluble epoxide hydrolase inhibitor (sEHi) to treatment with angiotensin-converting enzyme inhibitor (ACEi), surprisingly, increased the mortality due to heart failure (HF) induced by creation of the aorto-caval fistula (ACF). Since TGR exhibit sex-related differences in mortality, we examined here if such differentiation exists also in the response to the treatment with ACEi (trandolapril), alone or combined with sEHi [cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid, (c-AUCB)]. ACEi improved survival in males to 74 % (vs. 0 %) and in females to 65 % (vs. 32 %). ACEi and sEHi combined also improved the survival in male ACF TGR, however, it was significantly less (38 %) than after ACEi alone. In contrast, in females the combined treatment significantly improved the final survival rate (84 %). There were no significant sex-linked differences in survival rate in untreated or treated normotensive Hannover Sprague-Dawley rats. In conclusion, in HF patients with co-existing hypertension and RAS hyperactivity, the sex may co-determine the rate of HF progression, and can influence the effectiveness of the therapeutic measures applied. Therefore, in the relevant pre-clinical studies the sex-linked differences should be seriously considered. Our data indicate that TGR might be an optimal model for such studies.
Collapse
Affiliation(s)
| | - L. Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 1958/9 Vídeňská, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
5
|
Role of cardiac mast cells in exercise training-mediated cardiac remodeling in angiotensin II-infused ovariectomized rats. Life Sci 2019; 219:209-218. [PMID: 30658099 DOI: 10.1016/j.lfs.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/03/2019] [Accepted: 01/13/2019] [Indexed: 01/03/2023]
Abstract
AIMS Regular exercise is recommended in postmenopausal women to prevent the development of heart disease, but mechanism underlying the protection is not completely understood. Many studies have suggested that exercise training notably mediated whole body immune and inflammatory functions. Whether exercise training prevents cardiac dysfunction after deprivation of female sex hormones by inhibiting cardiac immune activation is therefore interesting. MAIN METHODS Nine-week treadmill running program was introduced in sham-operated and ovariectomized rats. In addition, chronic angiotensin II infusion was further challenged to activate pathological cardiac remodeling. Cardiac remodeling in associated with the density and degranulation of cardiac mast cells was then evaluated. KEY FINDINGS With exogenous angiotensin II-induced hypertension, cardiac hypertrophy with myocardial fibrosis was shown similarly in both sham-operated controls and ovariectomized rats. Although exercise training did not prevent cardiac hypertrophy, myocardial fibrosis was abolished by exercise. While ovariectomy increased both cardiac mast cell density and degranulation percentage, angiotensin II infusion only enhanced mast cell density. Exercise training could not decrease the density of mast cells, but it did normalize the percentage of degranulation in all groups. Correlation analysis suggested that cardiac mast cell activation is inversely associated with cardiomyocyte hypertrophy due to exercise training but is directly correlated to cardiac hypertrophy by angiotensin II infusion. SIGNIFICANCE Exercise training could attenuate cardiac mast cell hyperactivation induced by either deprivation of female sex hormones or excessive angiotensin II. Additionally, cardiac mast cells could be a solution in the distinction between physiological and pathological hypertrophic development.
Collapse
|
6
|
Groban L, Tran QK, Ferrario CM, Sun X, Cheng CP, Kitzman DW, Wang H, Lindsey SH. Female Heart Health: Is GPER the Missing Link? Front Endocrinol (Lausanne) 2019; 10:919. [PMID: 31993020 PMCID: PMC6970950 DOI: 10.3389/fendo.2019.00919] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
The G Protein-Coupled Estrogen Receptor (GPER) is a novel membrane-bound receptor that mediates non-genomic actions of the primary female sex hormone 17β-estradiol. Studies over the past two decades have elucidated the beneficial actions of this receptor in a number of cardiometabolic diseases. This review will focus specifically on the cardiac actions of GPER, since this receptor is expressed in cardiomyocytes as well as other cells within the heart and most likely contributes to estrogen-induced cardioprotection. Studies outlining the impact of GPER on diastolic function, mitochondrial function, left ventricular stiffness, calcium dynamics, cardiac inflammation, and aortic distensibility are discussed. In addition, recent data using genetic mouse models with global or cardiomyocyte-specific GPER gene deletion are highlighted. Since estrogen loss due to menopause in combination with chronological aging contributes to unique aspects of cardiac dysfunction in women, this receptor may provide novel therapeutic effects. While clinical studies are still required to fully understand the potential for pharmacological targeting of this receptor in postmenopausal women, this review will summarize the evidence gathered thus far on its likely beneficial effects.
