1
|
van Nieuwenhoven FA, Schroen B, Barile L, van Middendorp L, Prinzen FW, Auricchio A. Plasma Extracellular Vesicles as Liquid Biopsy to Unravel the Molecular Mechanisms of Cardiac Reverse Remodeling Following Resynchronization Therapy? J Clin Med 2023; 12:jcm12020665. [PMID: 36675594 PMCID: PMC9862724 DOI: 10.3390/jcm12020665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Cardiac resynchronization therapy (CRT) has become a valuable addition to the treatment options for heart failure, in particular for patients with disturbances in electrical conduction that lead to regionally different contraction patterns (dyssynchrony). Dyssynchronous hearts show extensive molecular and cellular remodeling, which has primarily been investigated in experimental animals. Evidence showing that at least several miRNAs play a role in this remodeling is increasing. A comparison of results from measurements in plasma and myocardial tissue suggests that plasma levels of miRNAs may reflect the expression of these miRNAs in the heart. Because many miRNAs released in the plasma are included in extracellular vesicles (EVs), which protect them from degradation, measurement of myocardium-derived miRNAs in peripheral blood EVs may open new avenues to investigate and monitor (reverse) remodeling in dyssynchronous and resynchronized hearts of patients.
Collapse
Affiliation(s)
- Frans A. van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Blanche Schroen
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, 6900 Lugano, Switzerland
| | - Lars van Middendorp
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Frits W. Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence:
| | - Angelo Auricchio
- Department of Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| |
Collapse
|
2
|
Deshpande S, Shenthar J, Khanra D, Isath A, Banavalikar B, Reddy S, Krishnappa D, Khan H, Kella D, Padmanabhan D. Outcomes in Congenital and Childhood Complete Atrioventricular Block: A Meta-analysis. J Cardiovasc Electrophysiol 2022; 33:493-501. [PMID: 35018695 DOI: 10.1111/jce.15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The long-term outcomes of patients with congenital and childhood complete atrioventricular block (CCAVB/ CAVB) after pacemaker implantation are unclear. METHODS We performed a meta-analysis of all the studies of CCAVB. A systematic search of PubMed and CENTRAL databases from 1st January 1967 to 31st January 2020 was performed. The quality of studies included was critically appraised using the Newcastle-Ottawa scale, and outcome data were analyzed using the restricted maximum likelihood function. RESULTS Twenty-nine studies were eligible for analysis, with a total of 1553 patients. The all-cause-mortality was 5.7 % [95% CI: 2.5-9.9%], while PICM was seen in 3.8% [95% CI: 1.2-7.2]. Diagnosis at birth [effect size (ES)(95%CI): -2.23 (-0.36 to -0.10); p<0.001], presence of congenital heart disease ([ES(95%CI): -0.67 (0.41 to 0.93); p<0.001], younger age at pacemaker implantation ([ES(95%CI): -0.01 (-0.02 to -0.001); p=0.02], and duration of pacing [ES(95%CI): -0.03 (-0.05 to -0.003); p=0.03], were associated with an higher mortality on binominal logistic regression. None of the parameters were significant on multivariate analysis. CONCLUSION Pooled proportional mortality in patients with CCAVB and CAVB is 5.7% with an infrequent incidence of PICM (3.8%) in the paced patients with AVB suggesting that pacing in these patients is an effective management strategy with a low incidence of long-term side effects. Registry and randomized data can throw additional light regarding the natural history and appropriate management strategy in these patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Saurabh Deshpande
- Department of Electrophysiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Jayaprakash Shenthar
- Department of Electrophysiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Dibbendhu Khanra
- Department of Electrophysiology, Liverpool Heart and Chest Hospital, United Kingdom
| | - Ameesh Isath
- Westchester Medical Centre, New York Medical College, New York, USA
| | - Bharatraj Banavalikar
- Department of Electrophysiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Satish Reddy
- Department of Electrophysiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Darshan Krishnappa
- Department of Electrophysiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Hassan Khan
- Leon H Charney Division of Cardiology, New York University Langone Health, New York, USA
| | - Danesh Kella
- Piedmont Heart Institute, Rockdale, Atlanta, Georgia, USA
| | - Deepak Padmanabhan
- Department of Electrophysiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| |
Collapse
|
3
|
Colli Franzone P, Pavarino LF, Scacchi S. Numerical evaluation of cardiac mechanical markers as estimators of the electrical activation time. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3285. [PMID: 31808301 DOI: 10.1002/cnm.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Recent advances in the development of noninvasive cardiac imaging technologies have made it possible to measure longitudinal and circumferential strains at a high spatial resolution also at intramural level. Local mechanical activation times derived from these strains can be used as noninvasive estimates of electrical activation, in order to determine, eg, the origin of premature ectopic beats during focal arrhythmias or the pathway of reentrant circuits. The aim of this work is to assess the reliability of mechanical activation time markers derived from longitudinal and circumferential strains, denoted by ATell and ATecc , respectively, by means of three-dimensional cardiac electromechanical simulations. These markers are compared against the electrical activation time (ATv ), computed from the action potential waveform, and the reference mechanical activation markers derived from the active tension and fiber strain waveforms, denoted by ATta and ATeff , respectively. Our numerical simulations are based on a strongly coupled electromechanical model, including bidomain representation of the cardiac tissue, mechanoelectric (ie, stretch-activated channels) and geometric feedbacks, transversely isotropic strain energy function for the description of passive mechanics and detailed membrane and excitation-contraction coupling models. The results have shown that, during endocardial and epicardial ectopic stimulations, all the mechanical markers considered are highly correlated with ATv , exhibiting correlation coefficients larger than 0.8. However, during multiple endocardial stimulations, mimicking the ventricular sinus rhythm, the mechanical markers are less correlated with the electrical activation time, because of the more complex resulting excitation sequence. Moreover, the inspection of the endocardial and epicardial isochrones has shown that the ATell and ATecc mechanical activation sequences reproduce only some qualitative features of the electrical activation sequence, such as the areas of early and late activation, but in some cases, they might yield wrong excitation sources and significantly different isochrones patterns.
Collapse
Affiliation(s)
| | - Luca F Pavarino
- Dipartimento di Matematica, Università di Milano, Milano, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università di Milano, Milano, Italy
| |
Collapse
|
4
|
Electromechanical effects of concentric hypertrophy on the left ventricle: A simulation study. Comput Biol Med 2018; 99:236-256. [DOI: 10.1016/j.compbiomed.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/19/2022]
|
5
|
Pumping Function of Heart Ventricles in Different Mammalian Species under Conditions of Electrical Cardiostimulation. Bull Exp Biol Med 2018; 164:409-412. [PMID: 29500806 DOI: 10.1007/s10517-018-4001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Indexed: 10/17/2022]
Abstract
Pumping function of the heart ventricles under conditions of electrical stimulation was examined in adult dogs and rabbits. Pacing induced different changes in intracardiac hemodynamics manifested in impairment of pumping function of the right ventricle, which is largely determined by the functional state of the left ventricle. Initially high HR in rabbits more deeply limited functional reserve of the myocardium in response to electrical stimulus and was accompanied by more pronounced disturbances of pumping function of both ventricles.
