1
|
Varga A, Matrai AA, Bedocs-Barath B, Fazekas LA, Brasil FS, Mehta A, Vanyolos E, Deak A, Lesznyak T, Peto K, Nemeth N. Local and Systemic Micro-Rheological Changes during Intestinal Anastomosis Operation: A Metabolic Dependence in an Experimental Model. Metabolites 2024; 14:458. [PMID: 39195554 DOI: 10.3390/metabo14080458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Hemorheological factors may show arterio-venous differences. Alterations in acid-base and metabolic parameters may also influence these factors. However, little is known about changes in micro-rheological parameters during abdominal surgery, influencing splanchnic circulation. In anesthetized pigs, the external jugular vein, femoral artery and vein were cannulated unilaterally, and paramedian laparotomy was performed. In the anastomosis group, after resecting a bowel segment, end-to-end jejuno-jejunostomy was completed. Blood samples (from cannulas and by puncturing the portal vein) were taken before and after the intervention. Hematological, acid-base and blood gas parameters, metabolites, red blood cell (RBC) deformability and aggregation were determined. The highest hematocrit was found in portal blood, increasing further by the end of operation. A significant pH decrease was seen, and portal blood showed the highest lactate and creatinine concentration. The highest RBC aggregation values were found in arterial, the lowest in renal venous blood. The RBC aggregation increased with higher lactate concentration and lower pH. Osmotic gradient deformability declined, with the lowest values in portal and renal venous samples. In conclusion, micro-rheological parameters showed arterio-venous and porto-renal venous differences, influenced by oxygenation level, pH and lactate concentration. The intestinal anastomosis operation caused an immediate micro-rheological deterioration with portal venous dominancy in this experiment.
Collapse
Affiliation(s)
- Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Adam Attila Matrai
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Barbara Bedocs-Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Felipe Salignac Brasil
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Aashna Mehta
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Erzsebet Vanyolos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Tamas Lesznyak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Gan Y, Tian X, Yao H, Huo F, Feng Y. Ozone Improves Oxygenation and Offers Organ Protection after Autologous Blood Transfusion in a Simulated Carbon Dioxide Pneumoperitoneal Environment in a Rabbit Hemorrhagic Shock Model. Transfus Med Hemother 2024; 51:164-174. [PMID: 38867809 PMCID: PMC11166905 DOI: 10.1159/000527934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/31/2022] [Indexed: 06/14/2024] Open
Abstract
Objectives Autologous blood transfusion techniques are well applied in surgery, but the red blood cells (RBCs) collected during laparoscopic surgery may forfeit their ability to oxygenate. O3 is a potent oxidation gas. This study investigates whether O3 could improve the oxygen-carrying capacity of RBCs, reduce inflammatory reactions, and offer organ protection. Methods We established a hemorrhagic shock model in rabbits, and simulated CO2 pneumoperitoneum and O3 were applied before autologous blood transfusion. Perioperative mean arterial pressure and arterial blood gas were recorded, blood gas and RBC morphology of collected blood were analyzed, plasma IL-6, ALT, AST, CRE, and lung histopathology POD0 and POD3 were tested, as well as postoperative survival quality. Results Autologous blood that underwent simulated CO2 pneumoperitoneum had a lower pH and SaO2 and a higher PaCO2 than the control group. After O3 treatment, PaO2 and SaO2 increased significantly, with unchanged pH values and PaCO2. RBCs in autologous blood were drastically deformed after CO2 conditioning and then reversed to normal by O3 treatment. Rabbits that received CO2-conditioned autologous blood had a compromised survival quality after surgery, higher plasma IL-6 levels, higher lung injury scores on POD0, higher ALT and AST levels on POD3, and O3 treatment alleviated these adverse outcomes. Conclusion O3 can restore RBC function, significantly improve blood oxygenation under simulated CO2 pneumoperitoneum, offer organ protection, and improve the postoperative survival quality in the rabbit hemorrhage shock model.
Collapse
Affiliation(s)
- Yu Gan
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Xue Tian
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Han Yao
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Fei Huo
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
3
|
Bosek M, Wybranowski T, Napiórkowska-Mastalerz M, Pyskir J, Cyrankiewicz M, Pyskir M, Pilaczyńska-Cemel M, Szołna-Chodór A, Wrembel M, Kruszewski S, Przybylski G. The Impact of COVID-19 on Cellular Factors Influencing Red Blood Cell Aggregation Examined in Dextran: Possible Causes and Consequences. Int J Mol Sci 2023; 24:14952. [PMID: 37834401 PMCID: PMC10573242 DOI: 10.3390/ijms241914952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Several studies have indicated that COVID-19 can lead to alterations in blood rheology, including an increase in red blood cell aggregation. The precise mechanisms behind this phenomenon are not yet fully comprehended. The latest findings suggest that erythrocyte aggregation significantly influences microcirculation, causes the formation of blood clots in blood vessels, and even damages the endothelial glycocalyx, leading to endothelial dysfunction. The focus of this research lies in investigating the cellular factors influencing these changes in aggregation and discussing potential causes and implications in the context of COVID-19 pathophysiology. For this purpose, the aggregation of erythrocytes in a group of 52 patients with COVID-19 pneumonia was examined in a 70 kDa Dextran solution, which eliminates the influence of plasma factors. Using image analysis, the velocities and sizes of the formed aggregates were investigated, determining their porosity. This study showed that the process of erythrocyte aggregation in COVID-19 patients, independent of plasma factors, leads to the formation of more compact, denser, three-dimensional aggregates. These aggregates may be less likely to disperse under circulatory shear stress, increasing the risk of thrombotic events. This study also suggests that cellular aggregation factors can be responsible for the thrombotic disorders observed long after infection, even when plasma factors have normalized. The results and subsequent broad discussion presented in this study can contribute to a better understanding of the potential complications associated with increased erythrocyte aggregation.