Collapse
Affiliation(s)
- Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
- *Correspondence: Leanne Groban
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, United States
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Che Ping Cheng
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Dalane W. Kitzman
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
7
|
Zhang C, Ma J, Wang W, Sun Y, Sun K. Lysyl oxidase blockade ameliorates anovulation in polycystic ovary syndrome. Hum Reprod 2018; 33:2096-2106. [DOI: 10.1093/humrep/dey292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Jin Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| |
Collapse
|
8
|
Abstract
Heart failure (HF) represents a global pandemic health problem with a high impact on health-care costs, affecting about 26 million adults worldwide. The overall HF prevalence and incidence are ~2% and ~0.2% per year, respectively, in Western countries, with half of the HF population with reduced ejection fraction (HFpEF) and half with preserved (HFpEF) or mid-range ejection fraction (HFmrEF). Sex differences may exist in HF. More males have HFrEF or HFmrEF and an ischemic etiology, whereas more females have HFpEF and hypertension, diastolic dysfunction, and valvular pathologies as HF etiologies. Females are generally older, have a higher EF, higher frequency of HF-related symptoms, and lower NYHA functional status. Generally, it is observed that female HF patients tend to have more comorbidities such as atrial fibrillation, diabetes, hypertension, anemia, iron deficiency, renal disease, arthritis, frailty, depression, and thyroid abnormalities. However, overall, females have better prognosis in terms of mortality and hospitalization risk compared with men, regardless of EF. Potential sex differences in HF characteristics may be underestimated because of the underrepresentation of females in cardiovascular research and, in particular, the sex imbalance in clinical trial enrollment may avoid to identify sex-specific differences in treatments' benefit.
Collapse
|
9
|
Wang H, da Silva J, Alencar A, Zapata-Sudo G, Lin MR, Sun X, Ahmad S, Ferrario CM, Groban L. Mast Cell Inhibition Attenuates Cardiac Remodeling and Diastolic Dysfunction in Middle-aged, Ovariectomized Fischer 344 × Brown Norway Rats. J Cardiovasc Pharmacol 2017; 68:49-57. [PMID: 26981683 DOI: 10.1097/fjc.0000000000000385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The incidence of left ventricular diastolic dysfunction (LVDD) increases in women after menopause, yet the mechanisms are unclear. Because mast cells participate in the pathological processes of various cardiac diseases, we hypothesized that mast cell inhibition would protect against estrogen loss-induced LVDD. The mast cell stabilizer, cromolyn sodium (30 mg·kg·d), or vehicle was administered subcutaneously by osmotic minipump to ovariectomized (OVX) female Fischer 344 × Brown Norway (F344BN) rats starting at 4 weeks after surgery. Eight weeks after OVX, systolic blood pressure increased by 20% in OVX versus sham rats, and this effect was attenuated after 4 weeks of cromolyn treatment. Also, cromolyn mitigated the adverse reductions in myocardial relaxation (e') and increases in left ventricle (LV) filling pressures (E/e'), LV mass, wall thicknesses, and interstitial fibrosis from OVX. Although cardiac mast cell number was increased after OVX, cardiac chymase activity was not overtly altered by estrogen status and tended to decrease by cromolyn. Contrariwise, Ang II content was greater in hearts of OVX versus sham rats, and cromolyn attenuated this effect. Taken together, mast cell inhibition with cromolyn attenuates LV remodeling and LVDD in OVX-Fischer 344 × Brown Norway rats possibly through actions on the heart level and/or through vasodilatory effects at the vascular level.
Collapse
Affiliation(s)
- Hao Wang
- *Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC;†Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC;‡Institute of Biomedical Sciences, Drug Development Program, Federal University of Rio de Janeiro, Brazil;§Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC;¶Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC;‖Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC; and**Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Červenka L, Škaroupková P, Kompanowska-Jezierska E, Sadowski J. Sex-linked differences in the course of chronic kidney disease and congestive heart failure: a study in 5/6 nephrectomized Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula. Clin Exp Pharmacol Physiol 2017; 43:883-95. [PMID: 27385471 DOI: 10.1111/1440-1681.12619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/24/2016] [Accepted: 07/03/2016] [Indexed: 01/13/2023]
Abstract
The role of hypertension and the renin-angiotensin system (RAS) in sex-related differences in the course of chronic kidney disease (CKD) and congestive heart failure (CHF) remain unclear, especially when the two diseases are combined. In male and female Ren-2 transgenic rats (TGR), a model of hypertension with activation of endogenous RAS, CKD was induced by 5/6 renal mass reduction (5/6 NX) and CHF was elicited by volume overload achieved by creation of an aorto-caval fistula (ACF). The primary aim of the study was to examine long-term CKD- and CHF-related mortality, especially in animals with CKD and CHF combined, with particular interest in the potential sex-related differences. The follow-up period was 23 weeks after the first intervention (5/6 NX). We found, first, that TGR did not exhibit sexual dimorphism in the course of 5/6 NX-induced CKD. Second, in contrast, TGR exhibited important sex-related differences in the course of ACF-induced CHF-related mortality: intact female TGR showed higher survival rate than male TGR. This situation is reversed in the course of combined 5/6 NX-induced CKD and ACF-induced CHF-related mortality: intact female TGR exhibited poorer survival than male TGR. Third, the survival rate in animals with combined 5/6 NX-induced CKD and ACF-induced CHF was significantly worsened as compared with rat groups that were exposed to 'single organ disease'. Collectively, our present results clearly show that CKD aggravates long-term mortality of animals with CHF. In addition, TGR exhibit remarkable sexual dimorphism with respect to CKD- and CHF-related mortality, especially in animals with combined CKD and CHF.
