1
|
Miranda Hurtado M, Kaempfer R, Geddes JR, Olufsen MS, Rodriguez-Fernandez M. Unraveling autonomic cardiovascular control complexity during orthostatic stress: Insights from a mathematical model. Math Biosci 2024; 377:109306. [PMID: 39395755 DOI: 10.1016/j.mbs.2024.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Understanding cardiovascular control mediated by the autonomic system remains challenging due to its inherent complexity. Consequently, syndromes such as orthostatic intolerance continue to evoke debates regarding the underlying pathophysiological mechanisms. This study develops a comprehensive mathematical model simulating the control of the sympathetic branch of the cardiovascular system in individuals with normal and abnormal responses to the head-up-tilt test. We recruited four young women: one control, one with vasovagal syncope, one with orthostatic hypertension, and one with orthostatic hypotension, exposing them to an orthostatic head-up tilt test (HUTT) employing non-invasive methods to measure electrocardiography and continuous blood pressure. Our work encompasses a compartmental model formulated using a system of ordinary differential equations. Using heart rate as input, we predict blood pressure, flow, and volume in compartments representing the veins, arteries, heart, and the sympathetic branch of the baroreflex control system. The latter is modulated by high- and low-pressure baroreceptor afferents activated by changes in blood pressure induced by the HUTT. Sensitivity analysis, parameter subset selection, and optimization are employed to estimate patient-specific parameters associated with autonomic performance. The model has seven sensitive and identifiable parameters with significant physiological relevance that can serve as biomarkers for patient classification. Results show that the model can reproduce a spectrum of blood pressure responses successfully, fitting the trajectory displayed by the experimental data. The controller exhibits behavior that emulates the operation of the sympathetic system. These encouraging findings underscore the potential of computational methods in evaluating pathologies associated with autonomic nervous system control, warranting further exploration and novel approaches.
Collapse
Affiliation(s)
- Martin Miranda Hurtado
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Avda.Vicuña Mackenna 4860, Macul, Santiago, 8970117, Chile; Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, T2N 4N1, Canada; School of Nursing, Pontificia Universidad Catolica de Chile, Avda.Vicuña Mackenna 4860, Macul, Santiago, 8970117, Chile.
| | - Rafael Kaempfer
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Avda.Vicuña Mackenna 4860, Macul, Santiago, 8970117, Chile.
| | - Justen R Geddes
- Department of Mathematics, North Carolina State University, 2311 Stinson Drive, Raleigh, 27695, USA; Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Drive, Durham, 27708, USA.
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, 2311 Stinson Drive, Raleigh, 27695, USA.
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Avda.Vicuña Mackenna 4860, Macul, Santiago, 8970117, Chile; Millenium Institute for Intelligent Healthcare Engineering iHEALTH, Avda.Vicuña Mackenna 4860, Macul, Santiago, 8970117, Chile.
| |
Collapse
|
2
|
Hamaoka T, Sinoway LI, Cui J. The role of peripheral venous distension reflex in regulating hemodynamics: mini review. Auton Neurosci 2024; 256:103217. [PMID: 39270515 DOI: 10.1016/j.autneu.2024.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Significant volume is pooled in veins in humans and the amount is dramatically altered by various physiological stresses and diseases. Several animal and human studies demonstrated that limb venous distension evoked significant increases in blood pressure and sympathetic nerve activity (venous distension reflex, VDR). VDR has attracted much attention because of its potential to explain the still unknown mechanism of autonomic dysfunction in several diseases, which would lead to a new treatment approach. This mini review discusses accumulated evidence of VDR at this point and what should be investigated in the future to apply the current understanding of VDR in clinical practice.
Collapse
Affiliation(s)
- Takuto Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States of America
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States of America
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States of America.
| |
Collapse
|
3
|
Hamaoka T, Leuenberger UA, Kronfli A, Gao Z, Blaha C, Luck JC, Dalton P, Sinoway LI, Cui J. Effect of Cyclooxygenase Inhibition on Peripheral Venous Distension Reflex in Healthy Humans. Hypertension 2023; 80:1102-1109. [PMID: 36942572 PMCID: PMC10133193 DOI: 10.1161/hypertensionaha.122.20506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Peripheral venous distension evokes a pressor reflex (venous distension reflex). Afferent group III and IV nerves innervating veins are suggested as the afferent arm of the venous distension reflex. Prostaglandins stimulate/sensitize group III/IV nerves. We hypothesized that inhibition of prostaglandin synthesis by local cyclooxygenase blockade would attenuate the muscle sympathetic nerve activity (MSNA) and blood pressure responses to venous distension. METHODS Nineteen healthy volunteers (age, 27±5 years) participated in the study with 2 visits. To induce venous distension, a volume of solution (saline alone or 9 mg ketorolac tromethamine in saline) was infused into the vein in the antecubital fossa of an arterially occluded forearm. During the procedure, beat-by-beat heart rate, blood pressure and MSNA were recorded simultaneously. The vein size was measured with ultrasound. RESULTS In both visits, the venous distension procedure significantly increased blood pressure, heart rate, and MSNA (all, P<0.05). The increase in mean arterial pressure and MSNA in the ketorolac visit was significantly lower than in the control visit (∆ mean arterial pressure, 7.0±6.2 versus 13.8±7.7 mm Hg; ∆MSNA, 6.0±7.1 versus 14.8±7.7 bursts/min; both, P<0.05). The increase in vein size induced by the infusion was not different between visits. CONCLUSIONS The presented data show that cyclooxygenase blockade attenuates the responses in MSNA and blood pressure to peripheral venous distension reflex. The results suggest that cyclooxygenase products play a key role in evoking afferent activation responsible for the venous distension reflex.
Collapse
Affiliation(s)
- Takuto Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Urs A. Leuenberger
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Anthony Kronfli
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Zhaohui Gao
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Jonathan Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Paul Dalton
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Lawrence I. Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
4
|
Fukuoka R, Yamada Y, Kataoka M, Yokoyama Y, Yamada M, Narita K, Nakahara T, Fukuda K, Jinzaki M. Estimating right atrial pressure using upright computed tomography in patients with heart failure. Eur Radiol 2022; 33:4073-4081. [PMID: 36576542 PMCID: PMC10182146 DOI: 10.1007/s00330-022-09360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Upright computed tomography (CT) can detect slight changes particularly in the superior vena cava (SVC) volume in healthy volunteers under the influence of gravity. This study aimed to evaluate whether upright CT-based measurements of the SVC area are useful for assessing mean right atrial pressure (mRAP) in patients with heart failure. METHODS We performed CT in both standing and supine positions to evaluate the SVC (directly below the junction of the bilateral brachiocephalic veins) and inferior vena cava (IVC; at the height of the diaphragm) areas and analyzed their relationship with mRAP, measured by right heart catheterization in 23 patients with heart failure. RESULTS The median age of enrolled patients was 60 (51-72) years, and 69.6% were male. The median mRAP was 3 (1-7) mmHg. The correlations between the standing position SVC and IVC areas and mRAP were stronger than those in the supine position (SVC, ρ = 0.68, p < 0.001 and ρ = 0.43, p = 0.040; IVC, ρ = 0.57, p = 0.005 and ρ = 0.46, p = 0.026; respectively). Furthermore, the SVC area in the standing position was most accurate in identifying patients with higher mRAP (> 5 mmHg) (SVC standing, area under the receiver operating characteristic curve [AUC] = 0.91, 95% confidence interval [CI], 0.77-1.00; SVC supine, AUC = 0.78, 95% CI, 0.59-0.98; IVC standing, AUC = 0.77, 95% CI, 0.55-0.98; IVC supine, AUC = 0.72, 95% CI, 0.49-0.94). The inter- and intraobserver agreements (evaluated by intraclass correlation coefficients) for all CT measurements were 0.962-0.991. CONCLUSIONS Upright CT-based measurement of the SVC area can be useful for non-invasive estimation of mRAP under the influence of gravity in patients with heart failure. KEY POINTS • This study showed that the superior vena cava (SVC) area in the standing position was most accurate in identifying patients with heart failure with higher mean right atrial pressure. • Upright computed tomography-based measurements of the SVC area can be a promising non-invasive method for estimating mean right atrial pressure under the influence of gravity in patients with heart failure. • Clinical management of patients with heart failure based on this non-invasive modality may lead to early assessment of conditional changes and reduced hospitalization for exacerbation of heart failure.
