1
|
Rodrigues KE, Pontes MHB, Cantão MBS, Prado AF. The role of matrix metalloproteinase-9 in cardiac remodeling and dysfunction and as a possible blood biomarker in heart failure. Pharmacol Res 2024; 206:107285. [PMID: 38942342 DOI: 10.1016/j.phrs.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Heart failure (HF) is the leading cause of morbidity and mortality in cardiovascular diseases, being responsible for many hospitalizations annually. HF is considered a public health problem with significant economic and social impact, which makes searches essential for strategies that improve the ability to predict and diagnose HF. In this way, biomarkers can help in risk stratification for a more personalized approach to patients with HF. Preclinical and clinical evidence shows the participation of matrix metalloproteinase 9 (MMP-9) in the HF process. In this review, we will demonstrate the critical role that MMP-9 plays in cardiac remodeling and dysfunction. We will also show its importance as a blood biomarker in acute and chronic HF patients.
Collapse
Affiliation(s)
- Keuri Eleutério Rodrigues
- Biodiversity and Biotechnology Post Graduate Program - BIONORTE, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Maria Helena Barbosa Pontes
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Manoel Benedito Sousa Cantão
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Alejandro Ferraz Prado
- Biodiversity and Biotechnology Post Graduate Program - BIONORTE, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| |
Collapse
|
2
|
Meinzinger A, Zsigmond Á, Horváth P, Kellenberger A, Paréj K, Tallone T, Flachner B, Cserhalmi M, Lőrincz Z, Cseh S, Shmerling D. RuX: A Novel, Flexible, and Sensitive Mifepristone-Induced Transcriptional Regulation System. Int J Cell Biol 2023; 2023:7121512. [PMID: 37941807 PMCID: PMC10630016 DOI: 10.1155/2023/7121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Inducible gene regulation methods are indispensable in diverse biological applications, yet many of them have severe limitations in their applicability. These include inducer toxicity, a limited variety of organisms the given system can be used in, and side effects of the induction method. In this study, a novel inducible system, the RuX system, was created using a mutant ligand-binding domain of the glucocorticoid receptor (CS1/CD), used together with various genetic elements such as the Gal4 DNA-binding domain or Cre recombinase. The RuX system is shown to be capable of over 1000-fold inducibility, has flexible applications, and is offered for use in cell cultures.
Collapse
Affiliation(s)
| | | | | | | | | | - Tiziano Tallone
- Department of Endocrinology, Metabolism and Cardiovascular Research, University of Fribourg, Fribourg, Switzerland
| | | | | | | | - Sándor Cseh
- TargetEx Biosciences Ltd., Dunakeszi, Hungary
| | | |
Collapse
|
3
|
Kucherenko MM, Sang P, Yao J, Gransar T, Dhital S, Grune J, Simmons S, Michalick L, Wulsten D, Thiele M, Shomroni O, Hennig F, Yeter R, Solowjowa N, Salinas G, Duda GN, Falk V, Vyavahare NR, Kuebler WM, Knosalla C. Elastin stabilization prevents impaired biomechanics in human pulmonary arteries and pulmonary hypertension in rats with left heart disease. Nat Commun 2023; 14:4416. [PMID: 37479718 PMCID: PMC10362055 DOI: 10.1038/s41467-023-39934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 07/04/2023] [Indexed: 07/23/2023] Open
Abstract
Pulmonary hypertension worsens outcome in left heart disease. Stiffening of the pulmonary artery may drive this pathology by increasing right ventricular dysfunction and lung vascular remodeling. Here we show increased stiffness of pulmonary arteries from patients with left heart disease that correlates with impaired pulmonary hemodynamics. Extracellular matrix remodeling in the pulmonary arterial wall, manifested by dysregulated genes implicated in elastin degradation, precedes the onset of pulmonary hypertension. The resulting degradation of elastic fibers is paralleled by an accumulation of fibrillar collagens. Pentagalloyl glucose preserves arterial elastic fibers from elastolysis, reduces inflammation and collagen accumulation, improves pulmonary artery biomechanics, and normalizes right ventricular and pulmonary hemodynamics in a rat model of pulmonary hypertension due to left heart disease. Thus, targeting extracellular matrix remodeling may present a therapeutic approach for pulmonary hypertension due to left heart disease.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Pengchao Sang
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Juquan Yao
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Tara Gransar
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, 29634, Clemson, SC, USA
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Szandor Simmons
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Laura Michalick
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Dag Wulsten
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mario Thiele
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Orr Shomroni
- NGS Integrative Genomics (NIG), Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Felix Hennig
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Ruhi Yeter
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
| | - Natalia Solowjowa
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics (NIG), Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Department of Health Science and Technology, Translational Cardiovascular Technology, LFW C 13.2, ETH Zurich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Naren R Vyavahare
- Department of Bioengineering, Clemson University, 29634, Clemson, SC, USA
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
- Departments of Physiology and Surgery, University of Toronto, 1 King´s College Circle, Toronto, ON M5S 1A8, Canada.
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
| |
Collapse
|
4
|
Xue JB, Val-Blasco A, Davoodi M, Gómez S, Yaniv Y, Benitah JP, Gómez AM. Heart failure in mice induces a dysfunction of the sinus node associated with reduced CaMKII signaling. J Gen Physiol 2022; 154:213178. [PMID: 35452507 PMCID: PMC9040062 DOI: 10.1085/jgp.202112895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Dysfunction of the sinoatrial node (SAN), the natural heart pacemaker, is common in heart failure (HF) patients. SAN spontaneous activity relies on various ion currents in the plasma membrane (voltage clock), but intracellular Ca2+ ([Ca2+]i) release via ryanodine receptor 2 (RYR2; Ca2+ clock) plays an important synergetic role. Whereas remodeling of voltage-clock components has been revealed in HF, less is known about possible alterations to the Ca2+ clock. Here, we analyzed [Ca2+]i handling in SAN from a mouse HF model after transverse aortic constriction (TAC) and compared it with sham-operated animals. ECG data from awake animals showed slower heart rate in HF mice upon autonomic nervous system blockade, indicating intrinsic sinus node dysfunction. Confocal microscopy analyses of SAN cells within whole tissue showed slower and less frequent [Ca2+]i transients in HF. This correlated with fewer and smaller spontaneous Ca2+ sparks in HF SAN cells, which associated with lower RYR2 protein expression level and reduced phosphorylation at the CaMKII site. Moreover, PLB phosphorylation at the CaMKII site was also decreased in HF, which could lead to reduced sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) function and lower sarcoplasmic reticulum Ca2+ content, further depressing the Ca2+ clock. The inhibition of CaMKII with KN93 slowed [Ca2+]i transient rate in both groups, but this effect was smaller in HF SAN, consistent with less CaMKII activation. In conclusion, our data uncover that the mechanism of intrinsic pacemaker dysfunction in HF involves reduced CaMKII activation.