Collapse
Affiliation(s)
- Luděk Červenka
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Škaroupková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Conti P, Carinci F, Caraffa A, Ronconi G, Lessiani G, Theoharides TC. Link between mast cells and bacteria: Antimicrobial defense, function and regulation by cytokines. Med Hypotheses 2017; 106:10-14. [DOI: 10.1016/j.mehy.2017.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 06/25/2017] [Indexed: 01/12/2023]
|
12
|
Sukalingam K, Jaarin K, Saad QHM, Mohamed S, Othman F. Consumption of ADD-X and Repeatedly Heated Palm Oil on the Blood Pressure and Oxidative Stress Markers in Ovarectmized Rats. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.514.522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Phungphong S, Kijtawornrat A, Wattanapermpool J, Bupha-Intr T. Regular exercise modulates cardiac mast cell activation in ovariectomized rats. J Physiol Sci 2016; 66:165-73. [PMID: 26467449 PMCID: PMC10717377 DOI: 10.1007/s12576-015-0409-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
Abstract
It is well accepted that regular exercise is a significant factor in the prevention of cardiac dysfunction; however, the cardioprotective mechanism is as yet not well defined. We have examined whether regular exercise can modulate the activity of cardiac mast cells (CMC) after deprivation of female sex hormones, as well as the density and percentage degranulation of mast cells, in ventricular tissue of ovariectomized (OVX) rats after an 11-week running program. A significant increase in CMC density with a greater percentage degranulation was induced after ovarian sex hormone deprivation. Increased CMC density was prevented by estrogen supplements, but not by regular training. To the contrary, increased CMC degranulation in the OVX rat heart was attenuated by exercise training, but not by estrogen supplement. These findings indicate a significant correlation between the degree of CMC degranulation and myocyte cross-section area. However, no change in the expression of inflammatory mediators, including chymase, interleukin-6, and interleukin-10, was detected. Taken together, these results clearly indicate one of the cardioprotective mechanisms of regular aerobic exercise is the modulation of CMC activation.
Collapse
Affiliation(s)
- Sukanya Phungphong
- Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jonggonnee Wattanapermpool
- Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
14
|
Li J, Jubair S, Levick SP, Janicki JS. THE AUTOCRINE ROLE OF TRYPTASE IN PRESSURE OVERLOAD-INDUCED MAST CELL ACTIVATION, CHYMASE RELEASE AND CARDIAC FIBROSIS. ACTA ACUST UNITED AC 2015; 10:16-23. [PMID: 26722642 DOI: 10.1016/j.ijcme.2015.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cardiac mast cell (MC) proteases, chymase and tryptase, increase proliferation and collagen synthesis in cultured cardiac fibroblasts. However, the question as to why preventing individually the actions of either protease prevents fibrosis when both are released upon MC activation remains unanswered. Since tryptase has the ability to activate MCs in noncardiac tissues via the protease-activated receptor-2 (PAR-2), there is the possibility that its, in vivo, fibrotic role is due to its ability to induce MC degranulation thereby amplifying the release of chymase. METHODS This study sought to delineate the interactions between tryptase and chymase in myocardial remodeling secondary to transverse aortic constriction (TAC) for 5 wks in male Sprague Dawley rats untreated or treated with either the tryptase inhibitor, nafamostat mesilate or MC membrane stabilizing drug, nedocromil (n=6/group). In addition, ventricular slices from 6 rat hearts were incubated with tryptase, tryptase plus nafamostat mesilate or chymostatin for 24 h. RESULTS AND CONCLUSION The results indicate the presence of PAR-2 on MCs and that tryptase inhibition and nedocromil prevented TAC-induced fibrosis and increases in MC density, activation, and chymase release. Tryptase also significantly increased chymase concentration in ventricular tissue culture media, which was prevented by the tryptase inhibitor. Hydroxyproline concentration in culture media was significantly increased with tryptase incubation as compared to the control group and the tryptase group incubated with nafamostat mesilate or chymostatin. We conclude that tryptase contributes to TAC-induced cardiac fibrosis primarily via activation of MCs and the amplified release of chymase.