Collapse
|
6
|
Walmsley J, Arts T, Derval N, Bordachar P, Cochet H, Ploux S, Prinzen FW, Delhaas T, Lumens J. Fast Simulation of Mechanical Heterogeneity in the Electrically Asynchronous Heart Using the MultiPatch Module. PLoS Comput Biol 2015. [PMID: 26204520 PMCID: PMC4512705 DOI: 10.1371/journal.pcbi.1004284] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiac electrical asynchrony occurs as a result of cardiac pacing or conduction disorders such as left bundle-branch block (LBBB). Electrically asynchronous activation causes myocardial contraction heterogeneity that can be detrimental for cardiac function. Computational models provide a tool for understanding pathological consequences of dyssynchronous contraction. Simulations of mechanical dyssynchrony within the heart are typically performed using the finite element method, whose computational intensity may present an obstacle to clinical deployment of patient-specific models. We present an alternative based on the CircAdapt lumped-parameter model of the heart and circulatory system, called the MultiPatch module. Cardiac walls are subdivided into an arbitrary number of patches of homogeneous tissue. Tissue properties and activation time can differ between patches. All patches within a wall share a common wall tension and curvature. Consequently, spatial location within the wall is not required to calculate deformation in a patch. We test the hypothesis that activation time is more important than tissue location for determining mechanical deformation in asynchronous hearts. We perform simulations representing an experimental study of myocardial deformation induced by ventricular pacing, and a patient with LBBB and heart failure using endocardial recordings of electrical activation, wall volumes, and end-diastolic volumes. Direct comparison between simulated and experimental strain patterns shows both qualitative and quantitative agreement between model fibre strain and experimental circumferential strain in terms of shortening and rebound stretch during ejection. Local myofibre strain in the patient simulation shows qualitative agreement with circumferential strain patterns observed in the patient using tagged MRI. We conclude that the MultiPatch module produces realistic regional deformation patterns in the asynchronous heart and that activation time is more important than tissue location within a wall for determining myocardial deformation. The CircAdapt model is therefore capable of fast and realistic simulations of dyssynchronous myocardial deformation embedded within the closed-loop cardiovascular system. Under normal conditions, the electrical activation of the heart is almost synchronous, leading to uniform contraction. Due to either pathology or electrical pacing, the heart can be activated asynchronously. The result is discoordinated contraction and a reduction in the ability to pump blood. There is considerable interest in using computer simulations to understand how asynchronous electrical activation affects cardiac deformation, and how pathologies of the cardiac conduction system can be treated by pacing the heart. We present the MultiPatch module for simulating the effects of asynchronous electrical activation on cardiac contraction in the relatively simple CircAdapt model of the heart and circulation. We quantitatively compare model simulations to deformation patterns recorded during an experimental study of pacing-induced electrical asynchrony. We then demonstrate a ‘patient-specific’ simulation of deformation in a patient with a conduction disorder called left bundle-branch block. We use timings from endocardial mapping of electrical activation in a patient as an input for the model, and compare the resulting simulated deformation patterns to tagged magnetic resonance imaging recordings from the same patient. The model qualitatively reproduces deformation as observed in the patient. We conclude that the MultiPatch module makes CircAdapt appropriate for simulation of dyssynchronous heart failure in patients.
Collapse
Affiliation(s)
- John Walmsley
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- * E-mail:
| | - Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Nicolas Derval
- Hôpital Cardiologique du Haut-Lévêque, IHU-LIRYC, CHU de Bordeaux, Bordeaux, France
| | - Pierre Bordachar
- Hôpital Cardiologique du Haut-Lévêque, IHU-LIRYC, CHU de Bordeaux, Bordeaux, France
| | - Hubert Cochet
- Hôpital Cardiologique du Haut-Lévêque, IHU-LIRYC, CHU de Bordeaux, Bordeaux, France
| | - Sylvain Ploux
- Hôpital Cardiologique du Haut-Lévêque, IHU-LIRYC, CHU de Bordeaux, Bordeaux, France
| | - Frits W. Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Hôpital Cardiologique du Haut-Lévêque, IHU-LIRYC, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
7
|
Pluijmert M, Bovendeerd PHM, Kroon W, Prinzen FW, Delhaas T. Effects of activation pattern and active stress development on myocardial shear in a model with adaptive myofiber reorientation. Am J Physiol Heart Circ Physiol 2014; 306:H538-46. [DOI: 10.1152/ajpheart.00571.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been hypothesized that myofiber orientation adapts to achieve a preferred mechanical loading state in the myocardial tissue. Earlier studies tested this hypothesis in a combined model of left ventricular (LV) mechanics and remodeling of myofiber orientation in response to fiber cross-fiber shear, assuming synchronous timing of activation and uniaxial active stress development. Differences between computed and measured patterns of circumferential-radial shear strain Ecr were assumed to be caused by limitations in either the LV mechanics model or the myofiber reorientation model. Therefore, we extended the LV mechanics model with a physiological transmural and longitudinal gradient in activation pattern and with triaxial active stress development. We investigated the effects on myofiber reorientation, LV function, and deformation. The effect on the developed pattern of the transverse fiber angle αt,0 and the effect on global pump function were minor. Triaxial active stress development decreased amplitudes of Ecr towards values within the experimental range and resulted in a similar base-to-apex gradient during ejection in model computed and measured Ecr. The physiological pattern of mechanical activation resulted in better agreement between computed and measured strain in myofiber direction, especially during isovolumic contraction phase and first half of ejection. In addition, remodeling was favorable for LV pump and myofiber function. In conclusion, the outcome of the combined model of LV mechanics and remodeling of myofiber orientation is found to become more physiologic by extending the mechanics model with triaxial active stress development and physiological activation pattern.