Collapse
Affiliation(s)
- Jian-Bin Xue
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Almudena Val-Blasco
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Moran Davoodi
- Biomedical Engineering, Technion Institute, Haifa, Israel
| | - Susana Gómez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Yael Yaniv
- Biomedical Engineering, Technion Institute, Haifa, Israel
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Ana María Gómez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| |
Collapse
|
5
|
Lygate CA. The Pitfalls of in vivo Cardiac Physiology in Genetically Modified Mice - Lessons Learnt the Hard Way in the Creatine Kinase System. Front Physiol 2021; 12:685064. [PMID: 34054587 PMCID: PMC8160301 DOI: 10.3389/fphys.2021.685064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
In order to fully understand gene function, at some point, it is necessary to study the effects in an intact organism. The creation of the first knockout mouse in the late 1980's gave rise to a revolution in the field of integrative physiology that continues to this day. There are many complex choices when selecting a strategy for genetic modification, some of which will be touched on in this review, but the principal focus is to highlight the potential problems and pitfalls arising from the interpretation of in vivo cardiac phenotypes. As an exemplar, we will scrutinize the field of cardiac energetics and the attempts to understand the role of the creatine kinase (CK) energy buffering and transport system in the intact organism. This story highlights the confounding effects of genetic background, sex, and age, as well as the difficulties in interpreting knockout models in light of promiscuous proteins and metabolic redundancy. It will consider the dose-dependent effects and unintended consequences of transgene overexpression, and the need for experimental rigour in the context of in vivo phenotyping techniques. It is intended that this review will not only bring clarity to the field of cardiac energetics, but also aid the non-expert in evaluating and critically assessing data arising from in vivo genetic modification.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Nishimura K, Asakura M, Hirotani S, Okuhara Y, Shirai M, Orihara Y, Matsumoto Y, Naito Y, Minamino N, Masuyama T, Ishihara M. Manipulation of beta-adrenergic receptor in pressure-overloaded murine hearts mimics adverse and reverse cardiac remodeling. Biochem Biophys Res Commun 2020; 527:960-967. [PMID: 32439165 DOI: 10.1016/j.bbrc.2020.04.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
Transverse aortic constriction (TAC) has been widely used to create pressure overload induced heart failure in mice. However, this conventional model has some limitations such as low reproducibility and long creation period of cardiac failure. In order to establish a highly reproducible cardiac failure model that mimics adverse cardiac remodeling (ACR) we combined pressure overload and beta-adrenergic receptor stimuli using isoproterenol (ISO) and explored the optimal TAC model by changing the durations of TAC and the doses of ISO. Thus we constructed a suitable model for ACR with an effective combination of 3-week TAC and subsequent one-week ISO (3 mg/kg/day) infusion. Using RNA-Seq analyses, we identified that the up-regulated genes were mainly related to fibrosis including Fbn1, C1qtnf6 and Loxl2; and that the down-regulated genes were associated with mitochondrial function including Uqcrc1, Ndufs3, and Idh2 in failing hearts of our ACR model. Next, we followed the changes in cardiac function after ceasing ISO infusion. Left ventricular function gradually recovered after cessation of ISO, suggesting cardiac reverse remodeling (CRR). Gene expression signatures of hearts, which exhibited CRR, were almost identical to that of TAC hearts without ISO. In conclusion, our new model exhibits a transition to ACR and subsequent CRR with high reproducibility. This murine model might add new insights into the experiments of heart failure technically as well as scientifically.
Collapse
Affiliation(s)
- Koichi Nishimura
- Department of Cardiovascular and Renal Medicine, Hyogo Collage of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Masanori Asakura
- Department of Cardiovascular and Renal Medicine, Hyogo Collage of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Shinichi Hirotani
- Cardiovascular Division, Kawachi General Hospital, 1-31 Yokomakura, Higashiosaka, Osaka, 578-0954, Japan
| | - Yoshitaka Okuhara
- Department of Cardiovascular and Renal Medicine, Hyogo Collage of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, 6-1, Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Yoshiyuki Orihara
- Department of Cardiovascular and Renal Medicine, Hyogo Collage of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yuki Matsumoto
- Department of Cardiovascular and Renal Medicine, Hyogo Collage of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoshiro Naito
- Department of Cardiovascular and Renal Medicine, Hyogo Collage of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, 6-1, Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Tohru Masuyama
- Department of Cardiovascular and Renal Medicine, Hyogo Collage of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, Hyogo Collage of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
7
|
Chin MT, Conway SJ. Role of Tafazzin in Mitochondrial Function, Development and Disease. J Dev Biol 2020; 8:jdb8020010. [PMID: 32456129 PMCID: PMC7344621 DOI: 10.3390/jdb8020010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Tafazzin, an enzyme associated with the rare inherited x-linked disorder Barth Syndrome, is a nuclear encoded mitochondrial transacylase that is highly conserved across multiple species and plays an important role in mitochondrial function. Numerous studies have elucidated the mechanisms by which Tafazzin affects mitochondrial function, but its effects on development and susceptibility to adult disease are incompletely understood. The purpose of this review is to highlight previous functional studies across a variety of model organisms, introduce recent studies that show an important role in development, and also to provide an update on the role of Tafazzin in human disease. The profound effects of Tafazzin on cardiac development and adult cardiac homeostasis will be emphasized. These studies underscore the importance of mitochondrial function in cardiac development and disease, and also introduce the concept of Tafazzin as a potential therapeutic modality.