Collapse
Affiliation(s)
- Maciej Bosek
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (M.B.)
| | - Tomasz Wybranowski
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (M.B.)
| | - Marta Napiórkowska-Mastalerz
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (M.B.)
| | - Jerzy Pyskir
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (M.B.)
| | - Michał Cyrankiewicz
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (M.B.)
| | - Małgorzata Pyskir
- Department of Rehabilitation, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland;
| | - Marta Pilaczyńska-Cemel
- Department of Lung Diseases, Neoplasms and Tuberculosis, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Alicja Szołna-Chodór
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (M.B.)
| | - Mateusz Wrembel
- Department of Lung Diseases, Neoplasms and Tuberculosis, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Stefan Kruszewski
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (M.B.)
| | - Grzegorz Przybylski
- Department of Lung Diseases, Neoplasms and Tuberculosis, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| |
Collapse
|
4
|
Impact of Increased End-Tidal Carbon Dioxide on Continuous Noninvasive Hemoglobin Monitoring during Laparoscopic Gastrectomy: A Randomized Controlled Study. J Pers Med 2022; 12:jpm12020160. [PMID: 35207650 PMCID: PMC8876483 DOI: 10.3390/jpm12020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 12/04/2022] Open
Abstract
The pulse CO-Oximetry allows continuous, noninvasive monitoring of hemoglobin (SpHb). We assessed the impact of increased end-tidal carbon dioxide (EtCO2) on the accuracy and trending ability of SpHb in laparoscopic surgery. Participants (n = 64) were randomly allocated to the low carbon dioxide (CO2) group (EtCO2: 30–35 mmHg) or the high CO2 group (EtCO2: 40–45 mmHg). The SpHb and laboratory hemoglobin (tHb) were obtained during surgery. The correlation coefficient (r) between SpHb and tHb showed greater tendency in the low CO2 group (r = 0.68) than in the high CO2 group (r = 0.43). The bias (precision) was −1.18 (1.09) with a limit of agreement (LOA) of −3.31 to 0.95 in low CO2 group and −1.02 (1.24) with a LOA of −3.45 to 1.42 in high CO2 group; they did not differ significantly between the groups (p = 0.246). The low CO2 group showed a high concordance rate of 95.9% and a moderate correlation between ΔSpHb and ΔtHb (r = 0.53). However, the high CO2 group showed a concordance rate of 77.8% and no correlation between ΔSpHb and ΔtHb (r = 0.11). In conclusion, increased EtCO2 significantly reduced the trending ability of SpHb during laparoscopic surgery. Caution should be executed when interpreting SpHb values during laparoscopic surgery in patients with hypercapnia.
Collapse
|
5
|
Szanto S, Mody T, Gyurcsik Z, Babjak LB, Somogyi V, Barath B, Varga A, Matrai AA, Nemeth N. Alterations of Selected Hemorheological and Metabolic Parameters Induced by Physical Activity in Untrained Men and Sportsmen. Metabolites 2021; 11:metabo11120870. [PMID: 34940627 PMCID: PMC8706578 DOI: 10.3390/metabo11120870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
Optimal tissue oxygen supply is essential for proper athletic performance and endurance. It also depends on perfusion, so on hemorheological properties and microcirculation. Regular exercise is beneficial to the rheological status, depending on its type, intensity, and duration. We aimed to investigate macro and microrheological changes due to short, high-intensity exercise in professional athletes (soccer and ice hockey players) and untrained individuals. The exercise was performed on a treadmill ergometer during a spiroergometry examination. Blood samples were taken before and after exercise to analyze lactate concentration, hematological parameters, blood and plasma viscosity, and red blood cell (RBC) deformability and aggregation. Leukocyte, RBC and platelet counts, and blood viscosity increased with exercise, by the largest magnitude in the untrained group. RBC deformability slightly impaired after exercise, but showed better values in ice hockey versus soccer players. RBC aggregation increased with exercise, dominantly in ice hockey players. Lactate increased mostly in soccer players, and the respiratory exchange rate was the lowest in ice hockey players. Overall, short, high-intensity exercise altered macro and microrheological parameters, mostly in the untrained group. Significant differences were found between the two sports. The data can be useful in training status monitoring, selection, and in revealing the causes of physical loading symptoms.