Collapse
Affiliation(s)
- Marieke Pluijmert
- Cardiovascular Research Institute Maastricht, Departments of Biomedical Engineering/Physiology, Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; and
| | - Peter H. M. Bovendeerd
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; and
| | - Wilco Kroon
- Institute of Computational Science, University of Lugano, Lugano, Switzerland
| | - Frits W. Prinzen
- Cardiovascular Research Institute Maastricht, Departments of Biomedical Engineering/Physiology, Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- Cardiovascular Research Institute Maastricht, Departments of Biomedical Engineering/Physiology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Constantino J, Hu Y, Lardo AC, Trayanova NA. Mechanistic insight into prolonged electromechanical delay in dyssynchronous heart failure: a computational study. Am J Physiol Heart Circ Physiol 2013; 305:H1265-73. [PMID: 23934857 DOI: 10.1152/ajpheart.00426.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In addition to the left bundle branch block type of electrical activation, there are further remodeling aspects associated with dyssynchronous heart failure (HF) that affect the electromechanical behavior of the heart. Among the most important are altered ventricular structure (both geometry and fiber/sheet orientation), abnormal Ca(2+) handling, slowed conduction, and reduced wall stiffness. In dyssynchronous HF, the electromechanical delay (EMD), the time interval between local myocyte depolarization and myofiber shortening onset, is prolonged. However, the contributions of the four major HF remodeling aspects in extending EMD in the dyssynchronous failing heart remain unknown. The goal of this study was to determine the individual and combined contributions of HF-induced remodeling aspects to EMD prolongation. We used MRI-based models of dyssynchronous nonfailing and HF canine electromechanics and constructed additional models in which varying combinations of the four remodeling aspects were represented. A left bundle branch block electrical activation sequence was simulated in all models. The simulation results revealed that deranged Ca(2+) handling is the primary culprit in extending EMD in dyssynchronous HF, with the other aspects of remodeling contributing insignificantly. Mechanistically, we found that abnormal Ca(2+) handling in dyssynchronous HF slows myofiber shortening velocity at the early-activated septum and depresses both myofiber shortening and stretch rate at the late-activated lateral wall. These changes in myofiber dynamics delay the onset of myofiber shortening, thus giving rise to prolonged EMD in dyssynchronous HF.
Collapse
Affiliation(s)
- Jason Constantino
- Department of Biomedical Engineering and Institute of Computational Medicine, The Johns Hopkins University, Baltimore, Maryland; and
| | | | | | | |
Collapse
|
9
|
Howard EJ, Kerckhoffs RCP, Vincent KP, Krishnamurthy A, Villongco CT, Mulligan LJ, McCulloch AD, Omens JH. Myofiber prestretch magnitude determines regional systolic function during ectopic activation in the tachycardia-induced failing canine heart. Am J Physiol Heart Circ Physiol 2013; 305:H192-202. [PMID: 23666676 PMCID: PMC3726954 DOI: 10.1152/ajpheart.00186.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/09/2013] [Indexed: 11/22/2022]
Abstract
Electrical dyssynchrony leads to prestretch in late-activated regions and alters the sequence of mechanical contraction, although prestretch and its mechanisms are not well defined in the failing heart. We hypothesized that in heart failure, fiber prestretch magnitude increases with the amount of early-activated tissue and results in increased end-systolic strains, possibly due to length-dependent muscle properties. In five failing dog hearts with scars, three-dimensional strains were measured at the anterolateral left ventricle (LV). Prestretch magnitude was varied via ventricular pacing at increasing distances from the measurement site and was found to increase with activation time at various wall depths. At the subepicardium, prestretch magnitude positively correlated with the amount of early-activated tissue. At the subendocardium, local end-systolic strains (fiber shortening, radial wall thickening) increased proportionally to prestretch magnitude, resulting in greater mean strain values in late-activated compared with early-activated tissue. Increased fiber strains at end systole were accompanied by increases in preejection fiber strain, shortening duration, and the onset of fiber relengthening, which were all positively correlated with local activation time. In a dog-specific computational failing heart model, removal of length and velocity dependence on active fiber stress generation, both separately and together, alter the correlations between local electrical activation time and timing of fiber strains but do not primarily account for these relationships.
Collapse
Affiliation(s)
- Elliot J Howard
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0613, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tangney J, Chuang J, Janssen M, Krishnamurthy A, Liao P, Hoshijima M, Wu X, Meininger G, Muthuchamy M, Zemljic-Harpf A, Ross R, Frank L, McCulloch A, Omens J. Novel role for vinculin in ventricular myocyte mechanics and dysfunction. Biophys J 2013; 104:1623-33. [PMID: 23561539 PMCID: PMC3617425 DOI: 10.1016/j.bpj.2013.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/07/2013] [Accepted: 02/07/2013] [Indexed: 01/23/2023] Open
Abstract
Vinculin (Vcl) plays a key structural role in ventricular myocytes that, when disrupted, can lead to contractile dysfunction and dilated cardiomyopathy. To investigate the role of Vcl in myocyte and myocardial function, cardiomyocyte-specific Vcl knockout mice (cVclKO) and littermate control wild-type mice were studied with transmission electron microscopy (TEM) and in vivo magnetic resonance imaging (MRI) tagging before the onset of global ventricular dysfunction. MRI revealed significantly decreased systolic strains transverse to the myofiber axis in vivo, but no changes along the muscle fibers or in fiber tension in papillary muscles from heterozygous global Vcl null mice. Myofilament lattice spacing from TEM was significantly greater in cVclKO versus wild-type hearts fixed in the unloaded state. AFM in Vcl heterozygous null mouse myocytes showed a significant decrease in membrane cortical stiffness. A multiscale computational model of ventricular mechanics incorporating cross-bridge geometry and lattice mechanics showed that increased transverse systolic stiffness due to increased lattice spacing may explain the systolic wall strains associated with Vcl deficiency, before the onset of ventricular dysfunction. Loss of cardiac myocyte Vcl may decrease systolic transverse strains in vivo by decreasing membrane cortical tension, which decreases transverse compression of the lattice thereby increasing interfilament spacing and stress transverse to the myofibers.