Collapse
Affiliation(s)
- Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
- Correspondence: (M.T.C.); (S.J.C.); Tel.: +1-617-636-8776 (M.T.C.); +1-317-278-8780 (S.J.C.)
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (M.T.C.); (S.J.C.); Tel.: +1-617-636-8776 (M.T.C.); +1-317-278-8780 (S.J.C.)
| |
Collapse
|
8
|
Groenendyk J, Robinson A, Wang Q, Hu M, Tang J, Chen XZ, Mengel M, Alexander RT, Agellon LB, Michalak M. Tauroursodeoxycholic acid attenuates cyclosporine-induced renal fibrogenesis in the mouse model. Biochim Biophys Acta Gen Subj 2019; 1863:1210-1216. [DOI: 10.1016/j.bbagen.2019.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
|
9
|
Giles J, Patel JR, Miller A, Iverson E, Fitzsimons D, Moss RL. Recovery of left ventricular function following in vivo reexpression of cardiac myosin binding protein C. J Gen Physiol 2019; 151:77-89. [PMID: 30573635 PMCID: PMC6314388 DOI: 10.1085/jgp.201812238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023] Open
Abstract
The loss of cardiac myosin binding protein C (cMyBP-C) results in left ventricular dilation, cardiac hypertrophy, and impaired ventricular function in both constitutive and conditional cMyBP-C knockout (MYBPC3 null) mice. It remains unclear whether the structural and functional phenotypes expressed in the MYBPC3 null mouse are reversible, which is an important question, since reduced expression of cMyBP-C is an important cause of hypertrophic cardiomyopathy in humans. To investigate this question, we generated a cardiac-specific transgenic mouse model using a Tet-Off inducible system to permit the controlled expression of WT cMyBP-C on the MYBPC3 null background. Functional Tet-Off mice expressing WT cMyBP-C (FT-WT) were generated by crossing tetracycline transactivator mice with responder mice carrying the WT cMyBP-C transgene. Prior to dietary doxycycline administration, cMyBP-C was expressed at normal levels in FT-WT myocardium, which exhibited similar levels of steady-state force and in vivo left ventricular function as WT mice. Introduction of dietary doxycycline for four weeks resulted in a partial knockdown of cMyBP-C expression and commensurate impairment of systolic and diastolic function to levels approaching those observed in MYBPC 3 null mice. Subsequent withdrawal of doxycycline from the diet resulted in the reexpression of cMyBP-C to levels comparable to those observed in WT mice, along with near-complete recovery of in vivo ventricular function. These results show that the cardiac phenotypes associated with MYBPC3 null mice are reversible. Our work also validates the use of the Tet-Off inducible system as a means to study the mechanisms underlying hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Jasmine Giles
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Jitandrakumar R Patel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Adam Miller
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Elizabeth Iverson
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Daniel Fitzsimons
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
10
|
Hardy E, Hardy-Sosa A, Fernandez-Patron C. MMP-2: is too low as bad as too high in the cardiovascular system? Am J Physiol Heart Circ Physiol 2018; 315:H1332-H1340. [DOI: 10.1152/ajpheart.00198.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Matrix metalloproteinase (MMP)-2 cleaves a broad spectrum of substrates, including extracellular matrix components (responsible for normal tissue remodeling) and cytokines (modulators of the inflammatory response to physiological insults such as tissue damage). MMP-2 expression is elevated in many cardiovascular pathologies (e.g., myocardial infarction, hypertensive heart disease) where tissue remodeling and inflammatory responses are perturbed. Thus, it has generally been assumed that blockade of MMP-2 activity will yield therapeutic effects. Here, we provide a counterargument to this dogma based on 1) preclinical studies on Mmp2-null ( Mmp2−/−) mice and 2) clinical studies on patients with inactivating MMP2 gene mutations. Furthermore, we put forward the hypothesis that, when MMP-2 activity falls below baseline, the bioavailability of proinflammatory cytokines normally cleaved and inactivated by MMP-2 increases, leading to the production of cytokines and cardiac secretion of phospholipase A2activity into the circulation, which stimulate systemic inflammation that perturbs lipid metabolism in target organs. Finally, we suggest that insufficient understanding of the consequences of MMP-2 deficiency remains a major factor in the failure of MMP-2 inhibitor-based therapeutic approaches. This paucity of knowledge precludes our ability to effectively intervene in cardiovascular and noncardiovascular pathologies at the level of MMP-2.
Collapse
Affiliation(s)
- Eugenio Hardy
- Biotechnology Laboratory, Study Center for Research and Biological Evaluations, Institute of Pharmacy and Foods, University of Havana, Havana, Cuba
| | | | - Carlos Fernandez-Patron
- Department of Biochemistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Melleby AO, Romaine A, Aronsen JM, Veras I, Zhang L, Sjaastad I, Lunde IG, Christensen G. A novel method for high precision aortic constriction that allows for generation of specific cardiac phenotypes in mice. Cardiovasc Res 2018; 114:1680-1690. [DOI: 10.1093/cvr/cvy141] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Arne O Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Ioanni Veras
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Li B, Zhou W, Yang X, Zhou Y, Tan Y, Yuan C, Song Y, Chen X, Zhang W. The CD147/MMP-2 signaling pathway may regulate early stage cardiac remodelling in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2016; 43:1125-1133. [PMID: 27451961 DOI: 10.1111/1440-1681.12626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Bowei Li
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Wanxing Zhou
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Xiaorong Yang
- Department of Clinical Laboratory; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Yuliang Zhou
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Yongjing Tan
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Congcong Yuan
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Yulan Song
- Department of Pathology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| | - Xiao Chen
- The School of Life Science of Guang Dong Pharmaceutical University; Guangzhou China
| | - Wei Zhang
- Department of Internal Cardiology; The First Affiliated Hospital of Guang Dong Pharmaceutical University (School of Clinical Medicine); Guangzhou China
| |
Collapse
|
13
|
Fernandez‐Patron C, Kassiri Z, Leung D. Modulation of Systemic Metabolism by MMP‐2: From MMP‐2 Deficiency in Mice to MMP‐2 Deficiency in Patients. Compr Physiol 2016; 6:1935-1949. [DOI: 10.1002/cphy.c160010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Fernandez-Patron C, Leung D. Emergence of a metalloproteinase / phospholipase A2 axis of systemic inflammation. ACTA ACUST UNITED AC 2015; 2:29-38. [PMID: 26491703 DOI: 10.2147/mnm.s48748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We review select aspects of the biology of matrix metalloproteinases (MMPs) with a focus on the modulation of inflammatory responses by MMP-2. MMP-2 is a zinc- and calcium-dependent endoprotease with substrates including extracellular matrix proteins, vasoactive peptides and chemokines. Humans and mice with MMP-2 deficiency exhibit a predominantly inflammatory phenotype. Recent research shows that MMP-2 deficient mice display elevated activity of a secreted phospholipase A2 in the heart. Additionally, MMP-2 deficient mice exhibit abnormally high prostaglandin E2 levels in various organs (i.e., the heart, brain and liver), signs of inflammation and exacerbated lipopolysaccharide-induced fever. We briefly review the biology of sPLA2 enzymes to propose the existence of a heart-centric MMP-2/sPLA2 axis of systemic inflammation. Moreover, we postulate that PLA2 activation is induced by chemokines, whose ability to signal inflammation is regulated in a tissue-specific fashion by MMPs. Thus, genetic and pharmacologically induced MMP-deficiencies can be expected to perturb PLA2-mediated inflammatory mechanisms.