Collapse
Affiliation(s)
- Jianping Li
- Cell Biology and Anatomy, School of Medicine, University of South Carolina Columbia, SC 29208, USA
| | - Shaiban Jubair
- Cell Biology and Anatomy, School of Medicine, University of South Carolina Columbia, SC 29208, USA
| | - Scott P Levick
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA ; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph S Janicki
- Cell Biology and Anatomy, School of Medicine, University of South Carolina Columbia, SC 29208, USA
| |
Collapse
|
15
|
Variation in extracellular matrix genes is associated with weight regain after weight loss in a sex-specific manner. GENES AND NUTRITION 2015; 10:56. [PMID: 26584808 PMCID: PMC4653119 DOI: 10.1007/s12263-015-0506-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 11/04/2015] [Indexed: 11/04/2022]
Abstract
The extracellular matrix (ECM) of adipocytes is important for body weight regulation. Here, we investigated whether genetic variation in ECM-related genes is associated with weight regain among participants of the European DiOGenes study. Overweight and obese subjects (n = 469, 310 females, 159 males) were on an 8-week low-calorie diet with a 6-month follow-up. Body weight was measured before and after the diet, and after follow-up. Weight maintenance scores (WMS, regained weight as percentage of lost weight) were calculated based on the weight data. Genotype data were retrieved for 2903 SNPs corresponding to 124 ECM-related genes. Regression analyses provided us with six significant SNPs associated with the WMS in males: 3 SNPs in the POSTN gene and a SNP in the LAMB1, COL23A1, and FBLN5 genes. For females, 1 SNP was found in the FN1 gene. The risk of weight regain was increased by: the C/C genotype for POSTN in a co-dominant model (OR 8.25, 95 % CI 2.85–23.88) and the T/C–C/C genotype in a dominant model (OR 4.88, 95 % CI 2.35–10.16); the A/A genotype for LAMB1 both in a co-dominant model (OR 18.43, 95 % CI 2.35–144.63) and in a recessive model (OR 16.36, 95 % CI 2.14–124.9); the G/A genotype for COL23A1 in a co-dominant model (OR 3.94, 95 % CI 1.28–12.10), or the A-allele in a dominant model (OR 2.86, 95 % CI 1.10–7.49); the A/A genotype for FBLN5 in a co-dominant model (OR 13.00, 95 % CI 1.61–104.81); and the A/A genotype for FN1 in a recessive model (OR 2.81, 95 % CI 1.40–5.63). Concluding, variants of ECM genes are associated with weight regain after weight loss in a sex-specific manner.
Collapse
|
16
|
Janicki JS, Brower GL, Levick SP. The emerging prominence of the cardiac mast cell as a potent mediator of adverse myocardial remodeling. Methods Mol Biol 2015; 1220:121-39. [PMID: 25388248 DOI: 10.1007/978-1-4939-1568-2_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiac mast cells store and release a variety of biologically active mediators, several of which have been implicated in the activation of matrix metalloproteinases in the volume-overloaded heart, while others are involved in the fibrotic process in pressure-overloaded hearts. Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic cardiac volume overload. Also, there is evolving evidence implicating the cardiac mast cell as having a major role in the adverse remodeling underlying these cardiovascular disorders. Thus, the cardiac mast cell is the focus of this chapter that begins with a historical background, followed by sections on methods for their isolation and characterization, endogenous secretagogues, phenotype, and ability of estrogen to alter their phenotype so as to provide cardioprotection. Finally the role of mast cells in myocardial remodeling secondary to a sustained cardiac volume overload, hypertension, and ischemic injury and future research directions are discussed.
Collapse
Affiliation(s)
- Joseph S Janicki
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29208, USA,
| | | | | |
Collapse
|
17
|
D'Amico A, Ragusa R, Caruso R, Prescimone T, Nonini S, Cabiati M, Del Ry S, Trivella MG, Giannessi D, Caselli C. Uncovering the cathepsin system in heart failure patients submitted to Left Ventricular Assist Device (LVAD) implantation. J Transl Med 2014; 12:350. [PMID: 25496327 PMCID: PMC4274696 DOI: 10.1186/s12967-014-0350-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022] Open
Abstract
Background In end-stage heart failure (HF), the implantation of a left ventricular assist device (LVAD) is able to induce reverse remodeling. Cellular proteases, such as cathepsins, are involved in the progression of HF. The aim of this study was to evaluate the role of cathepsin system in HF patients supported by LVAD, in order to determine their involvement in cardiac remodeling. Methods The expression of cysteine (CatB, CatK, CatL, CatS) and serine cathepsin (CatG), and relative inhibitors (Cystatin B, C and SerpinA3, respectively) was determined in cardiac biopsies of 22 patients submitted to LVAD (pre-LVAD) and compared with: 1) control stable chronic HF patients on medical therapy at the moment of heart transplantation without prior LVAD (HT, n = 7); 2) patients supported by LVAD at the moment of transplantation (post-LVAD, n = 6). Results The expression of cathepsins and their inhibitors was significantly higher in pre-LVAD compared to the HT group and LVAD induced a further increase in the cathepsin system. Significant positive correlations were observed between cardiac expression of cathepsins and their inhibitors as well as inflammatory cytokines. In the pre-LVAD group, a relationship of cathepsins with dilatative etiology and length of hospitalization was found. Conclusions A parallel activation of cathepsins and their inhibitors was observed after LVAD support. The possible clinical importance of these modifications is confirmed by their relation with patients’ outcome. A better discovery of these pathways could add more insights into the cardiac remodeling during HF.