Collapse
Affiliation(s)
- Jared R. Tangney
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Joyce S. Chuang
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Matthew S. Janssen
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Adarsh Krishnamurthy
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Peter Liao
- Department of Medicine, University of California-San Diego, La Jolla, California
- Veterans Administration Healthcare San Diego, San Diego, California
| | - Masahiko Hoshijima
- Department of Medicine, University of California-San Diego, La Jolla, California
- Cardiac Biomedical Science and Engineering Center, University of California-San Diego, La Jolla, California
| | - Xin Wu
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, College Station, Texas
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Mariappan Muthuchamy
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, College Station, Texas
| | - Alice Zemljic-Harpf
- Department of Medicine, University of California-San Diego, La Jolla, California
- Veterans Administration Healthcare San Diego, San Diego, California
| | - Robert S. Ross
- Department of Medicine, University of California-San Diego, La Jolla, California
- Veterans Administration Healthcare San Diego, San Diego, California
- Cardiac Biomedical Science and Engineering Center, University of California-San Diego, La Jolla, California
| | - Lawrence R. Frank
- Department of Radiology, University of California-San Diego, La Jolla, California
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California-San Diego, La Jolla, California
- Department of Medicine, University of California-San Diego, La Jolla, California
- Cardiac Biomedical Science and Engineering Center, University of California-San Diego, La Jolla, California
| | - Jeffrey H. Omens
- Department of Bioengineering, University of California-San Diego, La Jolla, California
- Department of Medicine, University of California-San Diego, La Jolla, California
- Cardiac Biomedical Science and Engineering Center, University of California-San Diego, La Jolla, California
| |
Collapse
|
11
|
Darvishi S, Behnam H, Pouladian M, Samiei N. Measuring Left Ventricular Volumes in Two-Dimensional Echocardiography Image Sequence Using Level-set Method for Automatic Detection of End-Diastole and End-systole Frames. Res Cardiovasc Med 2013; 2:39-45. [PMID: 25478488 PMCID: PMC4253755 DOI: 10.5812/cardiovascmed.6397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 02/01/2012] [Accepted: 02/09/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Identifying End-Diastole (ED) and End-Systole (ES) frames is highly important in the process of evaluating cardiac function and measuring global parameters accurately, such as Ejection Fraction (EF), Cardiac Output (CO) and Stroke Volume. OBJECTIVES The current study aimed to develop a new method based on measuring volume changes in Left Ventricle (LV) during cardiac cycle. MATERIAL AND METHODS For this purpose, the Level Set method was used both in detecting endocardium border and quantifying cardiac function of all frames. RESULTS Demonstrating LV volumes displays ED and ES frames and the volumes used in calculating the required parameters. CONCLUSIONS Since ES and ED frames exist in iso-volumic phases of the cardiac cycle with minimum and maximum values of LV volume signals, such peaks can be utilized in finding related frames.
Collapse
Affiliation(s)
- Saeed Darvishi
- Faculty of Biomedical Engineering, Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
- Corresponding author: Saeed Darvishi, Faculty of Biomedical Engineering, Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, IR Iran. Tel.: +98-2144444330, Fax: +98-2144444331, E-mail: s.
| | - Hamid Behnam
- Department of the Electronic Engineering, Iran University of Science and Technology, Tehran, IR Iran
| | - Majid Pouladian
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
| | - Niloufar Samiei
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
12
|
Ashikaga H, Omens JH. In vivo validation of longitudinal-circumferential area change ratio to estimate myofiber shortening in the heart. IEEE Trans Biomed Eng 2012; 59:1391-7. [PMID: 22345526 DOI: 10.1109/tbme.2012.2188101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this paper was to validate area change ratio (%AC) against myofiber shortening (%λ(f)) in the heart in vivo. %AC is emerging as a mechanical index that may approximate %λ(f) by incorporating both circumferential and longitudinal shortening. However, the physiological significance of % AC remains unclear. We studied the time course of %AC in the anterior midleft ventricular wall of normal canine heart in vivo (n = 14) during atrial pacing over the entire cardiac cycle using transmurally implanted markers and biplane cineradiography (8 ms/frame). %AC was calculated as the myocardial area change relative to the elemental material area on the circumferential-longitudinal plane at the reference configuration (=end diastole). %AC was compared with %λ(f) that was determined from the transmural fiber orientation directly measured in the heart tissue. The time course of both %AC and %λ(f) was determined in the subepicardial, midwall, and subendocardial layers. The time course of %AC and %λ(f) was significantly different, and the difference was more pronounced towards the endocardium. %AC consistently overestimated %λ(f). The timing of the peak %AC was significantly delayed compared to that of the peak %λ(f). We conclude that %AC is significantly different from %λ(f) both in magnitude and timing in vivo. %AC overestimates %λ(f), and the overestimation is worse toward the endocardial layers. This may be a potentially important limitation when applying %AC to optimization and responder identification for cardiac resynchronization therapy.
Collapse
Affiliation(s)
- Hiroshi Ashikaga
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
13
|
Lim KM, Constantino J, Gurev V, Zhu R, Shim EB, Trayanova NA. Comparison of the effects of continuous and pulsatile left ventricular-assist devices on ventricular unloading using a cardiac electromechanics model. J Physiol Sci 2012; 62:11-9. [PMID: 22076841 PMCID: PMC3313670 DOI: 10.1007/s12576-011-0180-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/23/2011] [Indexed: 01/24/2023]
Abstract
Left ventricular-assist devices (LVADs) are used to supply blood to the body of patients with heart failure. Pressure unloading is greater for counter-pulsating LVADs than for continuous LVADs. However, several clinical trials have demonstrated that myocardial recovery is similar for both types of LVAD. This study examined the contractile energy consumption of the myocardium with continuous and counter-pulsating LVAD support to ascertain the effect of the different LVADs on myocardial recovery. We used a three-dimensional electromechanical model of canine ventricles, with models of the circulatory system and an LVAD. We compared the left ventricular peak pressure (LVPP) and contractile ATP consumption between pulsatile and continuous LVADs. With the continuous and counter-pulsating LVAD, the LVPP decreased to 46 and 10%, respectively, and contractile ATP consumption decreased to 60 and 50%. The small difference between the contractile ATP consumption of these two types of LVAD may explain the comparable effects of the two types on myocardial recovery.
Collapse
Affiliation(s)
- Ki Moo Lim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Kangwon-do Republic of Korea
| | - Jason Constantino
- Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Viatcheslav Gurev
- Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Renjun Zhu
- Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Eun Bo Shim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Kangwon-do Republic of Korea
| | - Natalia A. Trayanova
- Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
14
|
Howard EJ, Covell JW, Mulligan LJ, McCulloch AD, Omens JH, Kerckhoffs RCP. Improvement in pump function with endocardial biventricular pacing increases with activation time at the left ventricular pacing site in failing canine hearts. Am J Physiol Heart Circ Physiol 2011; 301:H1447-55. [PMID: 21784986 DOI: 10.1152/ajpheart.00295.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, attention has been focused on comparing left ventricular (LV) endocardial (ENDO) with epicardial (EPI) pacing for cardiac resynchronization therapy. However, the effects of ENDO and EPI lead placement at multiple sites have not been studied in failing hearts. We hypothesized that differences in the improvement of ventricular function due to ENDO vs. EPI pacing in dyssynchronous (DYSS) heart failure may depend on the position of the LV lead in relation to the original activation pattern. In six nonfailing and six failing dogs, electrical DYSS was created by atrioventricular sequential pacing of the right ventricular apex. ENDO was compared with EPI biventricular pacing at five LV sites. In failing hearts, increases in the maximum rate of LV pressure change (dP/dt; r = 0.64), ejection fraction (r = 0.49), and minimum dP/dt (r = 0.51), relative to DYSS, were positively correlated (P < 0.01) with activation time at the LV pacing site during ENDO but not EPI pacing. ENDO pacing at sites with longer activation delays led to greater improvements in hemodynamic parameters and was associated with an overall reduction in electrical DYSS compared with EPI pacing (P < 0.05). These findings were qualitatively similar for nonfailing hearts. Improvement in hemodynamic function increased with activation time at the LV pacing site during ENDO but not EPI pacing. At the anterolateral wall, end-systolic transmural function was greater with local ENDO compared with EPI pacing. ENDO pacing and intrinsic activation delay may have important implications for management of DYSS heart failure.