Collapse
Affiliation(s)
- Sandor Szanto
- Department of Sports Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Park 12, H-4032 Debrecen, Hungary; (S.S.); (T.M.); (Z.G.)
| | - Tobias Mody
- Department of Sports Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Park 12, H-4032 Debrecen, Hungary; (S.S.); (T.M.); (Z.G.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Zsuzsanna Gyurcsik
- Department of Sports Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Park 12, H-4032 Debrecen, Hungary; (S.S.); (T.M.); (Z.G.)
| | - Laszlo Balint Babjak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (L.B.B.); (V.S.); (B.B.); (A.V.); (A.A.M.)
| | - Viktoria Somogyi
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (L.B.B.); (V.S.); (B.B.); (A.V.); (A.A.M.)
| | - Barbara Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (L.B.B.); (V.S.); (B.B.); (A.V.); (A.A.M.)
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (L.B.B.); (V.S.); (B.B.); (A.V.); (A.A.M.)
| | - Adam Attila Matrai
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (L.B.B.); (V.S.); (B.B.); (A.V.); (A.A.M.)
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (L.B.B.); (V.S.); (B.B.); (A.V.); (A.A.M.)
- Correspondence: ; Tel./Fax: +36-52-416-915
| |
Collapse
|
6
|
Korei C, Szabo B, Varga A, Barath B, Deak A, Vanyolos E, Hargitai Z, Kovacs I, Nemeth N, Peto K. Hematological, Micro-Rheological, and Metabolic Changes Modulated by Local Ischemic Pre- and Post-Conditioning in Rat Limb Ischemia-Reperfusion. Metabolites 2021; 11:metabo11110776. [PMID: 34822434 PMCID: PMC8625580 DOI: 10.3390/metabo11110776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
In trauma and orthopedic surgery, limb ischemia-reperfusion (I/R) remains a great challenge. The effect of preventive protocols, including surgical conditioning approaches, is still controversial. We aimed to examine the effects of local ischemic pre-conditioning (PreC) and post-conditioning (PostC) on limb I/R. Anesthetized rats were randomized into sham-operated (control), I/R (120-min limb ischemia with tourniquet), PreC, or PostC groups (3 × 10-min tourniquet ischemia, 10-min reperfusion intervals). Blood samples were taken before and just after the ischemia, and on the first postoperative week for testing hematological, micro-rheological (erythrocyte deformability and aggregation), and metabolic parameters. Histological samples were also taken. Erythrocyte count, hemoglobin, and hematocrit values decreased, while after a temporary decrease, platelet count increased in I/R groups. Erythrocyte deformability impairment and aggregation enhancement were seen after ischemia, more obviously in the PreC group, and less in PostC. Blood pH decreased in all I/R groups. The elevation of creatinine and lactate concentration was the largest in PostC group. Histology did not reveal important differences. In conclusion, limb I/R caused micro-rheological impairment with hematological and metabolic changes. Ischemic pre- and post-conditioning had additive changes in various manners. Post-conditioning showed better micro-rheological effects. However, by these parameters it cannot be decided which protocol is better.
Collapse
Affiliation(s)
- Csaba Korei
- Department of Traumatology and Hand Surgery, Faculty of Medicine, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary;
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Barbara Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| | - Erzsebet Vanyolos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| | - Zoltan Hargitai
- Clinical Center, Pathology Unit, Kenezy Campus, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - Ilona Kovacs
- Clinical Center, Pathology Unit, Kenezy Campus, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Correspondence: ; Tel./Fax: +36-52-416-915
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| |
Collapse
|
7
|
Turchanyi B, Korei C, Somogyi V, Kiss F, Peto K, Nemeth N. Beneficial postoperative micro-rheological effects of intraoperative administration of diclophenac or ischemic preconditioning in patients with lower extremity operations -Preliminary data. Clin Hemorheol Microcirc 2021; 79:557-565. [PMID: 34420941 DOI: 10.3233/ch-211200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) may worsen blood rheology that has been demonstrated by clinical and experimental data. It is also known that anti-inflammatory agents and preconditioning methods may reduce I/R injury. OBJECTIVE We aimed to analyze hemorheological alterations in elective knee operations and the effects of intraoperative nonsteroidal anti-inflammatory drug (NSAID) administration and application of ischemic preconditioning. METHODS Hemorheological variables of 17 patients with total knee replacement or anterior crucial ligament replacement were analyzed. The ischemic (tourniquet) time was 92±15 minutes. Seven patients did not receive NSAID (Control group), 5 patients got i.v. sodium-diclophenac 10 minutes before and 6 hours after reperfusion. Five patients had ischemic preconditioning (3×15 minutes). Blood samples were collected before the ischemia, 10 minutes after reperfusion, on the 1st and 2nd p.o. day. RESULTS Whole blood viscosity didn't show notable inter-group differences, except for a slight decrease in the preconditioning group. RBC deformability decreased, erythrocyte aggregation enhanced by the 1st and 2nd p.o. days in Control group. In NSAID and preconditioning groups the changes were moderate, aggregation values significantly lowered compared to the Control group. CONCLUSION Intraoperatively administered diclophenac or ischemic preconditioning could moderate the deterioration in micro-rheological parameters caused by I/R in patients.