Collapse
Affiliation(s)
- Ryoma Fukuoka
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Cardiology, School of Medicine, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.,The Second Department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Yoichi Yokoyama
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Minoru Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Keiichi Narita
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Fois M, Maule SV, Giudici M, Valente M, Ridolfi L, Scarsoglio S. Cardiovascular Response to Posture Changes: Multiscale Modeling and in vivo Validation During Head-Up Tilt. Front Physiol 2022; 13:826989. [PMID: 35250630 PMCID: PMC8892183 DOI: 10.3389/fphys.2022.826989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
In spite of cardiovascular system (CVS) response to posture changes have been widely studied, a number of mechanisms and their interplay in regulating central blood pressure and organs perfusion upon orthostatic stress are not yet clear. We propose a novel multiscale 1D-0D mathematical model of the human CVS to investigate the effects of passive (i.e., through head-up tilt without muscular intervention) posture changes. The model includes the main short-term regulation mechanisms and is carefully validated against literature data and in vivo measures here carried out. The model is used to study the transient and steady-state response of the CVS to tilting, the effects of the tilting rate, and the differences between tilt-up and tilt-down. Passive upright tilt led to an increase of mean arterial pressure and heart rate, and a decrease of stroke volume and cardiac output, in agreement with literature data and present in vivo experiments. Pressure and flow rate waveform analysis along the arterial tree together with mechano-energetic and oxygen consumption parameters highlighted that the whole system approaches a less stressed condition at passive upright posture than supine, with a slight unbalance of the energy supply-demand ratio. The transient dynamics is not symmetric in tilt-up and tilt-down testing, and is non-linearly affected by the tilting rate, with stronger under- and overshoots of the hemodynamic parameters as the duration of tilt is reduced. By enriching the CVS response to posture changes, the present modeling approach shows promise in a number of applications, ranging from autonomic system disorders to spaceflight deconditioning.
Collapse
Affiliation(s)
- Matteo Fois
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- *Correspondence: Matteo Fois
| | - Simona Vittoria Maule
- Autonomic Unit, Department of Medical Sciences, Università Degli Studi di Torino, Turin, Italy
| | - Marta Giudici
- Autonomic Unit, Department of Medical Sciences, Università Degli Studi di Torino, Turin, Italy
| | - Matteo Valente
- Autonomic Unit, Department of Medical Sciences, Università Degli Studi di Torino, Turin, Italy
| | - Luca Ridolfi
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Stefania Scarsoglio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
6
|
Shin DA, Lee JC. Mathematical model of modified hybrid pump mechanism for cardiopulmonary resuscitation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 206:106106. [PMID: 33962319 DOI: 10.1016/j.cmpb.2021.106106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The "Cardiac pump theory" and "Thoracic pump theory" are representative theories of cardiopulmonary resuscitation (CPR) mechanisms. Based on these theories, many studies on mathematical modeling have been performed to help understand hemodynamics during CPR. However, there are parts that do not yet properly reflect the physiology of CPR. Therefore, this study aims to develop a lumped parameter model of CPR that can more accurately reflect the current CPR physiology. METHODS By adding compartments of the superior and inferior vena cava of the thoracic cavity to the existing CPR model, and the "Hybrid pump" mechanism was applied to simulate CPR. To compare the hemodynamics of the conventional CPR model and the developed CPR model, various conditions, such as active compression-decompression CPR with an impedance threshold valve device (ACD-CPR+ITV), head-up-tilt (HUT), and head-down-tilt (HDT), were simulated. The coronary perfusion pressure (CPP) was compared by modulating the compression ratio of the atrium and ventricle with the thoracic pump factor. RESULTS The result for the comparison of coronary blood flow showed that the existing model is predominant in the compression phase, whereas the developed model is dominant in the relaxation phase. ACD-CPR + ITV results showed that the CPP decreased by 5 % in the existing model, and increased by about 46 % in the developed model, revealing a distinct hemodynamic difference between the two models. Likewise, as a result of comparing the hemodynamic differences of the two models according to the changes in tilt angle, the HUT showed similar trends, while the HDT showed slightly different results. The CPP varied accordingly with the ratio of the ventricular and atrial thoracic pump factor. CONCLUSION Comparison of the hemodynamics with the existing model by simulating various conditions showed that the developed CPR model reflects the CPR physiology better. The model suggests that the hemodynamics may vary depending on the ventricle and atrium compression ratio. This study may provide an important basis for helping understand various situations and patient-specific hemodynamic characteristics during CPR through in-depth research, such as patient-specific model and parameter optimization.
Collapse
Affiliation(s)
- Dong Ah Shin
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Chan Lee
- Department of Biomedical Engineering, College of Medicine and Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Institute of BioEngineering, Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Whittle RS, Diaz-Artiles A. Modeling individual differences in cardiovascular response to gravitational stress using a sensitivity analysis. J Appl Physiol (1985) 2021; 130:1983-2001. [PMID: 33914657 DOI: 10.1152/japplphysiol.00727.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human cardiovascular (CV) system elicits a physiological response to gravitational environments, with significant variation between different individuals. Computational modeling can predict CV response, however model complexity and variation of physiological parameters in a normal population makes it challenging to capture individual responses. We conducted a sensitivity analysis on an existing 21-compartment lumped-parameter hemodynamic model in a range of gravitational conditions to 1) investigate the influence of model parameters on a tilt test CV response and 2) to determine the subset of those parameters with the most influence on systemic physiological outcomes. A supine virtual subject was tilted to upright under the influence of a constant gravitational field ranging from 0 g to 1 g. The sensitivity analysis was conducted using a Latin hypercube sampling/partial rank correlation coefficient methodology with subsets of model parameters varied across a normal physiological range. Sensitivity was determined by variation in outcome measures including heart rate, stroke volume, central venous pressure, systemic blood pressures, and cardiac output. Results showed that model parameters related to the length, resistance, and compliance of the large veins and parameters related to right ventricular function have the most influence on model outcomes. For most outcome measures considered, parameters related to the heart are dominant. Results highlight which model parameters to accurately value in simulations of individual subjects' CV response to gravitational stress, improving the accuracy of predictions. Influential parameters remain largely similar across gravity levels, highlighting that accurate model fitting in 1 g can increase the accuracy of predictive responses in reduced gravity.NEW & NOTEWORTHY Computational modeling is used to predict cardiovascular responses to altered gravitational environments. However, considerable variation between subjects and model complexity makes accurate parameter assignment for individuals challenging. This computational effort studies sensitivity in cardiovascular model outcomes due to varying parameters across a normal physiological range. This allows determination of which parameters have the largest influence on outcomes, i.e., which parameters must be most carefully selected to give accurate predictions of individual responses.