Collapse
Affiliation(s)
- Carlos Fernandez-Patron
- Department of Biochemistry, Cardiovascular Research Group and Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Dickson Leung
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Cadalbert LC, Ghaffar FN, Stevenson D, Bryson S, Vaz FM, Gottlieb E, Strathdee D. Mouse Tafazzin Is Required for Male Germ Cell Meiosis and Spermatogenesis. PLoS One 2015; 10:e0131066. [PMID: 26114544 PMCID: PMC4483168 DOI: 10.1371/journal.pone.0131066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/27/2015] [Indexed: 01/08/2023] Open
Abstract
Barth syndrome is an X-linked mitochondrial disease, symptoms of which include neutropenia and cardiac myopathy. These symptoms are the most significant clinical consequences of a disease, which is increasingly recognised to have a variable presentation. Mutation in the Taz gene in Xq28 is thought to be responsible for the condition, by altering mitochondrial lipid content and mitochondrial function. Male chimeras carrying a targeted mutation of Taz on their X-chromosome were infertile. Testes from the Taz knockout chimeras were smaller than their control counterparts and this was associated with a disruption of the progression of spermatocytes through meiosis to spermiogenesis. Taz knockout ES cells also showed a defect when differentiated to germ cells in vitro. Mutant spermatocytes failed to progress past the pachytene stage of meiosis and had higher levels of DNA double strand damage and increased levels of endogenous retrotransposon activity. Altogether these data revealed a novel role for Taz in helping to maintain genome integrity in meiosis and facilitating germ cell differentiation. We have unravelled a novel function for the Taz protein, which should contribute to an understanding of how a disruption of the Taz gene results in the complex symptoms underlying Barth Syndrome.
Collapse
Affiliation(s)
- Laurence C. Cadalbert
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Farah Naz Ghaffar
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - David Stevenson
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Sheila Bryson
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eyal Gottlieb
- Cell Death and Metabolism Laboratory, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Douglas Strathdee
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| |
Collapse
|
16
|
Shehwaro N, Langlois AL, Gueutin V, Gauthier M, Casenave M, Izzedine H. [Doxycycline or how to create new with the old?]. Therapie 2014; 69:129-41. [PMID: 24926631 DOI: 10.2515/therapie/2013069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/26/2013] [Indexed: 11/20/2022]
Abstract
Tetracyclines are broad-spectrum antibiotics that interfere with protein synthesis. They were first widely prescribed by dermatologists in the early 1950s in the treatment of acne. More recently, their biological actions on inflammation, proteolysis, angiogenesis, apoptosis, metal chelation, ionophoresis, and bone metabolism were studied. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that degrade components of the extracellular matrix (ECM). MMPs have direct or indirect effects on the vascular endothelium and the vascular relaxation/contraction system. The therapeutic effects of tetracyclines and analogues were studied in rosacea, bullous dermatoses, neutrophilic diseases, pyoderma gangrenosum, sarcoidosis, aortic aneurysms, cancer metastasis, periodontitis and autoimmune diseases autoimmune diseases such as rheumatoid arthritis and scleroderma. In addition, downregulation of MMP using doxycycline could be beneficial in reducing vascular dysfunction mediated by MMPs and progressive damage of the vascular wall. We review the nonantibiotic properties of doxycycline and its potential clinical applications.
Collapse
|
17
|
Prévilon M, Pezet M, Vinet L, Mercadier JJ, Rouet-Benzineb P. Gender-specific potential inhibitory role of Ca2+/calmodulin dependent protein kinase phosphatase (CaMKP) in pressure-overloaded mouse heart. PLoS One 2014; 9:e90822. [PMID: 24608696 PMCID: PMC3946626 DOI: 10.1371/journal.pone.0090822] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/04/2014] [Indexed: 01/08/2023] Open
Abstract
Background Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) has been proposed as a potent regulator of multifunctional Ca2+/calmodulin-dependent protein kinases (i.e., CaMKII). The CaMKII-dependent activation of myocyte enhancer factor 2 (MEF2) disrupts interactions between MEF2-histone deacetylases (HDACs), thereby de-repressing downstream gene transcription. Whether CaMKP modulates the CaMKII- MEF2 pathway in the heart is unknown. Here, we investigated the molecular and functional consequences of left ventricular (LV) pressure overload in the mouse of both genders, and in particular we evaluated the expression levels and localization of CaMKP and its association with CaMKII-MEF2 signaling. Methodology and Principal Findings Five week-old B6D1/F1 mice of both genders underwent a sham-operation or thoracic aortic constriction (TAC). Thirty days later, TAC was associated with pathological LV hypertrophy characterized by systolic and diastolic dysfunction. Gene expression was assessed by real-time PCR. Fetal gene program re-expression comprised increased RNA levels of brain natriuretic peptide and alpha-skeletal actin. Mouse hearts of both genders expressed both CaMKP transcript and protein. Activation of signalling pathways was studied by Western blot in LV lysates or subcellular fractions (nuclear and cytoplasmic). TAC was associated with increased CaMKP expression in male LVs whereas it tended to be decreased in females. The DNA binding activity of MEF2 was determined by spectrophotometry. CaMKP compartmentalization differed according to gender. In male TAC mice, nuclear CaMKP was associated with inactive CaMKII resulting in less MEF2 activation. In female TAC mice, active CaMKII (phospho-CaMKII) detected in the nuclear fraction, was associated with a strong MEF2 transcription factor-binding activity. Conclusions/Significance Gender-specific CaMKP compartmentalization is associated with CaMKII-mediated MEF2 activation in pressure-overloaded hearts. Therefore, CaMKP could be considered as an important novel cellular target for the development of new therapeutic strategies for heart diseases.