Collapse
Affiliation(s)
- Bela Turchanyi
- Department of Traumatology and Hand Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Csaba Korei
- Department of Traumatology and Hand Surgery, Faculty of Medicine, University of Debrecen, Hungary.,Doctoral School of Clinical Medicine, University of Debrecen, Hungary
| | - Viktoria Somogyi
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Ferenc Kiss
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
8
|
Kapnisis K, Seidner H, Prokopi M, Pasias D, Pitsillides C, Anayiotos A, Kaliviotis E. The effects of stenting on hemorheological parameters: An in vitro investigation under various blood flow conditions. Clin Hemorheol Microcirc 2019; 72:375-393. [PMID: 31006672 PMCID: PMC7739967 DOI: 10.3233/ch-180540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite their wide clinical usage, stent functionality may be compromised by complications at the site of implantation, including early/late stent thrombosis and occlusion. Although several studies have described the effect of fluid-structure interaction on local haemodynamics, there is yet limited information on the effect of the stent presence on specific hemorheological parameters. The current work investigates the red blood cell (RBC) mechanical behavior and physiological changes as a result of flow through stented vessels. Blood samples from healthy volunteers were prepared as RBC suspensions in plasma and in phosphate buffer saline at 45% haematocrit. Self-expanding nitinol stents were inserted in clear perfluoroalkoxy alkane tubing which was connected to a syringe, and integrated in a syringe pump. The samples were tested at flow rates of 17.5, 35 and 70 ml/min, and control tests were performed in non-stented vessels. For each flow rate, the sample viscosity, RBC aggregation and deformability, and RBC lysis were estimated. The results indicate that the presence of a stent in a vessel has an influence on the hemorheological characteristics of blood. The viscosity of all samples increases slightly with the increase of the flow rate and exposure. RBC aggregation and elongation index (EI) decrease as the flow rate and exposure increases. RBC lysis for the extreme cases is evident. The results indicate that the stresses developed in the stent area for the extreme conditions could be sufficiently high to influence the integrity of the RBC membrane.
Collapse
Affiliation(s)
- K Kapnisis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - H Seidner
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - M Prokopi
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - D Pasias
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - C Pitsillides
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - A Anayiotos
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - E Kaliviotis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus.,Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
9
|
Steinberg MH. "Sickling" in vertebrates: Animal studies vs. sickle cell disease. Blood Rev 2019; 36:88-94. [PMID: 31084943 DOI: 10.1016/j.blre.2019.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Before the description of sickled cells in humans, erythrocytes of normal deer were found to deform, or sickle in vitro. Sickling required oxygenation and alkalization; human erythrocytes sickle because their abnormal sickle hemoglobin (HbS) polymerizes following deoxygenation in vivo and in vitro. HbS and some deer hemoglobins polymerize because of specific amino acid contacts between hemoglobin beta-globin chains, although different amino acid residues form the contact points of the polymer. Hemoglobin precipitation is found in other vertebrates. Most often it is a benign in vitro phenomenon. Natural selection established the balanced polymorphism accounting for the high prevalence of HbS where malaria is endemic. A similar selective advantage for "sickling" animal hemoglobins is unproven. The mean corpuscular hemoglobin concentration is about 30 to 35 g/dL. Perhaps during in vitro studies of susceptible animal hemoglobins, minor changes in buffer pH, osmolality and the ligand state of the molecule increases mean cell hemoglobin concentration beyond its solubility limit allowing precipitation.
Collapse
Affiliation(s)
- Martin H Steinberg
- Department of Medicine, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA.
| |
Collapse
|
10
|
Varga G, Ghanem S, Szabo B, Nagy K, Pal N, Tanczos B, Somogyi V, Barath B, Deak A, Peto K, Nemeth N. Renal ischemia-reperfusion-induced metabolic and micro-rheological alterations and their modulation by remote organ ischemic preconditioning protocols in the rat. Clin Hemorheol Microcirc 2019; 71:225-236. [DOI: 10.3233/ch-189414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gabor Varga
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Souleiman Ghanem
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Nagy
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Noemi Pal
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Tanczos
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktoria Somogyi
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Barath
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Kuzmenko NV, Shchegolev BF, Pliss MG, Tsyrlin VA. The Influence of Weak Geomagnetic Disturbances on the Rat Cardiovascular System under Natural and Shielded Geomagnetic Field Conditions. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Nemeth N, Deak A, Szentkereszty Z, Peto K. Effects and influencing factors on hemorheological variables taken into consideration in surgical pathophysiology research. Clin Hemorheol Microcirc 2018; 69:133-140. [PMID: 29630533 DOI: 10.3233/ch-189105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In surgical pathophysiology ischemia-reperfusion, inflammatory processes, sepsis, vascular interventions, tissue trauma, shock, all mean conditions in which hemorheological parameters show alterations. Despite of numerous clinical and experimental studies, the in vivo hemorheology is not completely understood yet, and several fundamental questions still need to be answered. Investigating these issues, experimental surgical models are important, in point of view of the translational research as well. In this paper we aimed to make an attempt on summarizing the possible factors and conditions that might have an effect on hemorheological results in experimental surgical studies. Hemorheological parameters show alterations in surgical pathophysiological processes in a complex way. However, the changes are dominantly non-specific. Standardized experimental conditions, related to the experimental animal (species, animal welfare) anesthesia-medications, operation, sampling and, if applicable, conditions of the postoperative period, are inevitable for a safe assessment of valuable (hemorheological) results. Parallel investigations - such as microcirculatory monitoring, imaging techniques, other laboratory methods, histomorphology- have great importance, together with individual analysis of changes, for a better understanding of the changes and for comparability with clinical results.