Collapse
Affiliation(s)
- Richard S Whittle
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas
| | - Ana Diaz-Artiles
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas.,Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| |
Collapse
|
8
|
Harms MPM, Finucane C, Pérez-Denia L, Juraschek SP, van Wijnen VK, Lipsitz LA, van Lieshout JJ, Wieling W. Systemic and cerebral circulatory adjustment within the first 60 s after active standing: An integrative physiological view. Auton Neurosci 2021; 231:102756. [PMID: 33385733 PMCID: PMC8103784 DOI: 10.1016/j.autneu.2020.102756] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/30/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
Transient cardiovascular and cerebrovascular responses within the first minute of active standing provide the means to assess autonomic, cardiovascular and cerebrovascular regulation using a real-world everyday stimulus. Traditionally, these responses have been used to detect autonomic dysfunction, and to identify the hemodynamic correlates of patient symptoms and attributable causes of (pre)syncope and falls. This review addresses the physiology of systemic and cerebrovascular adjustment within the first 60 s after active standing. Mechanical factors induced by standing up cause a temporal mismatch between cardiac output and vascular conductance which leads to an initial blood pressure drops with a nadir around 10 s. The arterial baroreflex counteracts these initial blood pressure drops, but needs 2-3 s to be initiated with a maximal effect occurring at 10 s after standing while, in parallel, cerebral autoregulation buffers these changes within 10 s to maintain adequate cerebral perfusion. Interestingly, both the magnitude of the initial drop and these compensatory mechanisms are thought to be quite well-preserved in healthy aging. It is hoped that the present review serves as a reference for future pathophysiological investigations and epidemiological studies. Further experimental research is needed to unravel the causal mechanisms underlying the emergence of symptoms and relationship with aging and adverse outcomes in variants of orthostatic hypotension.
Collapse
Affiliation(s)
- Mark P M Harms
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ciáran Finucane
- Department of Medical Physics & Bioengineering, Mercer's Institute for Successful Ageing, St James's Hospital, Dublin 8, Ireland; Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Laura Pérez-Denia
- Department of Medical Physics & Bioengineering, Mercer's Institute for Successful Ageing, St James's Hospital, Dublin 8, Ireland; Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Stephen P Juraschek
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Veera K van Wijnen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lewis A Lipsitz
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA
| | - Johannes J van Lieshout
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; School of Life Sciences, The Medical School, MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen's Medical Centre, Nottingham, United Kingdom
| | - Wouter Wieling
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Cortés-Ríos J, Rodriguez-Fernandez M. Circadian Rhythm of Blood Pressure of Dipper and Non-dipper Patients With Essential Hypertension: A Mathematical Modeling Approach. Front Physiol 2021; 11:536146. [PMID: 33536928 PMCID: PMC7848196 DOI: 10.3389/fphys.2020.536146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Blood pressure in humans presents a circadian variation profile with a morning increase, a small postprandial valley, and a deeper descent during night-time rest. Under certain conditions, the nocturnal decline in blood pressure can be reduced or even reversed (non-dipper), which is related to a significantly worse prognosis than a normal fall pattern (dipper). Despite several advances in recent years, our understanding of blood pressure's temporal structure, its sources and mechanisms is far from complete. In this work, we developed an ordinary differential equation-based mathematical model capable of capturing the circadian rhythm of blood pressure in dipper and non-dipper patients with arterial hypertension. The model was calibrated by means of global optimization, using 24-h data of systolic and diastolic blood pressure, physical activity, heart rate, blood glucose and norepinephrine, obtained from the literature. After fitting the model, the mean of the normalized error for each data point was <0.2%, and confidence intervals indicate that all parameters were identifiable. Sensitivity analysis allowed identifying the most relevant parameters and therefore inferring the most important blood pressure regulatory mechanisms involved in the non-dipper status, namely, increase in sympathetic over parasympathetic nervous tone, lower influence of physical activity on heart rate and greater influence of physical activity and glucose on the systemic vascular resistance. In summary, this model allows explaining the circadian rhythm of blood pressure and deepening the understanding of the underlying mechanisms and interactions integrating the results of previous works.
Collapse
Affiliation(s)
- Javiera Cortés-Ríos
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Ishbulatov YM, Karavaev AS, Kiselev AR, Simonyan MA, Prokhorov MD, Ponomarenko VI, Mironov SA, Gridnev VI, Bezruchko BP, Shvartz VA. Mathematical modeling of the cardiovascular autonomic control in healthy subjects during a passive head-up tilt test. Sci Rep 2020; 10:16525. [PMID: 33020530 PMCID: PMC7536219 DOI: 10.1038/s41598-020-71532-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
A mathematical model is proposed for the autonomic control of cardiovascular system, which takes into account two separated self-exciting sympathetic control loops of heart rate and peripheral vascular tone. The control loops are represented by self-exciting time-delay systems and their tone depends on activity of the aortic, carotid, and lower-body baroreceptors. The model is used to study the dynamics of the adaptive processes that manifest in a healthy cardiovascular system during the passive head-up tilt test. Computer simulation provides continuous observation of the dynamics of the indexes and variables that cannot be measured in the direct experiment, including the noradrenaline concentration in vessel wall and heart muscle, tone of the sympathetic and parasympathetic control, peripheral vascular resistance, and blood pressure. In the supine and upright positions, we estimated the spectral characteristics of the model variables, especially in the low-frequency band, and the original index of total percent of phase synchronization between the low-frequency oscillations in heart rate and blood pressure signals. The model demonstrates good quantitative agreement with the dynamics of the experimentally observed indexes of cardiovascular system that were averaged for 50 healthy subjects.
Collapse
Affiliation(s)
- Yurii M Ishbulatov
- Department of Innovative Cardiological Information Technology, Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia.,Department of Surgical Treatment for Interactive Pathology, Bakulev Scientific Center for Cardiovascular Surgery, Moscow, Russia
| | - Anatoly S Karavaev
- Department of Innovative Cardiological Information Technology, Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia.,Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia.,Department of Dynamic Modeling and Biomedical Engineering, Saratov State University, Saratov, Russia
| | - Anton R Kiselev
- Department of Innovative Cardiological Information Technology, Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia. .,Department of Surgical Treatment for Interactive Pathology, Bakulev Scientific Center for Cardiovascular Surgery, Moscow, Russia. .,Department of Dynamic Modeling and Biomedical Engineering, Saratov State University, Saratov, Russia.