Collapse
Affiliation(s)
- Miresta Prévilon
- Inserm, UMRS-698, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mylène Pezet
- CEFI-Institut Claude Bernard-IFR02, Paris, France
- Inserm, U823, Plateforme de Microscopie Photonique – Cytométrie en Flux, Institut Albert Bonniot Site Santé BP170–38042, Grenoble, France
| | - Laurent Vinet
- Inserm, UMRS-698, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Genève, Switzerland
| | - Jean-Jacques Mercadier
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Inserm, UMRS-769, Université Paris-Sud, IFR141, LabEx LERMIT, Châtenay-Malabry, France
- AP-HP, Hôpital Bichat, Paris, France
| | | |
Collapse
|
18
|
Bilbija D, Elmabsout AA, Sagave J, Haugen F, Bastani N, Dahl CP, Gullestad L, Sirsjö A, Blomhoff R, Valen G. Expression of retinoic acid target genes in coronary artery disease. Int J Mol Med 2014; 33:677-86. [PMID: 24424466 DOI: 10.3892/ijmm.2014.1623] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/04/2013] [Indexed: 11/06/2022] Open
Abstract
Coronary atherosclerosis can lead to myocardial infarction, and secondarily to post-infarct remodelling and heart failure. Retinoic acid (RA) influences cell proliferation. We hypothesized that RA could influence gene expression and proliferation of cardiovascular cells. Left ventricular biopsies from patients with end-stage heart failure due to coronary artery disease (CAD) or dilated cardiomyopathy were investigated for the content of RA metabolites using liquid chromatography mass spectrometry (LC-MS/MS), and compared with healthy donors. All-trans retinoic acid (ATRA) was increased in the hearts of CAD patients. Gene expression (quantitative PCR) of RA target genes was not influenced in failing hearts, but was increased in the hearts of patients with CAD undergoing open heart surgery. The expression of RA target genes was increased in atherosclerotic lesions from carotid arteries compared to healthy arteries. Stimulation of cardiomyocytes, cardiofibroblasts, smooth muscle cells and endothelial cells with ATRA increased the gene expression of the key enzymes. Cardiofibroblast and smooth muscle cell proliferation were reduced by ATRA, which increased endothelial cell proliferation. Coronary artery disease leads to increased expression of RA target genes. ATRA accumulated in the failing human heart. All investigated cell types present in the heart had induced expression of RA target genes when stimulated with ATRA, which also influenced cell proliferation.
Collapse
Affiliation(s)
- Dusan Bilbija
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ali Ateia Elmabsout
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Julia Sagave
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Fred Haugen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nasser Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Lars Gullestad
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Allan Sirsjö
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Guro Valen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Wang J, Gao E, Chan TO, Zhang XQ, Song J, Shang X, Koch WJ, Feldman AM, Cheung JY. Induced overexpression of Na(+)/Ca(2+) exchanger does not aggravate myocardial dysfunction induced by transverse aortic constriction. J Card Fail 2013; 19:60-70. [PMID: 23273595 DOI: 10.1016/j.cardfail.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alterations in expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) have been implicated in the pathogenesis of heart failure. METHODS AND RESULTS Using transgenic mice in which expression of rat NCX1 was induced at 5 weeks of age, we performed transverse aortic constriction (TAC) at 8 weeks and examined cardiac and myocyte function at 15-18 weeks after TAC (age 23-26 weeks). TAC induced left ventricular (LV) and myocyte hypertrophy and increased myocardial fibrosis in both wild-type (WT) and NCX1-overexpressed mice. NCX1 and phosphorylated ryanodine receptor expression was increased by TAC, whereas sarco(endo)plasmic reticulum Ca(2+)-ATPase levels were decreased by TAC. Action potential duration was prolonged by TAC, but to a greater extent in NCX1 myocytes. Na(+)/Ca(2+) exchange current was similar between WT-TAC and WT-sham myocytes, but was higher in NCX1-TAC myocytes. Both myocyte contraction and [Ca(2+)](i) transient amplitudes were reduced in WT-TAC myocytes, but restored to WT-sham levels in NCX1-TAC myocytes. Despite improvement in single myocyte contractility and Ca(2+) dynamics, induced NCX1 overexpression in TAC animals did not ameliorate LV hypertrophy, increase ejection fraction, or enhance inotropic (maximal first derivative of LV pressure rise, +dP/dt) responses to isoproterenol. CONCLUSIONS In pressure-overload hypertrophy, induced overexpression of NCX1 corrected myocyte contractile and [Ca(2+)](i) transient abnormalities but did not aggravate or improve myocardial dysfunction.