Collapse
Affiliation(s)
- Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Szentkereszty
- Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Chen G, Zhao J, Li P, Kan X, You G, Wang Y, Yin Y, Luo X, Zhang Y, Zhao L, Zhou H. Effects of synthetic colloid and crystalloid solutions on hemorheology in vitro and in hemorrhagic shock. Eur J Med Res 2015; 20:13. [PMID: 25649347 PMCID: PMC4323036 DOI: 10.1186/s40001-015-0088-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 01/19/2015] [Indexed: 11/22/2022] Open
Abstract
Background Plasma expanders are commonly used in the management of critically ill patients, which may exhibit altered hemorheology. We evaluated the effects of various synthetic colloids and Lactated Ringer’s (LR) solution on hemorheological parameters in vitro and in a rodent hemorrhagic shock model. Methods For the in vitro experiments, rat blood was incubated with hydroxyethyl starch (HES) 130/0.4, HES 200/0.5, succinylated gelatine (GEL), or LR at various ratios. The control consisted of blood without dilution. The hemorheological parameters were measured after a 15-min incubation. For the in vivo study, rats were subjected to a severe volume-controlled hemorrhage and were resuscitated using a colloid solution (HES 130/0.4, HES 200/0.5, or GEL) or LR. The hemorheological parameters were measured 2 h after resuscitation. Results The GEL significantly elevated the plasma viscosity compared to the other groups. In the in vitro study, GEL and LR accelerated the erythrocyte aggregation. There was no significant difference between HES 130/0.4, HES 200/0.5, and control groups regarding the aggregation amplitude and index. In the in vivo study, the aggregation amplitude increased significantly in the GEL group compared to the HES 130/0.4, HES 200/0.5, LR, and sham groups. There was no significant difference between the groups with respect to the elongation index in vivo. Conclusions Hydroxyethyl starch did not change the erythrocyte aggregation compared to the control. GEL significantly accelerates the erythrocyte aggregation and elevates the plasma viscosity compared to hydroxyethyl starch. The in vitro hemorheological measurements most likely provide hints for the in vivo study.
Collapse
Affiliation(s)
- Gan Chen
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China.
| | - Jingxiang Zhao
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China.
| | - Penglong Li
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China.
| | - Xuemei Kan
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China.
| | - Guoxing You
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China.
| | - Ying Wang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China.
| | - Yujing Yin
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China.
| | - Xin Luo
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China.
| | - Yuhua Zhang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China.
| | - Lian Zhao
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China.
| | - Hong Zhou
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China.
| |
Collapse
|
14
|
Henkelman S, Noorman F, Badloe JF, Lagerberg JWM. Utilization and quality of cryopreserved red blood cells in transfusion medicine. Vox Sang 2014; 108:103-12. [PMID: 25471135 DOI: 10.1111/vox.12218] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 02/06/2023]
Abstract
Cryopreserved (frozen) red blood cells have been used in transfusion medicine since the Vietnam war. The main method to freeze the red blood cells is by usage of glycerol. Although the usage of cryopreserved red blood cells was promising due to the prolonged storage time and the limited cellular deterioration at subzero temperatures, its usage have been hampered due to the more complex and labour intensive procedure and the limited shelf life of thawed products. Since the FDA approval of a closed (de) glycerolization procedure in 2002, allowing a prolonged postthaw storage of red blood cells up to 21 days at 2-6°C, cryopreserved red blood cells have become a more utilized blood product. Currently, cryopreserved red blood cells are mainly used in military operations and to stock red blood cells with rare phenotypes. Yet, cryopreserved red blood cells could also be useful to replenish temporary blood shortages, to prolong storage time before autologous transfusion and for IgA-deficient patients. This review describes the main methods to cryopreserve red blood cells, explores the quality of this blood product and highlights clinical settings in which cryopreserved red blood cells are or could be utilized.