| | - Margarita A Simonyan
- Department of Atherocslerosis and Chronic Ischemic Heart Disease, Institute of Cardiological Research, Saratov, Russia
| | - Mikhail D Prokhorov
- Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia
| | - Vladimir I Ponomarenko
- Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia.,Department of Dynamic Modeling and Biomedical Engineering, Saratov State University, Saratov, Russia
| | - Sergey A Mironov
- Department of Innovative Cardiological Information Technology, Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia
| | - Vladimir I Gridnev
- Department of Innovative Cardiological Information Technology, Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia.,Department of Dynamic Modeling and Biomedical Engineering, Saratov State University, Saratov, Russia
| | - Boris P Bezruchko
- Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia.,Department of Dynamic Modeling and Biomedical Engineering, Saratov State University, Saratov, Russia
| | - Vladimir A Shvartz
- Department of Surgical Treatment for Interactive Pathology, Bakulev Scientific Center for Cardiovascular Surgery, Moscow, Russia
| |
Collapse
|
11
|
Development of Upright Computed Tomography With Area Detector for Whole-Body Scans: Phantom Study, Efficacy on Workflow, Effect of Gravity on Human Body, and Potential Clinical Impact. Invest Radiol 2020; 55:73-83. [PMID: 31503082 PMCID: PMC6948833 DOI: 10.1097/rli.0000000000000603] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Multiple human systems are greatly affected by gravity, and many disease symptoms are altered by posture. However, the overall anatomical structure and pathophysiology of the human body while standing has not been thoroughly analyzed due to the limitations of various upright imaging modalities, such as low spatial resolution, low contrast resolution, limited scan range, or long examination time. Recently, we developed an upright computed tomography (CT), which enables whole-torso cross-sectional scanning with 3-dimensional acquisition within 15 seconds. The purpose of this study was to evaluate the performance, workflow efficacy, effects of gravity on a large circulation system and the pelvic floor, and potential clinical impact of upright CT. MATERIALS AND METHODS We compared noise characteristics, spatial resolution, and CT numbers in a phantom between supine and upright CT. Thirty-two asymptomatic volunteers (48.4 ± 11.5 years) prospectively underwent both CT examinations with the same scanning protocols on the same day. We conducted a questionnaire survey among these volunteers who underwent the upright CT examination to determine their opinions regarding the stability of using the pole throughout the acquisition (closed question), as well as safety and comfortability throughout each examination (both used 5-point scales). The total access time (sum of entry time and exit time) and gravity effects on a large circulation system and the pelvic floor were evaluated using the Wilcoxon signed-rank test and the Mann-Whitney U test. For a large circulation system, the areas of the vena cava and aorta were evaluated at 3 points (superior vena cava or ascending aorta, at the level of the diaphragm, and inferior vena cava or abdominal aorta). For the pelvic floor, distances were evaluated from the bladder neck to the pubococcygeal line and the anorectal junction to the pubococcygeal line. We also examined the usefulness of the upright CT in patients with functional diseases of spondylolisthesis, pelvic floor prolapse, and inguinal hernia. RESULTS Noise characteristics, spatial resolution, and CT numbers on upright CT were comparable to those of supine CT. In the volunteer study, all volunteers answered yes regarding the stability of using the pole, and most reported feeling safe (average rating of 4.2) and comfortable (average rating of 3.8) throughout the upright CT examination. The total access time for the upright CT was significantly reduced by 56% in comparison with that of supine CT (upright: 41 ± 9 seconds vs supine: 91 ± 15 seconds, P < 0.001). In the upright position, the area of superior vena cava was 80% smaller than that of the supine position (upright: 39.9 ± 17.4 mm vs supine: 195.4 ± 52.2 mm, P < 0.001), the area at the level of the diaphragm was similar (upright: 428.3 ± 87.9 mm vs supine: 426.1 ± 82.0 mm, P = 0.866), and the area of inferior vena cava was 37% larger (upright: 346.6 ± 96.9 mm vs supine: 252.5 ± 93.1 mm, P < 0.001), whereas the areas of aortas did not significantly differ among the 3 levels. The bladder neck and anorectal junction significantly descended (9.4 ± 6.0 mm and 8.0 ± 5.6 mm, respectively, both P < 0.001) in the standing position, relative to their levels in the supine position. This tendency of the bladder neck to descend was more prominent in women than in men (12.2 ± 5.2 mm in women vs 6.7 ± 5.6 mm in men, P = 0.006). In 3 patients, upright CT revealed lumbar foraminal stenosis, bladder prolapse, and inguinal hernia; moreover, it clarified the grade or clinical significance of the disease in a manner that was not apparent on conventional CT. CONCLUSIONS Upright CT was comparable to supine CT in physical characteristics, and it significantly reduced the access time for examination. Upright CT was useful in clarifying the effect of gravity on the human body: gravity differentially affected the volume and shape of the vena cava, depending on body position. The pelvic floor descended significantly in the standing position, compared with its location in the supine position, and the descent of the bladder neck was more prominent in women than in men. Upright CT could potentially aid in objective diagnosis and determination of the grade or clinical significance of common functional diseases.
Collapse
|
12
|
de Boer RW, Karemaker JM. Cross-Wavelet Time-Frequency Analysis Reveals Sympathetic Contribution to Baroreflex Sensitivity as Cause of Variable Phase Delay Between Blood Pressure and Heart Rate. Front Neurosci 2019; 13:694. [PMID: 31338017 PMCID: PMC6629771 DOI: 10.3389/fnins.2019.00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction Baroreflex sensitivity (BRS) is often presented as a single number, but it is actually a frequency-dependent phenomenon whose value changes constantly due to internal and external stimuli. The standing posture, for instance, necessitates a changeover from vagal to sympathetic predominance for cardiovascular control. We present a wavelet cross-spectral analysis of blood pressure (BP) and interbeat interval (IBI) recordings in the search for variations in gain and phase between these signals. Additionally, we show how the lag in sympathetic response dictates BP-to-IBI phase relations. Methods Recordings in supine and head-up tilted (HUT) position, obtained earlier in 10 healthy subjects (4f/6m, aged 27–47 years) were used. BP and IBI were measured from the continuous finger pressure (by Finometer). The cross-wavelet analysis produced time- and frequency dependent gain (wBRS, wavelet derived BRS) and phase, using the MATLAB® wavelet toolbox. We also applied the wBRS method to model-generated BP- and IBI-data with known interrelations to test the results of this analysis technique. Finally, wBRS values were compared with the xBRS-approach, which is a time domain method for continuous BRS estimation in a sliding 10-s window. Results In resting supine conditions, wBRS fluctuates; more at respiratory frequencies than in the 0.1 Hz band. After HUT, wBRS at the respiratory frequency decreases from average 22.7 to 8.5 ms/mmHg, phase between BP and IBI increases from −30° to −54°; in the sympathetic 0.1 Hz range these numbers are 13.3→6.3 ms/mmHg and −54°→−59°. The values found by xBRS are intermediate between wBRS-resp and wBRS-0.1 Hz. The Appendix shows that for the simulated data the BRS and phase values as found by the wavelet technique can be explained from vector additions of vagal and sympathetic BRS contributions. Discussion During supine rest parasympathetic control of heart rate dominates BRS; after HUT this is diminished and less effective. Due to the reaction times of the autonomic effectors, the phase relations between the signals depend on the relative contribution of the sympathetics, which explains the larger phase shift. Conclusion Cross wavelet analysis allows to follow fast BRS changes in time and frequency, while the computed phase relations help understand sympathetic participation.