Collapse
Affiliation(s)
- Elliot J Howard
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093-0613, USA
| | | | | | | | | | | |
Collapse
|
15
|
Gurev V, Lee T, Constantino J, Arevalo H, Trayanova NA. Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart. Biomech Model Mechanobiol 2011; 10:295-306. [PMID: 20589408 PMCID: PMC3166526 DOI: 10.1007/s10237-010-0235-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
Current multi-scale computational models of ventricular electromechanics describe the full process of cardiac contraction on both the micro- and macro- scales including: the depolarization of cardiac cells, the release of calcium from intracellular stores, tension generation by cardiac myofilaments, and mechanical contraction of the whole heart. Such models are used to reveal basic mechanisms of cardiac contraction as well as the mechanisms of cardiac dysfunction in disease conditions. In this paper, we present a methodology to construct finite element electromechanical models of ventricular contraction with anatomically accurate ventricular geometry based on magnetic resonance and diffusion tensor magnetic resonance imaging of the heart. The electromechanical model couples detailed representations of the cardiac cell membrane, cardiac myofilament dynamics, electrical impulse propagation, ventricular contraction, and circulation to simulate the electrical and mechanical activity of the ventricles. The utility of the model is demonstrated in an example simulation of contraction during sinus rhythm using a model of the normal canine ventricles.
Collapse
Affiliation(s)
- Viatcheslav Gurev
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., CSEB Room 218, Baltimore, MD 21218, USA.
| | | | | | | | | |
Collapse
|
16
|
Chuang JS, Zemljic-Harpf A, Ross RS, Frank LR, McCulloch AD, Omens JH. Determination of three-dimensional ventricular strain distributions in gene-targeted mice using tagged MRI. Magn Reson Med 2011; 64:1281-8. [PMID: 20981782 DOI: 10.1002/mrm.22547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A model-based method for calculating three-dimensional (3D) cardiac wall strain distributions in the mouse has been developed and tested in a genetically engineered mouse model of dilated cardiomyopathy. Data from MR tagging and harmonic phase (HARP) tracking were used to measure material point displacements, and 3D Lagrangian strains were calculated throughout the entire left ventricle (LV) with a deformable parametric model. A mouse model where cardiomyocytes are specifically made deficient in vinculin (VclKO) were compared to wild-type (WT) littermates. 3D strain analysis revealed differences in LV wall mechanics between WT and VclKO mice at 8 weeks of age when systolic function had just begun to decline. Most notably, end-systolic radial strain and torsional shear were reduced in VclKO hearts which contributed to regional mechanical dysfunction. This study demonstrates the feasibility of using MRI tagging methods to detect alterations in 3D myocardial strain distributions in genetically engineered mouse models of cardiovascular disease.
Collapse
Affiliation(s)
- Joyce S Chuang
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yamazaki KG, Villarreal FJ. Ventricular pacing-induced loss of contractile function and development of epicardial inflammation. Am J Physiol Heart Circ Physiol 2011; 300:H1282-90. [PMID: 21297025 DOI: 10.1152/ajpheart.01079.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Perturbations in the normal sequence of ventricular activation can create regions of early and late activation, leading to dysynchronous contraction and areas of dyskinesis. Dyskinesis occurs across the left ventricular (LV) wall, and its presence may have important consequences on cardiac structure and function in normal and failing hearts. Acutely, dyskinesis can trigger inflammation and, in the long term (6 wk and above), leads to LV remodeling. The mechanisms that trigger these changes are unknown. To gain further insight, we used a canine model to evaluate transumural changes in myocardial function and inflammation induced by epicardial LV pacing. The results indicate that 4 h of LV suprathreshold pacing resulted in a 30% local loss of endocardial thickening. Assessment of neutrophil infiltration showed a significant approximately fivefold increase in myeloperoxidase activity in the epicardium versus the midwall/endocardium. Matrix metalloproteinase-9 activity increased ∼2 fold in the epicardium and ROS generation increased ∼2.5-fold compared with the midwall/endocardium. To determine the effects that electrical current alone has on these end points, a group of animals was subjected to subthreshold pacing. Significant increases were observed only in epicardial myeloperoxidase levels. Thus, the results indicate that transmural dyskinesis induced by suprathreshold epicardial LV activation triggers a localized epicardial inflammatory response, whereas subthreshold stimulation appears to solely induce the trapping of leucocytes. Suprathreshold pacing also induces a loss of endocardial function. These results may have important implications as to the nature of the mechanisms that trigger the inflammatory response and possibly long-term remodeling in the setting of dysynchrony.
Collapse
Affiliation(s)
- Katrina Go Yamazaki
- Departments of 1Pharmacology, University of California-San Diego, La Jolla, 92093-0613, USA
| | | |
Collapse
|
18
|
Gurev V, Constantino J, Rice J, Trayanova N. Distribution of electromechanical delay in the heart: insights from a three-dimensional electromechanical model. Biophys J 2010; 99:745-54. [PMID: 20682251 PMCID: PMC2913183 DOI: 10.1016/j.bpj.2010.05.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 11/20/2022] Open
Abstract
In the intact heart, the distribution of electromechanical delay (EMD), the time interval between local depolarization and myocyte shortening onset, depends on the loading conditions. The distribution of EMD throughout the heart remains, however, unknown because current experimental techniques are unable to evaluate three-dimensional cardiac electromechanical behavior. The goal of this study was to determine the three-dimensional EMD distributions in the intact ventricles for sinus rhythm (SR) and epicardial pacing (EP) by using a new, to our knowledge, electromechanical model of the rabbit ventricles that incorporates a biophysical representation of myofilament dynamics. Furthermore, we aimed to ascertain the mechanisms that underlie the specific three-dimensional EMD distributions. The results revealed that under both conditions, the three-dimensional EMD distribution is nonuniform. During SR, EMD is longer at the epicardium than at the endocardium, and is greater near the base than at the apex. After EP, the three-dimensional EMD distribution is markedly different; it also changes with the pacing rate. For both SR and EP, late-depolarized regions were characterized with significant myofiber prestretch caused by the contraction of the early-depolarized regions. This prestretch delays myofiber-shortening onset, and results in a longer EMD, giving rise to heterogeneous three-dimensional EMD distributions.