Collapse
Affiliation(s)
- Andrea D'Amico
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56100, Pisa, Italy.
| | - Rosetta Ragusa
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Raffaele Caruso
- Cardiovascular Department, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Niguarda Cà Granda Hospital, 20162, Milan, Italy.
| | - Tommaso Prescimone
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Sandra Nonini
- Cardiovascular Department, Niguarda Ca' Granda Hospital, 20162, Milan, Italy.
| | - Manuela Cabiati
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Silvia Del Ry
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Maria Giovanna Trivella
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Daniela Giannessi
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Chiara Caselli
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| |
Collapse
|
18
|
Li J, Jubair S, Janicki JS. Estrogen inhibits mast cell chymase release to prevent pressure overload-induced adverse cardiac remodeling. Hypertension 2014; 65:328-34. [PMID: 25403608 DOI: 10.1161/hypertensionaha.114.04238] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Estrogen regulation of myocardial chymase and chymase effects on cardiac remodeling are unknown. To test the hypothesis that estrogen prevents pressure overload-induced adverse cardiac remodeling by inhibiting mast cell (MC) chymase release, transverse aortic constriction or sham surgery was performed in 7-week-old intact and ovariectomized (OVX) rats. Three days before creating the constriction, additional groups of OVX rats began receiving 17β-estradiol, a chymase inhibitor, or a MC stabilizer. Left ventricular function, cardiomyocyte size, collagen volume fraction, MC density and degranulation, and myocardial and plasma chymase levels were assessed 18 days postsurgery. Aortic constriction resulted in ventricular hypertrophy in intact and OVX groups, whereas collagen volume fraction was increased only in OVX rats. Chymase protein content was increased by aortic constriction in the intact and OVX groups, with the magnitude of the increase being greater in OVX rats. MC density and degranulation, plasma chymase levels, and myocardial active transforming growth factor-β1 levels were increased by aortic constriction only in OVX rats. Estrogen replacement markedly attenuated the constriction-increased myocardial chymase, MC density and degranulation, plasma chymase, and myocardial active transforming growth factor-β1, as well as prevented ventricular hypertrophy and increased collagen volume fraction. Chymostatin attenuated the aortic constriction-induced ventricular hypertrophy and collagen volume fraction in the OVX rats similar to that achieved by estrogen replacement. Nedocromil yielded similar effects, except for the reduction of chymase content. We conclude that the estrogen-inhibited release of MC chymase is responsible for the cardioprotection against transverse aortic constriction-induced adverse cardiac remodeling.
Collapse
Affiliation(s)
- Jianping Li
- From the Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia
| | - Shaiban Jubair
- From the Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia
| | - Joseph S Janicki
- From the Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia.
| |
Collapse
|
19
|
Fazal L, Azibani F, Vodovar N, Cohen Solal A, Delcayre C, Samuel JL. Effects of biological sex on the pathophysiology of the heart. Br J Pharmacol 2014; 171:555-66. [PMID: 23763376 DOI: 10.1111/bph.12279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/15/2013] [Accepted: 06/02/2013] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases are the leading causes of death in men and women in industrialized countries. While the effects of biological sex on cardiovascular pathophysiology have long been known, the sex-specific mechanisms mediating these processes have been further elucidated over recent years. This review aims at analysing the sex-based differences in cardiac structure and function in adult mammals, and the sex-based differences in the main molecular mechanisms involved in the response of the heart to pathological situations. It emerged from this review that the sex-based difference is a variable that should be dealt with, not only in basic science or clinical research, but also with regards to therapeutic approaches.
Collapse
Affiliation(s)
- Loubina Fazal
- UMR-S 942, Inserm, Paris, France; University Paris-Diderot, Paris, France
| | | | | | | | | | | |
Collapse
|
20
|
Myocardial drug distribution generated from local epicardial application: potential impact of cardiac capillary perfusion in a swine model using epinephrine. J Control Release 2014; 194:257-65. [PMID: 25234821 DOI: 10.1016/j.jconrel.2014.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/25/2014] [Accepted: 09/06/2014] [Indexed: 01/27/2023]
Abstract
Prior studies in small mammals have shown that local epicardial application of inotropic compounds drives myocardial contractility without systemic side effects. Myocardial capillary blood flow, however, may be more significant in larger species than in small animals. We hypothesized that bulk perfusion in capillary beds of the large mammalian heart not only enhances drug distribution after local release, but also clears more drug from the tissue target than in small animals. Epicardial (EC) drug releasing systems were used to apply epinephrine to the anterior surface of the left heart of swine in either point-sourced or distributed configurations. Following local application or intravenous (IV) infusion at the same dose rates, hemodynamic responses, epinephrine levels in the coronary sinus and systemic circulation, and drug deposition across the ventricular wall, around the circumference and down the axis, were measured. EC delivery via point-source release generated transmural epinephrine gradients directly beneath the site of application extending into the middle third of the myocardial thickness. Gradients in drug deposition were also observed down the length of the heart and around the circumference toward the lateral wall, but not the interventricular septum. These gradients extended further than might be predicted from simple diffusion. The circumferential distribution following local epinephrine delivery from a distributed source to the entire anterior wall drove drug toward the inferior wall, further than with point-source release, but again, not to the septum. This augmented drug distribution away from the release source, down the axis of the left ventricle, and selectively toward the left heart follows the direction of capillary perfusion away from the anterior descending and circumflex arteries, suggesting a role for the coronary circulation in determining local drug deposition and clearance. The dominant role of the coronary vasculature is further suggested by the elevated drug levels in the coronary sinus effluent. Indeed, plasma levels, hemodynamic responses, and myocardial deposition remote from the point of release were similar following local EC or IV delivery. Therefore, the coronary vasculature shapes the pharmacokinetics of local myocardial delivery of small catecholamine drugs in large animal models. Optimal design of epicardial drug delivery systems must consider the underlying bulk capillary perfusion currents within the tissue to deliver drug to tissue targets and may favor therapeutic molecules with better potential retention in myocardial tissue.