Collapse
Affiliation(s)
- Roel W de Boer
- Department of Medical Biology, Section Systems Physiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
| | - John M Karemaker
- Department of Medical Biology, Section Systems Physiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
| |
Collapse
|
13
|
Diaz-Artiles A, Heldt T, Young LR. Computational model of cardiovascular response to centrifugation and lower body cycling exercise. J Appl Physiol (1985) 2019; 127:1453-1468. [PMID: 31343946 DOI: 10.1152/japplphysiol.00314.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short-radius centrifugation combined with exercise has been suggested as a potential countermeasure against spaceflight deconditioning. Both the long-term and acute physiological responses to such a combination are incompletely understood. We developed and validated a computational model to study the acute cardiovascular response to centrifugation combined with lower body ergometer exercise. The model consisted of 21 compartments, including the upper body, renal, splanchnic, and leg circulation, as well as a four-chamber heart and pulmonary circulation. It also included the effects of gravity gradient and ergometer exercise. Centrifugation and exercise profiles were simulated and compared with experimental data gathered on 12 subjects exposed to a range of gravitational levels (1 and 1.4G measured at the feet) and workload intensities (25-100 W). The model was capable of reproducing cardiovascular changes (within ± 1 SD from the group-averaged behavior) due to both centrifugation and exercise, including dynamic responses during transitions between the different phases of the protocol. The model was then used to simulate the hemodynamic response of hypovolemic subjects (blood volume reduced by 5-15%) subjected to similar gravitational stress and exercise profiles, providing insights into the physiological responses of experimental conditions not tested before. Hypovolemic results are in agreement with the limited available data and the expected responses based on physiological principles, although additional experimental data are warranted to further validate our predictions, especially during the exercise phases. The model captures the cardiovascular response for a range of centrifugation and exercise profiles, and it shows promise in simulating additional conditions where data collection is difficult, expensive, or infeasible.NEW & NOTEWORTHY Artificial gravity combined with exercise is a potential countermeasure for spaceflight deconditioning, but the long-term and acute cardiovascular response to such gravitational stress is still largely unknown. We provide a novel mathematical model of the cardiovascular system that incorporates gravitational stress generated by centrifugation and lower body cycling exercise, and we validate it with experimental measurements from human subjects. Simulations of experimental conditions not used for model development corroborate the model's predictive capabilities.
Collapse
Affiliation(s)
- Ana Diaz-Artiles
- Department of Aerospace Engineering, Texas A & M University, College Station, Texas
| | - Thomas Heldt
- Institute for Medical Engineering and Science, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Laurence R Young
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
14
|
Williams ND, Brady R, Gilmore S, Gremaud P, Tran HT, Ottesen JT, Mehlsen J, Olufsen MS. Cardiovascular dynamics during head-up tilt assessed via pulsatile and non-pulsatile models. J Math Biol 2019; 79:987-1014. [PMID: 31152210 DOI: 10.1007/s00285-019-01386-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/09/2019] [Indexed: 11/28/2022]
Abstract
This study develops non-pulsatile and pulsatile models for the prediction of blood flow and pressure during head-up tilt. This test is used to diagnose potential pathologies within the autonomic control system, which acts to keep the cardiovascular system at homeostasis. We show that mathematical modeling can be used to predict changes in cardiac contractility, vascular resistance, and arterial compliance, quantities that cannot be measured but are useful to assess the system's state. These quantities are predicted as time-varying parameters modeled using piecewise linear splines. Having models with various levels of complexity formulated with a common set of parameters, allows us to combine long-term non-pulsatile simulations with pulsatile simulations on a shorter time-scale. We illustrate results for a representative subject tilted head-up from a supine position to a [Formula: see text] angle. The tilt is maintained for 5 min before the subject is tilted back down. Results show that if volume data is available for all vascular compartments three parameters can be identified, cardiovascular resistance, vascular compliance, and ventricular contractility, whereas if model predictions are made against arterial pressure and cardiac output data alone, only two parameters can be estimated either resistance and contractility or resistance and compliance.
Collapse
Affiliation(s)
- Nakeya D Williams
- Mathematical Sciences Department, United States Military Academy, West Point, NY, USA
| | - Renee Brady
- Department of Integrated Mathematical Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven Gilmore
- Department of Mathematics, NC State University, Raleigh, NC, USA
| | - Pierre Gremaud
- Department of Mathematics, NC State University, Raleigh, NC, USA
| | - Hien T Tran
- Department of Mathematics, NC State University, Raleigh, NC, USA
| | - Johnny T Ottesen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jesper Mehlsen
- Surgical Pathophysiology Unit, Rigshospitalet, Copenhagen, Denmark
| | - Mette S Olufsen
- Department of Mathematics, NC State University, Raleigh, NC, USA.
| |
Collapse
|
15
|
Finucane C, Kenny RA, Boyle G. Cardioinhibitory Carotid Sinus Syndrome - a mathematical model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:2059-62. [PMID: 26736692 DOI: 10.1109/embc.2015.7318792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Carotid sinus massage (CSM) is a simple clinical test for stimulating the carotid sinus reflex. During CSM, firm longitudinal massage is applied at the point of maximal pulsation over the carotid bifurcation resulting in relative bradycardia. CSM is used to diagnose Cardioinhibitory Carotid Sinus Syndrome (CICSS). CICSS is an age-related disorder, characterized by profound symptomatic cardioinhibition (> 3 seconds pause) following CSM. CICSS prevalence increases with age and is responsible for 1 to 20% of all pacemaker implantations per year. Treatment options for CSS are limited and much debate still remains around its underlying etiology. In this paper we present a first computer simulation of carotid sinus massage (CSM) in older adults and demonstrate its ability to simulate normal heart rate responses to CSM. Importantly we demonstrate that our mathematical model requires inclusion of model elements to simulate autonomic control of perinodal T-cell activity in order to replicate the profound cardioinhibitory response observed in CICSS. Our model findings implicate CSS as a candidate biomarker of biological aging and frailty.
Collapse
|
16
|
Modeling a healthy and a person with heart failure conditions using the object-oriented modeling environment Dymola. Med Biol Eng Comput 2015; 53:1049-68. [DOI: 10.1007/s11517-015-1384-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 08/26/2015] [Indexed: 11/25/2022]
|
17
|
Finucane C, O’Connell MD, Fan CW, Savva GM, Soraghan CJ, Nolan H, Cronin H, Kenny RA. Age-Related Normative Changes in Phasic Orthostatic Blood Pressure in a Large Population Study. Circulation 2014; 130:1780-9. [DOI: 10.1161/circulationaha.114.009831] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
In this report, we provide the first normative reference data and prevalence estimates of impaired orthostatic blood pressure (BP) stabilization, initial orthostatic hypotension, and orthostatic hypotension based on beat-to-beat blood pressure methods in a population-representative sample.
Methods and Results—
Participants were recruited from a nationally representative cohort study (≥50 years). Beat-to-beat systolic BP, diastolic BP, and heart rate records were analyzed among those who underwent an active stand test (n=4475). Normograms were estimated by use of generalized additive models for location, shape, and scale with Box-Cox power exponential distribution. Prevalence estimates of impaired BP stabilization, initial orthostatic hypotension, and orthostatic hypotension are reported. Orthostatic BP responses in adults aged 50 to 59 years stabilized within 30 seconds of standing, with older groups taking 30 seconds or longer. The total prevalence of impaired BP stabilization was 15.6% (95% confidence interval [CI], 14.1%–17.1%), increasing with age to 41.2% (95% CI, 30.0%–52.4%) in people ≥80 years old. Initial orthostatic hypotension occurred in 32.9% (95% CI, 31.2%–34.6%) of the population aged ≥50 years, with no age gradient evident. The prevalence of orthostatic hypotension was 6.9% (95% CI, 5.9%–7.8%) in the total population, increasing to 18.5% (95% CI, 9.0%–28.0%) in those aged ≥80 years old.