Collapse
Affiliation(s)
- S Henkelman
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
15
|
Fibrinogen effects on erythrocyte nitric oxide mobilization in presence of acetylcholine. Life Sci 2012; 91:1017-22. [PMID: 22796369 DOI: 10.1016/j.lfs.2012.06.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 11/20/2022]
Abstract
AIMS The objectives of this study were to evaluate the effects of high fibrinogen concentration on erythrocyte deformability on mobilization of nitric oxide (NO) and of its metabolites in the presence of acetylcholine (ACh) in healthy human blood samples. MAIN METHODS Levels of NO were evaluated by amperometric method. Nitrite, nitrate and S-nitrosoglutathione (GSNO) were measured using the spectrophotometric Griess reaction. Erythrocyte deformability was determined using the Rheodyn SSD laser diffractometer. KEY FINDINGS In the presence of high concentrations of fibrinogen and ACh (10 μM) in the blood samples from healthy humans the erythrocyte nitrites, nitrates and GSNO concentrations increased without significant changes in NO efflux. Mobilization of NO in erythrocytes' presence was enhanced in the presence of ACh and high fibrinogen levels. SIGNIFICANCE These results suggest that during inflammation when both ACh and high levels of fibrinogen are present, NO delivery by erythrocytes might be compromised by their NO scavenging ability that acts as a compensatory mechanism against the overproduced NO by endothelial inducible nitric oxide synthase.
Collapse
|
16
|
Bentsen H, Solberg DK, Refsum H, Bøhmer T. Clinical and biochemical validation of two endophenotypes of schizophrenia defined by levels of polyunsaturated fatty acids in red blood cells. Prostaglandins Leukot Essent Fatty Acids 2012; 87:35-41. [PMID: 22705264 DOI: 10.1016/j.plefa.2012.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/13/2012] [Accepted: 05/17/2012] [Indexed: 01/29/2023]
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFAs) are bimodally distributed in acute schizophrenia, suggesting two endophenotypes. We intended to characterize these endophenotypes clinically. Our a priori hypothesis was that low PUFA patients have more negative symptoms. PATIENTS AND METHODS Patients (aged 18-39) with schizophrenia, schizoaffective or schizophreniform disorders were recruited at hospital admission during an acute episode. The baseline Positive and Negative Syndrome Scale, vital signs and biochemical variables were measured in 97 patients with available RBC PUFA levels. Adjustment for multiple testing was not performed. RESULTS The median Negative Subscale score was higher (p=0.04) in the low PUFA (25 points, n=30) than in the high PUFA group (19 points, n=67). Among 95 patients with measurements of serum triglycerides, hypertriglyceridaemia was more prevalent (p=0.009) among low PUFA patients (66%) than high PUFA patients (36%). PUFA modified the effect of antipsychotics on triglycerides (p=0.046). Serum glucose and mean corpuscular haemoglobin were higher (p=0.03, 0.001, respectively) in low PUFA than in high PUFA patients. Low PUFA men were heavier (p=0.04) than high PUFA men. CONCLUSIONS During an acute episode of schizophrenia, patients with low RBC PUFA have more negative symptoms and more metabolic and haematological abnormalities than those with high PUFA. This indicates that PUFA levels define two clinically distinct endophenotypes of the disorder.
Collapse
Affiliation(s)
- H Bentsen
- Center for Psychopharmacology, Diakonhjemmet Hospital, 0319 Oslo, Norway.
| | | | | | | |
Collapse
|
17
|
Simmonds MJ, Baskurt OK, Meiselman HJ, Pyne M, Kakanis M, Brenu E, Keane J, Christy R, Marshall-Gradisnik SM. Haemorheology of the eastern grey kangaroo and the Tasmanian devil. AUST J ZOOL 2011. [DOI: 10.1071/zo10083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The blood of two Australian marsupials, the eastern grey kangaroo (Macropus giganteus) and the Tasmanian devil (Sarcophilus harrisii), has been reported to have greater oxygen-carrying capacity (i.e. haemoglobin content) when compared with that of placental mammals. We investigated whether alterations of blood rheological properties are associated with the increased oxygen-carrying capacity of these marsupials. Eastern grey kangaroos (n = 6) and Tasmanian devils (n = 4) were anaesthetised for blood sampling; human blood (n = 6) was also sampled for comparison. Laboratory measurements included blood and plasma viscosity, red blood cell (RBC) deformability, RBC aggregation and the intrinsic tendency of RBC to aggregate, RBC surface charge and haematological parameters. Scanning electron micrographs of RBC from each species provided morphological information. High-shear blood viscosity at native haematocrit was highest for the Tasmanian devil. When haematocrit was adjusted to 0.4 L L–1, lower-shear blood viscosity was highest for the eastern grey kangaroo. RBC deformability was greatly reduced for the Tasmanian devil. Eastern grey kangaroo blood had the highest RBC aggregation, whereas Tasmanian devil RBC did not aggregate. The surface charge of RBC for marsupials was ~15% lower than that of humans. The dependence of oxygen-delivery effectiveness on haemoglobin concentration (i.e. oxygen content) and blood viscosity was quantitated by calculating the haematocrit to blood viscosity ratio and was 15–25% lower for marsupials compared with humans. Our results suggest that environmental pressures since the marsupial–monotreme divergence have influenced the development of vastly different strategies to maintain a match between oxygen demand and delivery.