Collapse
|
21
|
Stewart JA, Gardner JD, Brower GL, Janicki JS. Temporal changes in integrin-mediated cardiomyocyte adhesion secondary to chronic cardiac volume overload in rats. Am J Physiol Heart Circ Physiol 2013; 306:H101-8. [PMID: 24163072 DOI: 10.1152/ajpheart.00541.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have established integrins as cell surface receptors that mediate cardiomyocyte-extracellular matrix (ECM) attachments. This study sought to determine the contributions of the myocardial β1- and β3-integrin subunits to ventricular dilatation and coronary flow regulation using a blood-perfused isolated heart preparation. Furthermore, cardiomyocyte adhesion to collagen types I and IV, fibronectin, and laminin with and without a β1-integrin subunit neutralizing antibody was assessed during the course of remodeling secondary to a sustained cardiac volume overload, including the onset of heart failure. Isolated cardiomyocytes were obtained during the initial, compensated, and decompensated phases of remodeling resulting from an aortocaval fistula created in 8-wk-old male Sprague-Dawley rats. Blocking the β1-integrin subunit in isolated normal hearts produced ventricular dilatation, whereas this was not the case when the β3-subunit was blocked. Substantial reductions in cardiomyocyte adhesion coincided with the previously documented development of ventricular dilatation and decreased contractility postfistula, with the β1-integrin contribution to adhesion ranging from 28% to 73% over the course of remodeling being essentially substrate independent. In contrast, both integrin subunits were found to be involved in regulating coronary vascular resistance. It is concluded that marked reductions in integrin-mediated cardiomyocyte adhesion to the ECM play a significant role in the progression of adverse myocardial remodeling that leads to heart failure. Furthermore, although both the β1- and β3-integrin subunits were involved in regulating coronary vascular resistance, only inhibition of β1-integrin-mediated adhesion resulted in ventricular dilatation of the normal heart.
Collapse
Affiliation(s)
- James A Stewart
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | | | | | | |
Collapse
|
22
|
Wang H, Jessup JA, Zhao Z, Da Silva J, Lin M, MacNamara LM, Ahmad S, Chappell MC, Ferrario CM, Groban L. Characterization of the cardiac renin angiotensin system in oophorectomized and estrogen-replete mRen2.Lewis rats. PLoS One 2013; 8:e76992. [PMID: 24204720 PMCID: PMC3808369 DOI: 10.1371/journal.pone.0076992] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/28/2013] [Indexed: 01/19/2023] Open
Abstract
The cardioprotective effects of estrogen are well recognized, but the mechanisms remain poorly understood. Accumulating evidence suggests that the local cardiac renin-angiotensin system (RAS) is involved in the development and progression of cardiac hypertrophy, remodeling, and heart failure. Estrogen attenuates the effects of an activated circulating RAS; however, its role in regulating the cardiac RAS is unclear. Bilateral oophorectomy (OVX; n = 17) or sham-operation (Sham; n = 13) was performed in 4-week-old, female mRen2.Lewis rats. At 11 weeks of age, the rats were randomized and received either 17 β-estradiol (E2, 36 µg/pellet, 60-day release, n = 8) or vehicle (OVX-V, n = 9) for 4 weeks. The rats were sacrificed, and blood and hearts were used to determine protein and/or gene expression of circulating and tissue RAS components. E2 treatment minimized the rise in circulating angiotensin (Ang) II and aldosterone produced by loss of ovarian estrogens. Chronic E2 also attenuated OVX-associated increases in cardiac Ang II, Ang-(1–7) content, chymase gene expression, and mast cell number. Neither OVX nor OVX+E2 altered cardiac expression or activity of renin, angiotensinogen, angiotensin-converting enzyme (ACE), and Ang II type 1 receptor (AT1R). E2 treatment in OVX rats significantly decreased gene expression of MMP-9, ACE2, and Ang-(1–7) mas receptor, in comparison to sham-operated and OVX littermates. E2 treatment appears to inhibit upsurges in cardiac Ang II expression in the OVX-mRen2 rat, possibly by reducing chymase-dependent Ang II formation. Further studies are warranted to determine whether an E2-mediated reduction in cardiac chymase directly contributes to this response in OVX rats.