Collapse
Affiliation(s)
- Jufang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Berry E, Bosonea AM, Wang X, Fernandez-Patron C. Insights into the Activity, Differential Expression, Mutual Regulation, and Functions of Matrix Metalloproteinases and A Disintegrin and Metalloproteinases in Hypertension and Cardiac Disease. J Vasc Res 2013; 50:52-68. [DOI: 10.1159/000345240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/13/2012] [Indexed: 12/19/2022] Open
|
21
|
Yeh CC, Malhotra D, Yang YL, Xu Y, Fan Y, Li H, Mann MJ. MEK1-induced physiological hypertrophy inhibits chronic post-myocardial infarction remodeling in mice. J Cell Biochem 2012; 114:47-55. [DOI: 10.1002/jcb.24299] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/16/2012] [Indexed: 11/10/2022]
|
22
|
Park-Windhol C, Zhang P, Zhu M, Su J, Chaves L, Maldonado AE, King ME, Rickey L, Cullen D, Mende U. Gq/11-mediated signaling and hypertrophy in mice with cardiac-specific transgenic expression of regulator of G-protein signaling 2. PLoS One 2012; 7:e40048. [PMID: 22802950 PMCID: PMC3388988 DOI: 10.1371/journal.pone.0040048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/31/2012] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy is a well-established risk factor for cardiovascular morbidity and mortality. Activation of G(q/11)-mediated signaling is required for pressure overload-induced cardiomyocyte (CM) hypertrophy to develop. We previously showed that among Regulators of G protein Signaling, RGS2 selectively inhibits G(q/11) signaling and its hypertrophic effects in isolated CM. In this study, we generated transgenic mice with CM-specific, conditional RGS2 expression (dTG) to investigate whether RGS2 overexpression can be used to attenuate G(q/11)-mediated signaling and hypertrophy in vivo. Transverse aortic constriction (TAC) induced a comparable rise in ventricular mass and ANF expression and corresponding hemodynamic changes in dTG compared to wild types (WT), regardless of the TAC duration (1-8 wks) and timing of RGS2 expression (from birth or adulthood). Inhibition of endothelin-1-induced G(q/11)-mediated phospholipase C β activity in ventricles and atrial appendages indicated functionality of transgenic RGS2. However, the inhibitory effect of transgenic RGS2 on G(q/11)-mediated PLCβ activation differed between ventricles and atria: (i) in sham-operated dTG mice the magnitude of the inhibitory effect was less pronounced in ventricles than in atria, and (ii) after TAC, negative regulation of G(q/11) signaling was absent in ventricles but fully preserved in atria. Neither difference could be explained by differences in expression levels, including marked RGS2 downregulation after TAC in left ventricle and atrium. Counter-regulatory changes in other G(q/11)-regulating RGS proteins (RGS4, RGS5, RGS6) and random insertion were also excluded as potential causes. Taken together, despite ample evidence for a role of RGS2 in negatively regulating G(q/11) signaling and hypertrophy in CM, CM-specific RGS2 overexpression in transgenic mice in vivo did not lead to attenuate ventricular G(q/11)-mediated signaling and hypertrophy in response to pressure overload. Furthermore, our study suggests chamber-specific differences in the regulation of RGS2 functionality and potential future utility of the new transgenic model in mitigating G(q/11) signaling in the atria in vivo.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Peng Zhang
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Ming Zhu
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Jialin Su
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Leonard Chaves
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Angel E. Maldonado
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Michelle E. King
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Lisa Rickey
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Darragh Cullen
- Cardiac Muscle Research Laboratory, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ulrike Mende
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
23
|
Mohammed SF, Storlie JR, Oehler EA, Bowen LA, Korinek J, Lam CSP, Simari RD, Burnett JC, Redfield MM. Variable phenotype in murine transverse aortic constriction. Cardiovasc Pathol 2012; 21:188-98. [PMID: 21764606 PMCID: PMC3412352 DOI: 10.1016/j.carpath.2011.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/28/2011] [Accepted: 05/10/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In mice, transverse aortic constriction (TAC) is variably characterized as a model of pressure overload-induced hypertrophy (left ventricular [LV] hypertrophy, or LVH) or heart failure (HF). While commonly used, variability in the TAC model is poorly defined. The objectives of this study were to characterize the variability in the TAC model and to define a simple, noninvasive method of prospectively identifying mice with HF versus compensated LVH after TAC. METHODS Eight-week-old male C57BL/6J mice underwent TAC or sham and then echocardiography at 3 weeks post-TAC. A group of sham and TAC mice were euthanized after the 3-week echocardiogram, while the remainder underwent repeat echocardiography and were euthanized at 9 weeks post-TAC. The presence of TAC was assessed with two-dimensional echocardiography, anatomic aortic m-mode and color flow, and pulsed-wave Doppler examination of the transverse aorta (TA) and by LV systolic pressure (LVP). Trans-TAC pressure gradient was assessed invasively in a subset of mice. HF was defined as lung/body weight>upper limit in sham-operated mice. RESULTS As compared with sham, TAC mice had higher TA velocity, LVP and LV weight, and lower ejection fraction (EF) at 3 or 9 weeks post-TAC. Only a subset of TAC mice (28%) developed HF. As compared with compensated LVH, HF mice were characterized by similar TA velocity and higher percent TA stenosis, but lower LVP, higher LV weight, larger LV cavity, lower EF and stress-corrected midwall fiber shortening, and more fibrosis. Both EF and LV mass measured by echocardiography at 3 weeks post-TAC were predictive of the presence of HF at 3 or 9 weeks post-TAC. CONCLUSIONS In wild-type mice, TAC produces a variable cardiac phenotype. Marked abnormalities in LV mass and EF at echocardiography 3 weeks post-TAC identify mice with HF at autopsy. These data are relevant to appropriate design and interpretation of murine studies.
Collapse
Affiliation(s)
- Selma F Mohammed
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vinet L, Pezet M, Bito V, Briec F, Biesmans L, Rouet-Benzineb P, Gellen B, Prévilon M, Chimenti S, Vilaine JP, Charpentier F, Sipido KR, Mercadier JJ. Cardiac FKBP12.6 overexpression protects against triggered ventricular tachycardia in pressure overloaded mouse hearts. Basic Res Cardiol 2012; 107:246. [DOI: 10.1007/s00395-012-0246-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/23/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|
25
|
Zeng S, Zhou X, Tu Y, Yao M, Han ZQ, Gao F, Li YM. Long-Term MMP Inhibition by Doxycycline Exerts Divergent Effect on Ventricular Extracellular Matrix Deposition and Systolic Performance in Stroke-Prone Spontaneously Hypertensive Rats. Clin Exp Hypertens 2011; 33:316-24. [DOI: 10.3109/10641963.2010.549262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Prévilon M, Pezet M, Dachez C, Mercadier JJ, Rouet-Benzineb P. Sequential alterations in Akt, GSK3β, and calcineurin signalling in the mouse left ventricle after thoracic aortic constriction. Can J Physiol Pharmacol 2011; 88:1093-101. [PMID: 21076497 DOI: 10.1139/y10-087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Left ventricular hypertrophy (LVH) is an adaptive response to chronic biomechanical stress that generally progresses to maladaptive hypertrophy and heart failure (HF). We studied the activation of protein kinase B (Akt/PKB), glycogen synthase kinase 3 beta (GSK3β), and calcineurin (Cn) at 3, 7, 15, 30, and 60 days following transverse aortic constriction (TAC) in 4-week-old mice. Following TAC, GSK3β inactivation at day 3 was associated with Akt activation, whereas at days 15 and 30, it appeared to be controlled by other kinases. Moderate nonsignificant Cn activation occurred at the early stages, and peak activation at day 30, concomitant with GSK3β inactivation and overt LVH and HF. At the latest stage (day 60), despite further progression of LVH and HF, Cn activation appeared attenuated. Early stages of LVH were associated with Ca2+-handling protein upregulation, whereas major Cn activation, associated with GSK3β inactivation, appeared to engage maladaptive hypertrophy and progression to HF associated with Ca2+-handling protein downregulation.