Collapse
|
18
|
Henkelman S, Lagerberg JW, Graaff R, Rakhorst G, Van Oeveren W. The effects of cryopreservation on red blood cell rheologic properties. Transfusion 2010; 50:2393-401. [DOI: 10.1111/j.1537-2995.2010.02730.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Development of Optical Sensing System for Noninvasive and Dynamic Monitoring of Thrombogenic Process. ASAIO J 2010; 56:460-7. [DOI: 10.1097/mat.0b013e3181ebb815] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
20
|
Oshima S, Sankai Y. Evaluation of optical propagation in blood for noninvasive detection of prethrombus blood condition. ASAIO J 2010; 55:550-5. [PMID: 19812478 DOI: 10.1097/mat.0b013e3181be2e44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This article evaluates the optical propagation to detect a "prethrombus" blood noninvasively. Thrombosis is still an inevitable issue in use of blood pumps, and it is required to predict thrombus formation as early as possible. We focused on the red blood cell (RBC) aggregation that is one of the features of thrombogenic process. First, by using a computer simulation, we calculated the optical propagations in blood for the RBC aggregation and nonaggregation blood. This simulation is based on the Monte-Carlo method and attempts to calculate the optical characteristics of the blood stochastically. In our simulation, the optical propagation with the RBC aggregation showed a different characteristic from that of the nonaggregation. Next, we examined the optical propagation in bovine blood with various activated whole blood clotting time (ACT). The blood mixed with sodium citrate was circulated by a blood pump. The ACT was adjusted between 1,000 and 50 seconds by controlling the ratio of calcium chloride solution to sodium citrate. We confirmed the RBC aggregation by using microscopic images and microthromboses in the pump directly. As a result, we evaluated that the change of the optical propagation has a correlation with thrombogenic process just as it was observed in our computer simulation. Our data indicate that the measurement of optical propagation can detect a prethrombous blood condition with RBC aggregation. Our study will help to establish optical technologies to detect prethrombous continuously and noninvasively.
Collapse
Affiliation(s)
- Shiori Oshima
- Cybernics Laboratory, Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan.
| | | |
Collapse
|
21
|
Nekoofar MH, Namazikhah MS, Sheykhrezae MS, Mohammadi MM, Kazemi A, Aseeley Z, Dummer PMH. pH of pus collected from periapical abscesses. Int Endod J 2009; 42:534-8. [PMID: 19460003 DOI: 10.1111/j.1365-2591.2009.01550.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To determine the pH of pus collected from periapical abscesses. METHODOLOGY Forty patients (Male = 17/Female = 23) between the ages 17 and 37 years, each with a periapical abscess and with no relevant medical history, were recruited. All the participants had moderate-to-severe pain on percussion accompanied by localized or generalized swelling. At least 1 mL of pus was aspirated from each participant using a No 20 gauge needle. A pH meter was used to define the pH of the pus immediately following aspiration. RESULT The mean pH of pus from the periapical abscesses of patients was 6.68 +/- 0.324 with a range between 6.0 and 7.3. There was no statistically significant difference in pH by gender or age. CONCLUSION The mean pH of pus from periapical abscesses was generally acidic, but some samples (two female and three male) were neutral and some samples (four female and one male) were alkaline.
Collapse
Affiliation(s)
- M H Nekoofar
- Department of Endodontics, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abdel-Razeq SS, Kaplan LJ. Hyperchloremic Metabolic Acidosis: More than Just a Simple Dilutional Effect. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-92278-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Abstract
Biological flows, especially blood flow, have attracted a great deal of attention from fluid
engineering and hemodynamic investigation fields with advances in bio-technology. The flow of
blood carries dissolved gases, nutrients, hormones, and metabolic waste through the circulatory
system in the human body. In the present study, the characteristics of blood flow inside a
microchannel are investigated by using a micro-particle image velocimetry (micro-PIV) and an
optical image processing technique. The motion of red blood cells (RBCs) was visualized with a
high-speed CCD camera. The microchannel is made of polydimethylsiloxane (PDMS) material and
a slide-glass is attached to the top. The thickness of the margin cell depletion layer is calculated
from an acquired raw image through the image processing method, with variations in microchannel
width.
Collapse
|
24
|
[Red blood cell count in relation to exposure to mobile radio facilities : Report of the commission on "methods and quality assurance in environmental medicine"]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2006; 49:833-5. [PMID: 16897153 DOI: 10.1007/s00103-006-0014-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Schechner V, Ben-Ami R, Hershcovici T, Yedgar S, Beigel Y, Shapira I, Berliner S, Barsthein G. Plasma dependent reduction in red blood cell aggregation after dextran sulfate low-density lipoprotein apheresis--implications for rheological studies. Ther Apher Dial 2005; 9:379-84. [PMID: 16202011 DOI: 10.1111/j.1744-9987.2005.00317.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Red blood cell (RBC) aggregation is increased in familial hypercholesterolemia, and is reduced significantly after low density lipoprotein (LDL) apheresis. The purpose of the present study was to clarify whether this reduction depends on changes in plasma composition, RBC membrane properties, or both. RBC aggregation was determined in a computerized cell flow-properties analyzer, before and after LDL apheresis. We compared RBC aggregation in autologous plasma with aggregation in a plasma-free standard solution (0.5% of dextran 500 kDa) to define the separate contributions of plasma and cellular properties to the observed RBC aggregation. RBC aggregation in autologous plasma was reduced by 35.5% after LDL apheresis (P=0.01) but was not significantly affected when measured in dextran 500. This suggests that LDL apheresis attenuated RBC aggregation by altering plasma composition rather than RBC membrane properties. These results are relevant to the understanding of hemorheological changes which follow therapeutic apheresis in hypercholesterolemic patients.