Conclusions—
Significant age-related differences exist in the time course of postural BP responses, with abnormal responses taking longer than 30 seconds to stabilize. Impaired BP stabilization is more common as we age, affecting more than two-fifths of the population aged ≥80 years, and may play a future role in the management of falls and syncope.
Collapse
Affiliation(s)
- Ciarán Finucane
- From The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland (C.F., M.D.L. O., H.N., H.C., R.A.K.); Department of Medical Physics and Bioengineering, St. James’s Hospital, Dublin, Ireland (C.F., C.J.S.); Department of Medical Gerontology, Mater Hospital, Dublin, Ireland (C.W.F.); and School of Health Sciences, University of East Anglia, Norwich, United Kingdom (G.M.S.)
| | - Matthew D.L. O’Connell
- From The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland (C.F., M.D.L. O., H.N., H.C., R.A.K.); Department of Medical Physics and Bioengineering, St. James’s Hospital, Dublin, Ireland (C.F., C.J.S.); Department of Medical Gerontology, Mater Hospital, Dublin, Ireland (C.W.F.); and School of Health Sciences, University of East Anglia, Norwich, United Kingdom (G.M.S.)
| | - Chie Wei Fan
- From The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland (C.F., M.D.L. O., H.N., H.C., R.A.K.); Department of Medical Physics and Bioengineering, St. James’s Hospital, Dublin, Ireland (C.F., C.J.S.); Department of Medical Gerontology, Mater Hospital, Dublin, Ireland (C.W.F.); and School of Health Sciences, University of East Anglia, Norwich, United Kingdom (G.M.S.)
| | - George M. Savva
- From The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland (C.F., M.D.L. O., H.N., H.C., R.A.K.); Department of Medical Physics and Bioengineering, St. James’s Hospital, Dublin, Ireland (C.F., C.J.S.); Department of Medical Gerontology, Mater Hospital, Dublin, Ireland (C.W.F.); and School of Health Sciences, University of East Anglia, Norwich, United Kingdom (G.M.S.)
| | - Christopher J. Soraghan
- From The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland (C.F., M.D.L. O., H.N., H.C., R.A.K.); Department of Medical Physics and Bioengineering, St. James’s Hospital, Dublin, Ireland (C.F., C.J.S.); Department of Medical Gerontology, Mater Hospital, Dublin, Ireland (C.W.F.); and School of Health Sciences, University of East Anglia, Norwich, United Kingdom (G.M.S.)
| | - Hugh Nolan
- From The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland (C.F., M.D.L. O., H.N., H.C., R.A.K.); Department of Medical Physics and Bioengineering, St. James’s Hospital, Dublin, Ireland (C.F., C.J.S.); Department of Medical Gerontology, Mater Hospital, Dublin, Ireland (C.W.F.); and School of Health Sciences, University of East Anglia, Norwich, United Kingdom (G.M.S.)
| | - Hilary Cronin
- From The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland (C.F., M.D.L. O., H.N., H.C., R.A.K.); Department of Medical Physics and Bioengineering, St. James’s Hospital, Dublin, Ireland (C.F., C.J.S.); Department of Medical Gerontology, Mater Hospital, Dublin, Ireland (C.W.F.); and School of Health Sciences, University of East Anglia, Norwich, United Kingdom (G.M.S.)
| | - Rose Anne Kenny
- From The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland (C.F., M.D.L. O., H.N., H.C., R.A.K.); Department of Medical Physics and Bioengineering, St. James’s Hospital, Dublin, Ireland (C.F., C.J.S.); Department of Medical Gerontology, Mater Hospital, Dublin, Ireland (C.W.F.); and School of Health Sciences, University of East Anglia, Norwich, United Kingdom (G.M.S.)
| |
Collapse
|
18
|
Liang F, Sughimoto K, Matsuo K, Liu H, Takagi S. Patient-specific assessment of cardiovascular function by combination of clinical data and computational model with applications to patients undergoing Fontan operation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:1000-1018. [PMID: 24753499 DOI: 10.1002/cnm.2641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/01/2013] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
The assessment of cardiovascular function is becoming increasingly important for the care of patients with single-ventricle defects. However, most measurement methods available in the clinical setting cannot provide a separate measure of cardiac function and loading conditions. In the present study, a numerical method has been proposed to compensate for the limitations of clinical measurements. The main idea was to estimate the parameters of a cardiovascular model by fitting model simulations to patient-specific clinical data via parameter optimization. Several strategies have been taken to establish a well-posed parameter optimization problem, including clinical data-matched model development, parameter selection based on an extensive sensitivity analysis, and proper choice of parameter optimization algorithm. The numerical experiments confirmed the ability of the proposed parameter optimization method to uniquely determine the model parameters given an arbitrary set of clinical data. The method was further tested in four patients undergoing the Fontan operation. Obtained results revealed a prevalence of ventricular abnormalities in the patient cohort and at the same time demonstrated the presence of marked inter-patient differences and preoperative to postoperative changes in cardiovascular function. Because the method allows a quick assessment and makes use of clinical data available in clinical practice, its clinical application is promising.
Collapse
Affiliation(s)
- Fuyou Liang
- SJTU-CU International Cooperative Research Center, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | | | | | | | | |
Collapse
|
19
|
Liang F, Senzaki H, Kurishima C, Sughimoto K, Inuzuka R, Liu H. Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study. Am J Physiol Heart Circ Physiol 2014; 307:H1056-72. [DOI: 10.1152/ajpheart.00245.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological limitations of the Fontan circulation have been extensively addressed in the literature. Many studies emphasized the importance of pulmonary vascular resistance in determining cardiac output (CO) but gave little attention to other cardiovascular properties that may play considerable roles as well. The present study was aimed to systemically investigate the effects of various cardiovascular properties on clinically relevant hemodynamic variables (e.g., CO and central venous pressure). To this aim, a computational modeling method was employed. The constructed models provided a useful tool for quantifying the hemodynamic effects of any cardiovascular property of interest by varying the corresponding model parameters in model-based simulations. Herein, the Fontan circulation was studied compared with a normal biventricular circulation so as to highlight the unique characteristics of the Fontan circulation. Based on a series of numerical experiments, it was found that 1) pulmonary vascular resistance, ventricular diastolic function, and systemic vascular compliance play a major role, while heart rate, ventricular contractility, and systemic vascular resistance play a secondary role in the regulation of CO in the Fontan circulation; 2) CO is nonlinearly related to any single cardiovascular property, with their relationship being simultaneously influenced by other cardiovascular properties; and 3) the stability of central venous pressure is significantly reduced in the Fontan circulation. The findings suggest that the hemodynamic performance of the Fontan circulation is codetermined by various cardiovascular properties and hence a full understanding of patient-specific cardiovascular conditions is necessary to optimize the treatment of Fontan patients.