Collapse
Affiliation(s)
- V. Gurev
- Department of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - J. Constantino
- Department of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - J.J. Rice
- IBM T. J. Watson Research Center, Yorktown Heights, New York
| | - N.A. Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
19
|
Ashikaga H, Leclercq C, Wang J, Kass DA, McVeigh ER. Hemodynamic improvement in cardiac resynchronization does not require improvement in left ventricular rotation mechanics: three-dimensional tagged MRI analysis. Circ Cardiovasc Imaging 2010; 3:456-63. [PMID: 20478988 DOI: 10.1161/circimaging.109.906305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Earlier studies have yielded conflicting evidence on whether or not cardiac resynchronization therapy (CRT) improves left ventricular (LV) rotation mechanics. METHODS AND RESULTS In dogs with left bundle branch block and pacing-induced heart failure (n=7), we studied the effects of CRT on LV rotation mechanics in vivo by 3-dimensional tagged magnetic resonance imaging with a temporal resolution of 14 ms. CRT significantly improved hemodynamic parameters but did not significantly change the LV rotation or rotation rate. LV torsion, defined as LV rotation of each slice with respect to that of the most basal slice, was not significantly changed by CRT. CRT did not significantly change the LV torsion rate. There was no significant circumferential regional heterogeneity (anterior, lateral, inferior, and septal) in LV rotation mechanics in either left bundle branch block with pacing-induced heart failure or CRT, but there was significant apex-to-base regional heterogeneity. CONCLUSIONS CRT acutely improves hemodynamic parameters without improving LV rotation mechanics. There is no significant circumferential regional heterogeneity of LV rotation mechanics in the mechanically dyssynchronous heart. These results suggest that LV rotation mechanics is an index of global LV function, which requires coordination of all regions of the left ventricle, and improvement in LV rotation mechanics appears to be a specific but insensitive index of acute hemodynamic response to CRT.
Collapse
Affiliation(s)
- Hiroshi Ashikaga
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute/NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
20
|
Keldermann RH, Nash MP, Gelderblom H, Wang VY, Panfilov AV. Electromechanical wavebreak in a model of the human left ventricle. Am J Physiol Heart Circ Physiol 2010; 299:H134-43. [PMID: 20400690 DOI: 10.1152/ajpheart.00862.2009] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present report, we introduce an integrative three-dimensional electromechanical model of the left ventricle of the human heart. Electrical activity is represented by the ionic TP06 model for human cardiac cells, and mechanical activity is represented by the Niederer-Hunter-Smith active contractile tension model and the exponential Guccione passive elasticity model. These models were embedded into an anatomic model of the left ventricle that contains a detailed description of cardiac geometry and the fiber orientation field. We demonstrated that fiber shortening and wall thickening during normal excitation were qualitatively similar to experimental recordings. We used this model to study the effect of mechanoelectrical feedback via stretch-activated channels on the stability of reentrant wave excitation. We found that mechanoelectrical feedback can induce the deterioration of an otherwise stable spiral wave into turbulent wave patterns similar to that of ventricular fibrillation. We identified the mechanisms of this transition and studied the three-dimensional organization of this mechanically induced ventricular fibrillation.
Collapse
Affiliation(s)
- R H Keldermann
- Department of Theoretical Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Kibler NA, Kharin SN, Tsvetkova AS, Azarov YE, Shmakov DN. Effect of ectopic excitation on pump function of the hen and dog right heart ventricle. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s0022093009010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Mynard J, Penny D, Smolich J. Accurate Automatic Detection of End-Diastole From Left Ventricular Pressure Using Peak Curvature. IEEE Trans Biomed Eng 2008; 55:2651-7. [DOI: 10.1109/tbme.2008.2001295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Stelzer JE, Norman HS, Chen PP, Patel JR, Moss RL. Transmural variation in myosin heavy chain isoform expression modulates the timing of myocardial force generation in porcine left ventricle. J Physiol 2008; 586:5203-14. [PMID: 18787035 DOI: 10.1113/jphysiol.2008.160390] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent studies have shown that the sequence and timing of mechanical activation of myocardium vary across the ventricular wall. However, the contributions of variable expression of myofilament protein isoforms in mediating the timing of myocardial activation in ventricular systole are not well understood. To assess the functional consequences of transmural differences in myofilament protein expression, we studied the dynamic mechanical properties of multicellular skinned preparations isolated from the sub-endocardial and sub-epicardial regions of the porcine ventricular midwall. Compared to endocardial fibres, epicardial fibres exhibited significantly faster rates of stretch activation and force redevelopment (k(tr)), although the amount of force produced at a given [Ca2+] was not significantly different. Consistent with these results, SDS-PAGE analysis revealed significantly elevated expression of alpha myosin heavy chain (MHC) isoform in epicardial fibres (13 +/- 1%) versus endocardial fibres (3 +/- 1%). Linear regression analysis revealed that the apparent rates of delayed force development and force decay following stretch correlated with MHC isoform expression (r2 = 0.80 and r2 = 0.73, respectively, P < 0.05). No differences in the relative abundance or phosphorylation status of other myofilament proteins were detected. These data show that transmural differences in MHC isoform expression contribute to regional differences in dynamic mechanical function of porcine left ventricles, which in turn modulate the timing of force generation across the ventricular wall and work production during systole.
Collapse
Affiliation(s)
- Julian E Stelzer
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, 601 Science Drive, Madison, WI 53711, USA.
| | | | | | | | | |
Collapse
|
24
|
Coppola BA, Omens JH. Role of tissue structure on ventricular wall mechanics. MOLECULAR & CELLULAR BIOMECHANICS : MCB 2008; 5:183-196. [PMID: 18751527 PMCID: PMC2698048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is well known that systolic wall thickening in the inner half of the left ventricular (LV) wall is of greater magnitude than predicted by myofiber contraction alone. Previous studies have related the deformation of the LV wall to the orientation of the laminar architecture. Using this method, wall thickening can be interpreted as the sum of contributions due to extension, thickening, and shearing of the laminar sheets. We hypothesized that the thickening mechanics of the ventricular wall are determined by the structural organization of the underlying tissue, and may not be influenced by factors such as loading and activation sequence. To test this hypothesis, we calculated finite strains from biplane cineradiography of transmural markers implanted in apical (n = 22) and basal (n = 12) regions of the canine anterior LV free wall. Strains were referred to three-dimensional laminar microstructural axes measured by histology. The results indicate that sheet angle is of opposite sign in the apical and basal regions, but absolute value differs only in the subepicardium. During systole, shearing and extension of the laminae contribute the most to wall thickening, accounting for >90% (transmural average) at both apex and base. These two types of deformation are also most prominent during diastolic inflation. Increasing afterload has no effect on the pattern of systolic wall thickening, nor does reversing transmural activation sequence. The pattern of wall thickening appears to be a function of the orientation of the laminar sheets, which vary regionally and transmurally. Thus, acute interventions do not appear to alter the contributions of the laminae to wall thickening, providing further evidence that the structural architecture of the ventricular wall is the dominant factor for its regional mechanical function.