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jewell A. Jessup
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Zhuo Zhao
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jaqueline Da Silva
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Marina Lin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Lindsay M. MacNamara
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Sarfaraz Ahmad
- Department of Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Mark C. Chappell
- Department of Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Carlos M. Ferrario
- Department of Internal Medicine/Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
McLarty JL, Li J, Levick SP, Janicki JS. Estrogen modulates the influence of cardiac inflammatory cells on function of cardiac fibroblasts. J Inflamm Res 2013; 6:99-108. [PMID: 24062614 PMCID: PMC3780290 DOI: 10.2147/jir.s48422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Inflammatory cells play a major role in the pathology of heart failure by stimulating cardiac fibroblasts to regulate the extracellular matrix in an adverse way. In view of the fact that inflammatory cells have estrogen receptors, we hypothesized that estrogen provides cardioprotection by decreasing the ability of cardiac inflammatory cells to influence fibroblast function. Methods Male rats were assigned to either an untreated or estrogen-treated group. In the treated group, estrogen was delivered for 2 weeks via a subcutaneous implanted pellet containing 17β-estradiol. A mixed population of cardiac inflammatory cells, including T-lymphocytes (about 70%), macrophages (about 12%), and mast cells (about 12%), was isolated from each rat and cultured in a Boyden chamber with cardiac fibroblasts from untreated adult male rats for 24 hours. To examine if tumor necrosis factor-alpha (TNF-α) produced by inflammatory cells represents a mechanism contributing to the stimulatory effects of inflammatory cells on cardiac fibroblasts, inflammatory cells from the untreated group were incubated with cardiac fibroblasts in a Boyden chamber system for 24 hours in the presence of a TNF-α-neutralizing antibody. Cardiac fibroblasts were also incubated with 5 ng/mL of TNF-α for 24 hours. Fibro-blast proliferation, collagen synthesis, matrix metalloproteinase activity, β1 integrin protein levels, and the ability of fibroblasts to contract collagen gels were determined in all groups and statistically compared via one-way analysis of variance. Results Inflammatory cells from the untreated group resulted in: 1) an increased fibroblast proliferation, collagen production and matrix metalloproteinase activity; and 2) a loss of β1 integrin protein and a reduced ability to contract collagen gels. In contrast, inflammatory cells from the treated group resulted in: 1) an attenuated fibroblast proliferation; 2) a nonsignificant reduction in collagen production; 3) the prevention of matrix metalloproteinase activation and the loss of β1 integrin by fibroblasts and 4) a preservation of the fibroblasts’ ability to contract collagen gels. The TNF-α neutralizing antibody attenuated or prevented the untreated inflammatory cell-induced fibroblast proliferation, collagen production, matrix metalloproteinase activation and loss of β1 integrin protein as well as preserved fibroblast contractile ability. Incubation with TNF-α yielded changes in the cardiac fibroblast parameters that were directionally similar to the results obtained with untreated inflammatory cells. Conclusion These results and those of our previous in vivo studies suggest that a major mechanism by which estrogen provides cardioprotection is its ability to modulate synthesis of TNF-α by inflammatory cells, thereby preventing inflammatory cell induction of cardiac fibroblast events that contribute to adverse extracellular matrix remodeling.
Collapse
Affiliation(s)
- Jennifer L McLarty
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
24
|
Maslov MY, Edelman ER, Wei AE, Pezone MJ, Lovich MA. High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: an example with epicardial inotropic drug delivery. J Control Release 2013; 171:201-7. [PMID: 23872515 DOI: 10.1016/j.jconrel.2013.06.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 12/16/2022]
Abstract
Local drug delivery preferentially loads target tissues with a concentration gradient from the surface or point of release that tapers down to more distant sites. Drug that diffuses down this gradient must be in unbound form, but such drug can only elicit a biologic effect through receptor interactions. Drug excess loads tissues, increasing gradients and driving penetration, but with limited added biological response. We examined the hypothesis that local application reduces dramatically systemic circulating drug levels but leads to significantly higher tissue drug concentration than might be needed with systemic infusion in a rat model of local epicardial inotropic therapy. Epinephrine was infused systemically or released locally to the anterior wall of the heart using a novel polymeric platform that provides steady, sustained release over a range of precise doses. Epinephrine tissue concentration, upregulation of cAMP, and global left ventricular response were measured at equivalent doses and at doses equally effective in raising indices of contractility. The contractile stimulation by epinephrine was linked to drug tissue levels and commensurate cAMP upregulation for IV systemic infusion, but not with local epicardial delivery. Though cAMP was a powerful predictor of contractility with local application, tissue epinephrine levels were high and variable--only a small fraction of the deposited epinephrine was utilized in second messenger signaling and biologic effect. The remainder of deposited drug was likely used in diffusive transport and distribution. Systemic side effects were far more profound with IV infusion which, though it increased contractility, also induced tachycardia and loss of systemic vascular resistance, which were not seen with local application. Local epicardial inotropic delivery illustrates then a paradigm of how target tissues differentially handle and utilize drug compared to systemic infusion.