Collapse
Affiliation(s)
- Miresta Prévilon
- Inserm and Université Paris Diderot, UMR 698, 46 rue Henri Huchard, Paris, France
| | | | | | | | | |
Collapse
|
27
|
Dunn ME, Manfredi TG, Cosmas AC, Vetter FJ, King JN, Rodgers RL. Mechanical function, glycolysis, and ultrastructure of perfused working mouse hearts following thoracic aortic constriction. Cardiovasc Pathol 2011; 20:343-51. [PMID: 21296006 DOI: 10.1016/j.carpath.2010.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/02/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Glycolytic flux in the mouse heart during the progression of left ventricular hypertrophy (LVH) and mechanical dysfunction has not been described. METHODS The main objectives of this study were to characterize the effects of thoracic aortic banding, of 3- and 6-week duration, on: (1) left ventricular (LV) systolic and diastolic function of perfused working hearts quantified by analysis of pressure-volume loops; (2) glycolytic flux in working hearts expressed as the rate of conversion of (3)H-glucose to (3)H(2)O, and (3) ultrastructure of LV biopsies assessed by quantitative and qualitative analysis of light and electron micrographs. RESULTS Results revealed that (1) indexes of systolic function, including LV end-systolic pressure, cardiac output, and rate of LV pressure development and decline, were depressed to similar degrees at 3 and 6 weeks post-banding; (2) diastolic dysfunction, represented by elevated LV end-diastolic pressure and volume, was more severe at 6 than at 3 weeks, consistent with a transition to failure; (3) a progressive decline in glycolytic flux that was roughly half the control rate by 6 weeks post-banding; and (4) structural derangements, manifested by increases in interstitial collagen content and myocyte Z-band disruption, that were more marked at 3 weeks than at 6 weeks. CONCLUSION The results are consistent with the view that myocyte damage, fibrosis, and suppressed glycolytic flux represent maladaptive structural and metabolic remodeling that contribute to the development of failure in high pressure load-induced LVH in the mouse.
Collapse
Affiliation(s)
- Michael E Dunn
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | |
Collapse
|
28
|
Guimaraes DA, Rizzi E, Ceron CS, Oliveira AM, Oliveira DM, Castro MM, Tirapelli CR, Gerlach RF, Tanus-Santos JE. Doxycycline dose-dependently inhibits MMP-2-mediated vascular changes in 2K1C hypertension. Basic Clin Pharmacol Toxicol 2010; 108:318-25. [PMID: 21176109 DOI: 10.1111/j.1742-7843.2010.00656.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypertension induces vascular alterations that are associated with up-regulation of matrix metalloproteinases (MMPs). While these alterations may be blunted by doxycycline, a non-selective MMPs inhibitor, no previous study has examined the effects of different doses of doxycycline on these alterations. This is important because doxycycline has been used at sub-antimicrobial doses, and the use of lower doses may prevent the emergence of antibiotic-resistant microorganisms. We studied the effects of doxycycline at 3, 10 and 30 mg/kg per day on the vascular alterations found in the rat two kidney-one clip (2K1C) hypertension (n = 20 rats/group). Systolic blood pressure (SBP) was monitored during 4 weeks of treatment. We assessed endothelium-dependent and independent relaxations. Quantitative morphometry of structural changes in the aortic wall was studied, and aortic MMP-2 levels/proteolytic activity were determined by gelatin and in situ zymography, respectively. All treatments attenuated the increases in SBP in hypertensive rats (195.4 ± 3.9 versus 177.2 ± 6.2, 176.3 ± 4.5, and 173 ± 5.1 mmHg in 2K1C hypertensive rats treated with vehicle, or doxycycline at 3, 10, 30 mg/kg per day, respectively (all p < 0.01). However, only the highest dose prevented 2K1C-induced reduction in endothelium-dependent vasorelaxation (p < 0.05), vascular hypertrophy and increases in MMP-2 levels (all p < 0.05). In conclusion, our results suggest that relatively lower doses of doxycycline do not attenuate the vascular alterations found in the 2K1C hypertension model, and only the highest dose of doxycycline affects MMPs and vascular structure. Our results support the idea that the effects of doxycycline on MMP-2 and vascular structure are pressure independent.