Collapse
Affiliation(s)
- Benjamin A. Coppola
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Jeffrey H. Omens
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
25
|
Coppola BA, Omens JH. Use of Larger Species such as Dog and Pig as Model Systems to Study Cardiac Disease. ACTA ACUST UNITED AC 2008; 5:195-200. [PMID: 20161184 DOI: 10.1016/j.ddmod.2009.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B A Coppola
- Departments of Medicine and Bioengineering, University of California San Diego, La Jolla CA, 92093
| | | |
Collapse
|
26
|
Ashikaga H, Coppola BA, Yamazaki KG, Villarreal FJ, Omens JH, Covell JW. Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. Am J Physiol Heart Circ Physiol 2008; 295:H610-8. [PMID: 18515651 DOI: 10.1152/ajpheart.00107.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although previous studies report a reduction in myocardial volume during systole, myocardial volume changes during the cardiac cycle have not been quantitatively analyzed with high spatiotemporal resolution. We studied the time course of myocardial volume in the anterior mid-left ventricular (LV) wall of normal canine heart in vivo (n = 14) during atrial or LV pacing using transmurally implanted markers and biplane cineradiography (8 ms/frame). During atrial pacing, there was a significant transmural gradient in maximum volume decrease (4.1, 6.8, and 10.3% at subepi, midwall, and subendo layer, respectively, P = 0.002). The rate of myocardial volume increase during diastole was 4.7 +/- 5.8, 6.8 +/- 6.1, and 10.8 +/- 7.7 ml.min(-1).g(-1), respectively, which is substantially larger than the average myocardial blood flow in the literature measured by the microsphere method (0.7-1.3 ml.min(-1).g(-1)). In the early activated region during LV pacing, myocardial volume began to decrease before the LV pressure upstroke. We conclude that the volume change is greater than would be estimated from the known average transmural blood flow. This implies the existence of blood-filled spaces within the myocardium, which could communicate with the ventricular lumen. Our data in the early activated region also suggest that myocardial volume change is caused not by the intramyocardial tissue pressure but by direct impingement of the contracting myocytes on the microvasculature.
Collapse
Affiliation(s)
- Hiroshi Ashikaga
- Department of Medicine and Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Ashikaga H, Coppola BA, Hopenfeld B, Leifer ES, McVeigh ER, Omens JH. Transmural dispersion of myofiber mechanics: implications for electrical heterogeneity in vivo. J Am Coll Cardiol 2007; 49:909-16. [PMID: 17320750 PMCID: PMC2572715 DOI: 10.1016/j.jacc.2006.07.074] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/05/2006] [Accepted: 07/10/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVES We investigated whether transmural mechanics could yield insight into the transmural electrical sequence. BACKGROUND Although the concept of transmural dispersion of repolarization has helped explain a variety of arrhythmias, its presence in vivo is still disputable. METHODS We studied the time course of transmural myofiber mechanics in the anterior left ventricle of normal canines in vivo (n = 14) using transmural bead markers under biplane cineradiography. In 4 of these animals, plunge electrodes were placed in the myocardial tissue within the bead set to measure transmural electrical sequence. RESULTS The onset of myofiber shortening was earliest at endocardial layers and progressively delayed toward epicardial layers (p < 0.001), resulting in transmural dispersion of myofiber shortening of 39 ms. The onset of myofiber relaxation was earliest at epicardial layers and most delayed at subendocardial layers (p = 0.004), resulting in transmural dispersion of myofiber relaxation of 83 ms. There was no significant transmural gradient in electrical repolarization (p = NS). CONCLUSIONS Despite lack of evidence of significant transmural gradient in electrical repolarization in vivo, there is transmural dispersion of myofiber relaxation as well as shortening.
Collapse
Affiliation(s)
- Hiroshi Ashikaga
- Department of Medicine and Bioengineering, University of California, San Diego, La Jolla, California, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Stelzer JE, Moss RL. Contributions of stretch activation to length-dependent contraction in murine myocardium. ACTA ACUST UNITED AC 2007; 128:461-71. [PMID: 17001086 PMCID: PMC2151573 DOI: 10.1085/jgp.200609634] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The steep relationship between systolic force production and end diastolic volume (Frank-Starling relationship) in myocardium is a potentially important mechanism by which the work capacity of the heart varies on a beat-to-beat basis, but the molecular basis for the effects of myocardial fiber length on cardiac work are still not well understood. Recent studies have suggested that an intrinsic property of myocardium, stretch activation, contributes to force generation during systolic ejection in myocardium. To examine the role of stretch activation in length dependence of activation we recorded the force responses of murine skinned myocardium to sudden stretches of 1% of muscle length at both short (1.90 μm) and long (2.25 μm) sarcomere lengths (SL). Maximal Ca2+-activated force and Ca2+ sensitivity of force were greater at longer SL, such that more force was produced at a given Ca2+ concentration. Sudden stretch of myocardium during an otherwise isometric contraction resulted in a concomitant increase in force that quickly decayed to a minimum and was followed by a delayed development of force, i.e., stretch activation, to levels greater than prestretch force. At both maximal and submaximal activations, increased SL significantly reduced the initial rate of force decay following stretch; at submaximal activations (but not at maximal) the rate of delayed force development was accelerated. This combination of mechanical effects of increased SL would be expected to increase force generation during systolic ejection in vivo and prolong the period of ejection. These results suggest that sarcomere length dependence of stretch activation contributes to the steepness of the Frank-Starling relationship in living myocardium.
Collapse
Affiliation(s)
- Julian E Stelzer
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| | | |
Collapse
|
29
|
|
30
|
Sengupta PP, Khandheria BK, Korinek J, Wang J, Jahangir A, Seward JB, Belohlavek M. Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J Am Coll Cardiol 2005; 47:163-72. [PMID: 16386681 DOI: 10.1016/j.jacc.2005.08.073] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 08/16/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES We investigated whether the onset and progression of regional left ventricular (LV) shortening and lengthening parallel the apex-to-base differences in depolarization and repolarization. BACKGROUND Limited information exists regarding apex-to-base differences in longitudinal and circumferential deformation sequence of the LV. METHODS The apex-to-base differences in electric activation and the progression of longitudinal and circumferential shortening and lengthening sequences were determined in 8 porcine beating hearts in situ by implanting bipolar electrodes and an array of 14 sonomicrometry crystals in the LV free wall. RESULTS Electric activation started at the apical subendocardium and showed significant delay in reaching the LV base. The onsets of mechanical activation and subsequent 20%, 40%, and 80% peak longitudinal shortenings required longer time to occur at base compared to the apex. The repolarization sequence propagated in reverse, with the base repolarizing before the apex. Subendocardial longitudinal shortening at base and subepicardial circumferential shortening at apex continued beyond the period of LV ejection, resulting in an apex-to-base gradient in the onset of lengthening. This gradient correlated with the duration of isovolumic relaxation (r = 0.85, p = 0.004) and the time required for reaching the lowest LV diastolic pressure (r = 0.70, p = 0.04). CONCLUSIONS Apex-to-base delay in mechanical shortening of LV parallels the apex-to-base direction of the electric activation sequence. Basal subendocardial and apical subepicardial regions deform through a characteristic phase of postsystolic shortening. Short-lived apex-to-base and subendocardial-to-subepicardial relaxation gradients at the onset of diastole may have a physiologic significance in facilitating active restoration of the LV cavity in diastole.