Collapse
Affiliation(s)
- Mikhail Y Maslov
- Tufts University School of Medicine, Department of Anesthesiology and Pain Medicine, Steward St. Elizabeth's Medical Center, Boston, MA 02135, USA.
| | | | | | | | | |
Collapse
|
25
|
Zhang J, Knapton A, Lipshultz SE, Cochran TR, Hiraragi H, Herman EH. Sex-related differences in mast cell activity and doxorubicin toxicity: a study in spontaneously hypertensive rats. Toxicol Pathol 2013; 42:361-75. [PMID: 23531790 DOI: 10.1177/0192623313482778] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinically, girls appear to be more sensitive than boys to the cardiotoxic effects of doxorubicin, whereas the opposite may be true for adults. To identify and characterize potential sex-related differences, adult male and female spontaneously hypertensive rats (SHR; some ovariectomized [OVX]) received 1 mg/kg of doxorubicin or saline iv weekly for 9, 10, or 12 weeks. Weight gain was slower in treated males. Serum concentrations of cholesterol and triglycerides increased and those of albumin decreased in both sexes, but changes were more pronounced in treated males. Treated males had significantly more severe cardiomyopathy scores and higher serum levels of cTnT than females. The increased cardiotoxicity was accompanied by higher numbers of cardiac mast cells (MCs) and percentage of cardiac MCs undergoing degranulation. Doxorubicin-treated OVX animals had significantly increased numbers of cardiac MCs, more severe myocardial lesions, and elevated serum concentrations of cTnT compared to doxorubicin-treated normal female SHR. The severity of cardiac lesions in the OVX female was similar to that observed in doxorubicin-treated males. This study demonstrated the presence of sex-related differences in the cardiotoxic effects elicited by doxorubicin and identified variations in the level of cardiac MC activity as a factor which could possibly contribute to the male-female dissimilarity.
Collapse
Affiliation(s)
- Jun Zhang
- 1Division of Drug Safety Research, Center for Drug Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | | | | | | |
Collapse
|
26
|
Janicki JS, Spinale FG, Levick SP. Gender differences in non-ischemic myocardial remodeling: are they due to estrogen modulation of cardiac mast cells and/or membrane type 1 matrix metalloproteinase. Pflugers Arch 2013; 465:687-97. [PMID: 23417570 DOI: 10.1007/s00424-013-1229-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
This review is focused on gender differences in cardiac remodeling secondary to sustained increases in cardiac volume (VO) and generated pressure (PO). Estrogen has been shown to favorably alter the course of VO-induced remodeling. That is, the VO-induced increased extracellular matrix proteolytic activity and mast cell degranulation responsible for the adverse cardiac remodeling in males and ovariectomized rodents do not occur in intact premenopausal females. While less is known regarding the mechanisms responsible for female cardioprotection in PO-induced stress, gender differences in remodeling have been reported indicating the ability of premenopausal females to adequately compensate. In view of the fact that, in male mice with PO, mast cells have been shown to play a role in the adverse remodeling suggests favorable estrogen modification of mast cell phenotype may also be responsible for cardioprotection in females with PO. Thus, while evidence is accumulating regarding premenopausal females being cardioprotected, there remains the need for in-depth studies to identify critical downstream molecular targets that are under the regulation of estrogen and relevant to cardiac remodeling. Such studies would result in the development of therapy which provides cardioprotection while avoiding the adverse effects of systemic estrogen delivery.
Collapse
Affiliation(s)
- Joseph S Janicki
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
27
|
Li J, Umar S, Amjedi M, Iorga A, Sharma S, Nadadur RD, Regitz-Zagrosek V, Eghbali M. New frontiers in heart hypertrophy during pregnancy. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2012; 2:192-207. [PMID: 22937489 PMCID: PMC3427979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/12/2012] [Indexed: 06/01/2023]
Abstract
During Pregnancy, heart develops physiological left ventricular hypertrophy as a result of the natural volume overload. Previously we have characterized the molecular and functional signature of heart hypertrophy during pregnancy. Cardiac hypertrophy during pregnancy is a complex process that involves many changes including in the signalling pathways, composition of extracellular matrix as well as the levels of sex hormones. This review summarises the recent advances and the new frontiers in the context of heart hypertrophy during pregnancy. In particular we focus on structural and extracellular matrix remodelling as well as signalling pathways in pregnancy-induced physiological heart hypertrophy. Emerging evidence shows that various microRNAs modulate key components of hypertrophy, therefore the role of microRNAs in the regulation of gene expression in pregnancy induced hypertrophy is also discussed. We also review the role of ubiquitin proteasome system, the major machinery for the degradation of damaged and misfolded proteins, in heart hypertrophy. The role of sex hormones in particular estrogen in cardiac remodeling during pregnancy is also discussed. We also review pregnancy-induced cardiovascular complications such as peripartum cardiomyopathy and pre-eclampsia and how the knowledge from the animal studies may help us to develop new therapeutic strategies for better treatment of cardiovascular diseases during pregnancy. Special emphasis has to be given to the guidelines on disease management in pregnancy.
Collapse
Affiliation(s)
- Jingyuan Li
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Soban Umar
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Marjan Amjedi
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Andrea Iorga
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Salil Sharma
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Rangarajan D Nadadur
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charite University HospitalBerlin, Germany
| | - Mansoureh Eghbali
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| |
Collapse
|