Collapse
Affiliation(s)
- Fuyou Liang
- Shanghai Jiao Tong University-Chiba University International Cooperative Research Center, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hideaki Senzaki
- Department of Pediatrics and Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Kamoda, Kawagoe, Saitama, Japan
| | - Clara Kurishima
- Department of Pediatrics and Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Kamoda, Kawagoe, Saitama, Japan
| | - Koichi Sughimoto
- Department of Cardiac Surgery, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Ryo Inuzuka
- Pediatrics, University Hospital University of Tokyo, Tokyo, Japan; and
| | - Hao Liu
- Shanghai Jiao Tong University-Chiba University International Cooperative Research Center, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- Graduate School of Engineering, Chiba University, Inage, Chiba, Japan
| |
Collapse
|
20
|
Transient hemodynamic changes upon changing a BCPA into a TCPC in staged Fontan operation: a computational model study. ScientificWorldJournal 2013; 2013:486815. [PMID: 24319371 PMCID: PMC3844169 DOI: 10.1155/2013/486815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022] Open
Abstract
The clinical benefits of the Fontan operation in treating single-ventricle defects have been well documented. However, perioperative mortality or morbidity remains a critical problem. The purpose of the present study was to identify the cardiovascular factors that dominate the transient hemodynamic changes upon the change of a bidirectional cavopulmonary (Glenn) anastomosis (BCPA) into a total cavopulmonary connection (TCPC). For this purpose, two computational models were constructed to represent, respectively, a single-ventricle circulation with a BCPA and that with a TCPC. A series of model-based simulations were carried out to quantify the perioperative hemodynamic changes under various cardiovascular conditions. Obtained results indicated that the presence of a low pulmonary vascular resistance and/or a low lower-body vascular resistance is beneficial to the increase in transpulmonary flow upon the BCPA to TCPC change. Moreover, it was found that ventricular diastolic dysfunction and mitral valve regurgitation, despite being well-known risk factors for poor postoperative outcomes, do not cause a considerable perioperative reduction in transpulmonary flow. The findings may help physicians to assess the perioperative risk of the TCPC surgery based on preoperative measurement of cardiovascular function.
Collapse
|
21
|
Abstract
A lumped parameter model of the cardiovascular system has been developed and optimized using experimental data obtained from 13 healthy subjects during graded head-up tilt (HUT) from the supine position to . The model includes descriptions of the left and right heart, direct ventricular interaction through the septum and pericardium, the systemic and pulmonary circulations, nonlinear pressure volume relationship of the lower body compartment, arterial and cardiopulmonary baroreceptors, as well as autoregulatory mechanisms. A number of important features, including the separate effects of arterial and cardiopulmonary baroreflexes, and autoregulation in the lower body, as well as diastolic ventricular interaction through the pericardium have been included and tested for their significance. Furthermore, the individual effect of parameter associated with heart failure, including LV and RV contractility, baseline systemic vascular resistance, pulmonary vascular resistance, total blood volume, LV diastolic stiffness and reflex gain on HUT response have also been investigated. Our fitted model compares favorably with our experimental measurements and published literature at a range of tilt angles, in terms of both global and regional hemodynamic variables. Compared to the normal condition, a simulated congestive heart failure condition produced a blunted response to HUT with regards to the percentage changes in cardiac output, stroke volume, end diastolic volume and effector response (i.e., heart contractility, venous unstressed volume, systemic vascular resistance and heart rate) with progressive tilting.
Collapse
|
22
|
Sughimoto K, Liang F, Takahara Y, Mogi K, Yamazaki K, Takagi S, Liu H. Assessment of cardiovascular function by combining clinical data with a computational model of the cardiovascular system. J Thorac Cardiovasc Surg 2012; 145:1367-72. [PMID: 22944091 DOI: 10.1016/j.jtcvs.2012.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/19/2012] [Accepted: 07/25/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE A sufficient understanding of patients' cardiovascular status is necessary for doctors to make the best decisions with regard to the treatment of cardiovascular disease; however, it is often not available because of the limitation of clinical measurements. The objective of this study was to examine whether cardiovascular function can be assessed quantitatively and for specific patients by combining clinical data with a computational model of the cardiovascular system. METHODS Seven consecutive patients undergoing off-pump coronary artery bypass grafting were enrolled in this study. The clinical data were collected both during the preoperative diagnosis and during the operation. Sensitivity analysis was performed to select the major model parameters most relevant to the measured data. The major model parameters were then estimated through a data-fitting procedure, enabling a patient-specific quantitative assessment of various aspects of cardiovascular function. RESULTS The results revealed the prevalence of left ventricular diastolic dysfunction in the patients, although the severity of dysfunction exhibits significant interpatient variability (the estimated left ventricular passive elastance varies from 194% to 540% of its reference value). Moreover, 4 of the 7 patients studied had impaired left ventricular systolic function. CONCLUSIONS The current study demonstrates the feasibility of assessing cardiovascular function quantitatively by combining clinical data with a cardiovascular model. In particular, the assessment utilizes the measurements already in use or available in clinical settings, enhancing the clinical potential of the proposed method.
Collapse
Affiliation(s)
- Koichi Sughimoto
- Department of Cardiovascular Surgery, The Heart Institute of Japan, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Blanco PJ, Feijóo RA. A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications. Med Eng Phys 2012; 35:652-67. [PMID: 22902782 DOI: 10.1016/j.medengphy.2012.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 05/15/2012] [Accepted: 07/22/2012] [Indexed: 11/25/2022]
Abstract
In the present work a computational model of the entire cardiovascular system is developed using heterogeneous mathematical representations. This model integrates different levels of detail for the blood circulation. The arterial tree is described by a one dimensional model in order to simulate the wave propagation phenomena that take place at the larger arterial vessels. The inflow and outflow locations of this 1D model are coupled with lumped parameter descriptions of the remainder part of the circulatory system, closing the loop. The four cardiac valves are considered using a valve model which allows for stenoses and regurgitation phenomena. In addition, full 3D geometrical models of arterial districts are embedded in this closed-loop circuit to model the local blood flow in specific vessels. This kind of detailed closed-loop network for the cardiovascular system allows hemodynamics analyses of patient-specific arterial district, delivering naturally the appropriate boundary conditions for different cardiovascular scenarios. An example of application involving the effect of aortic insufficiency on the local hemodynamics of a cerebral aneurism is provided as a motivation to reproduce, through numerical simulation, the hemodynamic environment in patients suffering from infective endocarditis and mycotic aneurisms. The need for incorporating homeostatic control mechanisms is also discussed in view of the large sensitivity observed in the results, noting that this kind of integrative modeling allows such incorporation.