Collapse
Affiliation(s)
- Danielle A Guimaraes
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zheng H, Tang M, Zheng Q, Kumarapeli ARK, Horak KM, Tian Z, Wang X. Doxycycline attenuates protein aggregation in cardiomyocytes and improves survival of a mouse model of cardiac proteinopathy. J Am Coll Cardiol 2010; 56:1418-26. [PMID: 20947000 DOI: 10.1016/j.jacc.2010.01.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/13/2010] [Accepted: 01/19/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The goal of this pre-clinical study was to assess the therapeutic efficacy of doxycycline (Doxy) for desmin-related cardiomyopathy (DRC) and to elucidate the potential mechanisms involved. BACKGROUND DRC, exemplifying cardiac proteinopathy, is characterized by intrasarcoplasmic protein aggregation and cardiac insufficiency. No effective treatment for DRC is available presently. Doxy was shown to attenuate aberrant intranuclear aggregation and toxicity of misfolded proteins in noncardiac cells and animal models of other proteinopathies. METHODS Mice and cultured neonatal rat cardiomyocytes with transgenic (TG) expression of a human DRC-linked missense mutation R120G of αB-crystallin (CryAB(R120G)) were used for testing the effect of Doxy. Doxy was administered via drinking water (6 mg/ml) initiated at 8 or 16 weeks of age. RESULTS Doxy treatment initiated at 16 weeks of age significantly delayed the premature death of CryAB(R120G) TG mice, with a median lifespan of 30.4 weeks (placebo group, 25 weeks; p < 0.01). In another cohort of CryAB(R120G) TG mice, Doxy treatment initiated at 8 weeks of age significantly attenuated cardiac hypertrophy in 1 month. Further investigation revealed that Doxy significantly reduced the abundance of CryAB-positive microscopic aggregates, detergent-resistant CryAB oligomers, and total ubiquitinated proteins in CryAB(R120G) TG hearts. In cell culture, Doxy treatment dose-dependently suppressed the formation of both microscopic protein aggregates and detergent-resistant soluble CryAB(R120G) oligomers and reversed the up-regulation of p62 protein induced by adenovirus-mediated CryAB(R120G) expression. CONCLUSIONS Doxy suppresses CryAB(R120G)-induced aberrant protein aggregation in cardiomyocytes and prolongs CryAB(R120G)-based DRC mouse survival.
Collapse
Affiliation(s)
- Hanqiao Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota 57069, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Matrix Metalloproteinase Inhibition Improves Cardiac Dysfunction and Remodeling in 2-Kidney, 1-Clip Hypertension. J Card Fail 2010; 16:599-608. [DOI: 10.1016/j.cardfail.2010.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 02/01/2010] [Accepted: 02/10/2010] [Indexed: 02/07/2023]
|
31
|
Wu B, Zhou B, Wang Y, Cheng HL, Hang CT, Pu WT, Chang CP, Zhou B. Inducible cardiomyocyte-specific gene disruption directed by the rat Tnnt2 promoter in the mouse. Genesis 2010; 48:63-72. [PMID: 20014345 DOI: 10.1002/dvg.20573] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We developed a conditional and inducible gene knockout methodology that allows effective gene deletion in mouse cardiomyocytes. This transgenic mouse line was generated by coinjection of two transgenes, a "reverse" tetracycline-controlled transactivator (rtTA) directed by a rat cardiac troponin T (Tnnt2) promoter and a Cre recombinase driven by a tetracycline-responsive promoter (TetO). Here, Tnnt2-rtTA activated TetO-Cre expression takes place in cardiomyocytes following doxycycline treatment. Using two different mouse Cre reporter lines, we demonstrated that expression of Cre recombinase was specifically and robustly induced in the cardiomyocytes of embryonic or adult hearts following doxycycline induction, thus, allowing cardiomyocyte-specific gene disruption and lineage tracing. We also showed that rtTA expression and doxycycline treatment did not compromise cardiac function. These features make the Tnnt2-rtTA;TetO-Cre transgenic line a valuable genetic tool for analysis of spatiotemporal gene function and cardiomyocyte lineage tracing during developmental and postnatal periods.
Collapse
Affiliation(s)
- Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Price Center 420, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Brattelid T, Winer LH, Levy FO, Liestøl K, Sejersted OM, Andersson KB. Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies. BMC Mol Biol 2010; 11:22. [PMID: 20331858 PMCID: PMC2907514 DOI: 10.1186/1471-2199-11-22] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 03/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Quantitative real-time RT-PCR (RT-qPCR) is a highly sensitive method for mRNA quantification, but requires invariant expression of the chosen reference gene(s). In pathological myocardium, there is limited information on suitable reference genes other than the commonly used Gapdh mRNA and 18S ribosomal RNA. Our aim was to evaluate and identify suitable reference genes in human failing myocardium, in rat and mouse post-myocardial infarction (post-MI) heart failure and across developmental stages in fetal and neonatal rat myocardium. RESULTS The abundance of Arbp, Rpl32, Rpl4, Tbp, Polr2a, Hprt1, Pgk1, Ppia and Gapdh mRNA and 18S ribosomal RNA in myocardial samples was quantified by RT-qPCR. The expression variability of these transcripts was evaluated by the geNorm and Normfinder algorithms and by a variance component analysis method. Biological variability was a greater contributor to sample variability than either repeated reverse transcription or PCR reactions. CONCLUSIONS The most stable reference genes were Rpl32, Gapdh and Polr2a in mouse post-infarction heart failure, Polr2a, Rpl32 and Tbp in rat post-infarction heart failure and Rpl32 and Pgk1 in human heart failure (ischemic disease and cardiomyopathy). The overall most stable reference genes across all three species was Rpl32 and Polr2a. In rat myocardium, all reference genes tested showed substantial variation with developmental stage, with Rpl4 as was most stable among the tested genes.
Collapse
Affiliation(s)
- Trond Brattelid
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
33
|
Cook SA, Clerk A, Sugden PH. Are transgenic mice the 'alkahest' to understanding myocardial hypertrophy and failure? J Mol Cell Cardiol 2008; 46:118-29. [PMID: 19071133 DOI: 10.1016/j.yjmcc.2008.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/21/2008] [Accepted: 11/05/2008] [Indexed: 01/24/2023]
Abstract
Murine transgenesis using cardioselective promoters has become increasingly common in studies of cardiac hypertrophy and heart failure, with expression mediated by pronuclear microinjection being the commonest format. Without wishing to decry their usefulness, in our view, such studies are not necessarily as unambiguous as sometimes portrayed and clarity is not always their consequence. We describe broadly the types of approach undertaken in the heart and point out some of the drawbacks. We provide three arbitrarily-chosen examples where, in spite of a number of often-independent studies, no consensus has yet been achieved. These include glycogen synthase kinase 3, the extracellular signal-regulated kinase pathway and the ryanodine receptor 2. We believe that the transgenic approach should not be viewed in an empyreal light and, depending on the questions asked, we suggest that other experimental systems provide equal (or even more) valuable outcomes.
Collapse
Affiliation(s)
- Stuart A Cook
- NHLI Division, Faculty of Medicine, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | |
Collapse
|