Collapse
Affiliation(s)
- Partho P Sengupta
- Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sengupta PP, Khandheria BK, Korinek J, Wang J, Belohlavek M. Biphasic tissue Doppler waveforms during isovolumic phases are associated with asynchronous deformation of subendocardial and subepicardial layers. J Appl Physiol (1985) 2005; 99:1104-11. [PMID: 15905326 DOI: 10.1152/japplphysiol.00191.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Subendocardial and subepicardial layers of the left ventricle (LV) are characterized with right- and left-handed helical orientations of myocardial fibers. We investigated the origin of biphasic deformations of the LV wall during isovolumic contraction (IVC) and relaxation (IVR). In eight open-chest adult pigs, strain rates were measured along the right- and left-handed helical directions in the LV anterior wall by implanting 16 sonomicrometry crystals. Sonomicrometry strain rates were compared with the longitudinal subendocardial strain rates obtained by tissue Doppler imaging. During ejection and diastolic filling, shortening and lengthening occurred synchronously along the right- and left-handed helical directions. However, during IVC and IVR, the deformations were dissimilar in the two directions. Transmural shortening during IVC occurred along the right-handed helical direction and was accompanied with transient lengthening in the left-handed helical direction. Conversely, during IVR, the LV lengthened along the left-handed helical direction and shortened in the right-handed helical direction. Peak subendocardial strain rates obtained by tissue Doppler imaging during IVC and IVR correlated with corresponding sonomicrometry strain rate values obtained along the right- and left-handed helical directions ( r = 0.81, P < 0.001 and r = 0.70, P = 0.001, respectively). Our data suggest that brief counterdirectional movements occur within the LV wall during IVC and IVR. Shortening along the right-handed helical direction is accompanied with reciprocal lengthening in the left-handed helical direction during IVC and vice versa during IVR. The results support an association between asynchronous deformation of subendocardial and subepicardial muscle fibers and the biphasic isovolumic movements observed with high-resolution tissue Doppler imaging.
Collapse
Affiliation(s)
- Partho P Sengupta
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
32
|
Ashikaga H, Covell JW, Omens JH. Diastolic dysfunction in volume-overload hypertrophy is associated with abnormal shearing of myolaminar sheets. Am J Physiol Heart Circ Physiol 2005; 288:H2603-10. [PMID: 15708954 PMCID: PMC2822838 DOI: 10.1152/ajpheart.01276.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diastolic dysfunction in volume-overload hypertrophy by aortocaval fistula is characterized by increased passive stiffness of the left ventricle (LV). We hypothesized that changes in passive properties are associated with abnormal myolaminar sheet mechanics during diastolic filling. We determined three-dimensional finite deformation of myofiber and myolaminar sheets in the LV free wall of six dogs with cineradiography of implanted markers during development of volume-overload hypertrophy by aortocaval fistula. After 9 +/- 2 wk of volume overload, all dogs developed edema of extremities, pulmonary congestion, elevated LV end-diastolic pressure (5 +/- 2 vs. 21 +/- 4 mmHg, P < 0.05), and increased LV volume. There was no significant change in systolic function [dP/dt(max): 2,476 +/- 203 vs. 2,330 +/- 216 mmHg/s, P = not significant (NS)]. Diastolic relaxation was significantly reduced (dP/dt(min): -2,466 +/- 190 vs. -2,076 +/- 166 mmHg/s, P < 0.05; time constant of LV pressure decline: 32 +/- 2 vs. 43 +/- 1 ms, P < 0.05), whereas duration of diastolic filling was unchanged (304 +/- 33 vs. 244 +/- 42 ms, P = NS). Fiber stretch and sheet shear occur predominantly in the first third of diastolic filling, and chronic volume overload induced remodeling in lengthening of the fiber and reorientation of the laminar sheet architecture. Sheet shear was significantly increased and delayed at the subendocardial layer (P < 0.05), whereas magnitude of fiber stretch was not altered in volume overload (P = NS). These findings indicate that enhanced filling in volume-overload hypertrophy is achieved by enhanced sheet shear early in diastole. These results provide the first evidence that changes in motion of radially oriented laminar sheets may play an important functional role in pathology of diastolic dysfunction in this model.
Collapse
Affiliation(s)
- Hiroshi Ashikaga
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr., MSC 1061, Bldg. 10, B1D416, Bethesda, MD 20892-1061, USA.
| | | | | |
Collapse
|
33
|
Ashikaga H, Omens JH, Covell JW. Time-dependent remodeling of transmural architecture underlying abnormal ventricular geometry in chronic volume overload heart failure. Am J Physiol Heart Circ Physiol 2004; 287:H1994-2002. [PMID: 15242833 PMCID: PMC2842928 DOI: 10.1152/ajpheart.00326.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that the abnormal ventricular geometry in failing hearts may be accounted for by regionally selective remodeling of myocardial laminae or sheets, we investigated remodeling of the transmural architecture in chronic volume overload induced by an aortocaval shunt. We determined three-dimensional finite deformation at apical and basal sites in left ventricular anterior wall of six dogs with the use of biplane cineradiography of implanted markers. Myocardial strains at end diastole were measured at a failing state referred to control to describe remodeling of myofibers and sheet structures over time. After 9 +/- 2 wk (means +/- SE) of volume overload, the myocardial volume within the marker sets increased by >20%. At 2 wk, the basal site had myofiber elongation (0.099 +/- 0.030; P <0.05), whereas the apical site did not [P=not significant (NS)]. Sheet shear at the basal site increased progressively toward the final study (0.040 +/- 0.003 at 2 wk and 0.054 +/- 0.021 at final; both P <0.05), which contributed to a significant increase in wall thickness at the final study (0.181 +/- 0.047; P < 0.05), whereas the apical site did not (P=NS). We conclude that the remodeling of the transmural architecture is regionally heterogeneous in chronic volume overload. The early differences in fiber elongation seem most likely due to a regional gradient in diastolic wall stress, whereas the late differences in wall thickness are most likely related to regional differences in the laminar architecture of the wall. These results suggest that the temporal progression of ventricular remodeling may be anatomically designed at the level of regional laminar architecture.
Collapse
Affiliation(s)
- Hiroshi Ashikaga
- Dept. of Medicine, Univ. of California, San Diego, 9500 Gilman Dr., 0613J, La Jolla, CA 92093, USA
| | | | | |
Collapse
|