Collapse
Affiliation(s)
- P J Blanco
- LNCC, Laboratório Nacional de Computação Científica, Av. Getúlio Vargas 333, Quitandinha, 25651-075 Petrópolis, Brazil.
| | | |
Collapse
|
24
|
The role of the variational formulation in the dimensionally-heterogeneous modelling of the human cardiovascular system. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-88-470-1935-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Truijen J, Kim YS, Krediet CTP, Stok WJ, Kölgen RS, Colier WN, Secher NH, van Lieshout JJ. Orthostatic leg blood volume changes assessed by near-infrared spectroscopy. Exp Physiol 2011; 97:353-61. [PMID: 22090063 DOI: 10.1113/expphysiol.2011.061051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Standing up shifts blood to dependent parts of the body, and blood vessels in the leg become filled. The orthostatic blood volume accumulation in the small vessels is relatively unknown, although these may contribute significantly. We hypothesized that in healthy humans exposed to the upright posture, volume accumulation in small blood vessels contributes significantly to the total fluid volume accumulated in the legs. Considering that near-infrared spectroscopy (NIRS) tracks postural blood volume changes within the small blood vessels of the lower leg, we evaluated the NIRS-determined changes in oxygenated (Δ[O(2)Hb]), deoxygenated (Δ[HHb]) and total haemoglobin tissue concentration (Δ[tHb]) and in total leg volume by strain-gauge plethysmography during 70 deg head-up tilt (HUT; n = 7). In a second experiment, spatial and temporal reproducibility were evaluated with three NIRS probes applied on two separate days (n = 8). In response to HUT, an initially fast increase in [O(2)Hb] was followed by a gradual decline, while [HHb] increased continuously. The increase in [tHb] during HUT was closely related to the increase in total leg volume (r(2) = 0.95 ± 0.03). After tilt back, [O(2)Hb] declined below and [HHb] remained above baseline, whereas all NIRS signals gradually returned to baseline. Spatial heterogeneity was observed, and for two probes [tHb] was highly correlated between days (r(2) = 0.92 ± 0.09 and 0.91 ± 0.12), but less for the third probe (r(2) = 0.44 ± 0.36). The results suggest a non-linear accumulation of blood volume in the small vessels of the leg, with an initial fast phase followed by a more gradual increase at least partly contributing to the relocation of fluid during orthostatic stress.
Collapse
Affiliation(s)
- J Truijen
- Department of Internal Medicine, Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
26
|
A definition of normovolaemia and consequences for cardiovascular control during orthostatic and environmental stress. Eur J Appl Physiol 2010; 109:141-57. [PMID: 20052592 PMCID: PMC2861179 DOI: 10.1007/s00421-009-1346-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2009] [Indexed: 11/20/2022]
Abstract
The Frank–Starling mechanism describes the relationship between stroke volume and preload to the heart, or the volume of blood that is available to the heart—the central blood volume. Understanding the role of the central blood volume for cardiovascular control has been complicated by the fact that a given central blood volume may be associated with markedly different central vascular pressures. The central blood volume varies with posture and, consequently, stroke volume and cardiac output (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{Q} $$\end{document}) are affected, but with the increased central blood volume during head-down tilt, stroke volume and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{Q} $$\end{document} do not increase further indicating that in the supine resting position the heart operates on the plateau of the Frank–Starling curve which, therefore, may be taken as a functional definition of normovolaemia. Since the capacity of the vascular system surpasses the blood volume, orthostatic and environmental stress including bed rest/microgravity, exercise and training, thermal loading, illness, and trauma/haemorrhage is likely to restrict venous return and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{Q} $$\end{document}. Consequently the cardiovascular responses are determined primarily by their effect on the central blood volume. Thus during environmental stress, flow redistribution becomes dependent on sympathetic activation affecting not only skin and splanchnic blood flow, but also flow to skeletal muscles and the brain. This review addresses the hypothesis that deviations from normovolaemia significantly influence these cardiovascular responses.
Collapse
|
27
|
Effects of Gravity on The Pressure of Blood Flow in a Tapered Vessel: Based on a 3D FSI Mathematical Model With Posture Change. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2009.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Nesargikar PN, Grannell M, Hinwood D, Orme R, Houghton A. Newton's Law to the rescue: therapeutic effects of gravity aiding the management of a migratory venous foreign body--a case report. Vasc Endovascular Surg 2009; 43:406-9. [PMID: 19556229 DOI: 10.1177/1538574409336481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The management of intravascular metallic foreign bodies (FB) can be difficult and challenging. We report a case of a migrating FB, initially within the femoral vein which subsequently migrated to the intrahepatic vena-cava. Following a change of posture, the metallic FB moved with gravity against the normal venous blood flow to the left renal vein. It was finally fixed in position in a peripheral branch of the renal vein using an intravascular stent. Employing gravity as a therapeutic intervention and the technique used in isolating the FB has not, to our knowledge, been reported before. A case is described, and the literature is reviewed.
Collapse
|
29
|
Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med Biol Eng Comput 2009; 47:743-55. [PMID: 19198911 DOI: 10.1007/s11517-009-0449-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 01/03/2009] [Indexed: 01/19/2023]
Abstract
A computational model of the entire cardiovascular system is established based on multi-scale modeling, where the arterial tree is described by a one-dimensional model coupled with a lumped parameter description of the remainder. The resultant multi-scale model forms a closed loop, thus placing arterial wave propagation into a global hemodynamic environment. The model is applied to study the global hemodynamic influences of aortic valvular and arterial stenoses located in various regions. Obtained results show that the global hemodynamic influences of the stenoses depend strongly on their locations in the arterial system, particularly, the characteristics of hemodynamic changes induced by the aortic valvular and aortic stenoses are pronounced, which imply the possibility of noninvasively detecting the presence of the stenoses from peripheral pressure pulses. The variations in aortic pressure/flow pulses with the stenoses play testimony to the significance of modeling the entire cardiovascular system in the study of arterial diseases.
Collapse
|
30
|
Fu Q, Shibata S, Hastings JL, Prasad A, Palmer MD, Levine BD. Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans. Am J Physiol Heart Circ Physiol 2008; 296:H480-8. [PMID: 19074678 DOI: 10.1152/ajpheart.00184.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low levels (i.e., </=20 mmHg) of lower body negative pressure (LBNP) have been utilized to unload "selectively" cardiopulmonary baroreceptors in humans, since steady-state mean arterial pressure and heart rate (HR) have been found unchanged at such levels. However, transient reductions in blood pressure (BP), followed by reflex compensation, may occur without detection, which could unload arterial baroreceptors. The purposes of this study were to test the hypothesis that the arterial baroreflex is engaged even during low levels of LBNP and to determine the time course of changes in hemodynamics. Fourteen healthy individuals (age range 20-54 yr) were studied. BP (Portapres and Suntech), HR (ECG), pulmonary capillary wedge pressure (PCWP) or pulmonary artery diastolic pressure (PDP) and right atrial pressure (RAP) (Swan-Ganz catheter) and hemodynamics (Modelflow) were recorded continuously at baseline and -15- and -30-mmHg LBNP for 6 min each. Application of -15-mmHg LBNP resulted in rapid and sustained falls in RAP and PCWP or PDP, progressive decreases in cardiac output and stroke volume, followed subsequently by transient reductions in both systolic and diastolic BP, which were then restored through the arterial baroreflex feedback mechanism after approximately 15 heartbeats. Additional studies were performed in five subjects using even lower levels of LBNP, and this transient reduction in BP was observed in three at -5- and in all at -10-mmHg LBNP. The delay for left ventricular stroke volume to fall at -15-mmHg LBNP was about 10 cardiac cycles. An increase in systemic vascular resistance was detectable after 20 heartbeats during -15-mmHg LBNP. Steady-state BP and HR remained unchanged during mild LBNP. However, BP decreased, while HR increased, at -30-mmHg LBNP. These results suggest that arterial baroreceptors are consistently unloaded during low levels (i.e., -10 and -15 mmHg) of LBNP in humans. Thus "selective" unloading of cardiopulmonary baroreceptors cannot be presumed to occur during these levels of mild LBNP.
Collapse
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|