Collapse
Affiliation(s)
- Vered Schechner
- Department of Internal Medicine A at the Rabin Medical Center, Beilinson Campus, Petach Tiqva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Barvitenko NN, Adragna NC, Weber RE. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance. Cell Physiol Biochem 2005; 15:1-18. [PMID: 15665511 DOI: 10.1159/000083634] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2004] [Indexed: 11/19/2022] Open
Abstract
Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate.
Collapse
Affiliation(s)
- Nadezhda N Barvitenko
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
| | | | | |
Collapse
|
27
|
Toker S, Rogowski O, Melamed S, Shirom A, Shapira I, Berliner S, Zeltser D. Association of components of the metabolic syndrome with the appearance of aggregated red blood cells in the peripheral blood. An unfavorable hemorheological finding. Diabetes Metab Res Rev 2005; 21:197-202. [PMID: 15386807 DOI: 10.1002/dmrr.502] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Components of the metabolic syndrome are associated with low-grade inflammation. This can be accompanied by the synthesis of sticky proteins and erythrocyte aggregation. METHODS The degree of erythrocyte aggregation was evaluated by a simple slide test and image analysis along with other markers of the acute-phase response, including the white blood cell count (WBCC), erythrocyte sedimentation rate (ESR), fibrinogen and high sensitivity C-reactive protein (hs-CRP) concentrations. Patients were categorized in four groups according to the absence or presence of 1, 2 and 3 or more components of the metabolic syndrome. RESULTS We examined a total of 1447 individuals (576 women and 871 men) who gave their informed consent for participation. A significant cardiovascular risk factors, age and hemoglobin adjusted correlation was noted between the degree of erythrocyte aggregation and the number of components of the metabolic syndrome (r = 0.17, p < 0.0005). This correlation was better than that observed for clottable fibrinogen (r = 0.13 p < 0.0005), for ESR (r = 0.11 p < 0.0005) or WBCC (r = 0.13 p < 0.0005). A somewhat better correlation was noted for hs-CRP (r = 0.26 p < 0.0005). CONCLUSIONS The multiplicity of components of the metabolic syndrome is associated with enhanced erythrocyte aggregation, probably related to the presence of multiple adhesive macromolecules in the peripheral blood. The enhanced aggregation might contribute to capillary slow flow, tissue deoxygenation as well as vasomotor tone changes in the presence of multiple components of this syndrome.
Collapse
Affiliation(s)
- Sharon Toker
- Faculty of Management, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
28
|
Pedersen SF, Cala PM. Comparative biology of the ubiquitous Na+/H+ exchanger, NHE1: lessons from erythrocytes. ACTA ACUST UNITED AC 2004; 301:569-78. [PMID: 15229867 DOI: 10.1002/jez.a.47] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By virtue of their electroneutral exchange of intracellular H+ for extracellular Na+, the Na+/H+ exchangers (NHE1-NHE8) play a pivotal role in many physiological processes. This review focuses on the ubiquitous plasma membrane isoform, NHE1. Particular attention is given to the roles and regulation of NHE1 in erythrocytes, in their own right and as model systems, but pertinent findings from non-erythroid cells are also discussed. NHE1 plays a key role in the regulation of cell volume and pH, and consequently in the control of such diverse processes as blood O2/CO2 transport, and cell proliferation, motility, and survival. Disturbances in NHE1 function are involved in important pathological states such as hypoxic cell damage and cancer development. NHE1 has a predicted topology of 12 transmembrane domains, and a hydrophilic C-terminus thought to be the major site for NHE1 regulation. NHE1 is highly conserved throughout the vertebrate phylum, particularly in the transmembrane region and the proximal part of the C-terminus. In non-erythroid, and probably also in erythroid cells, this part of the hydrophilic C-terminus interacts with multiple binding partners important for NHE1 function. Erythrocyte NHE1s from mammalian, amphibian, and teleost species are activated by cell shrinkage, decreased pH(i), inhibition of Ser/Thr protein phosphatases, and activation of Ser/Thr protein kinases, i.e., many of the stimuli activating NHE1 in non-erythroid cells. In erythrocytes of many lower vertebrates, NHE1 is activated during hypoxia and is an important modulator of hemoglobin oxygen affinity. Sensitivity of NHE1 to oxygenation status has recently been described also in non-erythroid mammalian cells.
Collapse
Affiliation(s)
- Stine Falsig Pedersen
- Dept. of Biochemistry, August Krogh Institute, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|