1
|
Breslin JW. Lymphatic Clearance and Pump Function. Cold Spring Harb Perspect Med 2023; 13:a041187. [PMID: 35667711 PMCID: PMC9899645 DOI: 10.1101/cshperspect.a041187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lymphatic vessels have an active role in draining excess interstitial fluid from organs and serving as conduits for immune cell trafficking to lymph nodes. In the central circulation, the force needed to propel blood forward is generated by the heart. In contrast, lymphatic vessels rely on intrinsic vessel contractions in combination with extrinsic forces for lymph propulsion. The intrinsic pumping features phasic contractions generated by lymphatic smooth muscle. Periodic, bicuspid valves composed of endothelial cells prevent backflow of lymph. This work provides a brief overview of lymph transport, including initial lymph formation along with cellular and molecular mechanisms controlling lymphatic vessel pumping.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| |
Collapse
|
2
|
Anatomy and pathology of lymphatic vessels under physiological and inflammatory conditions in the mouse diaphragm. Microvasc Res 2023; 145:104438. [PMID: 36122645 DOI: 10.1016/j.mvr.2022.104438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
The lymphatic vessels in the parietal pleura drain fluids. Impaired drainage function and excessive fluid entry in the pleural cavity accumulate effusion. The rat diaphragmatic lymphatics drain fluids from the pleura to the muscle layer. Lymphatic subtypes are characterized by the major distribution of discontinuous button-like endothelial junctions (buttons) in initial lymphatics and continuous zipper-like junctions (zippers) in the collecting lymphatics. Inflammation replaced buttons with zippers in tracheal lymphatics. In the mouse diaphragm, the structural relationship between the lymphatics and blood vessels, the presence of lymphatics in the muscle layer, and the distributions of initial and collecting lymphatics are unclear. Moreover, the endothelial junctional alterations and effects of vascular endothelial growth factor receptor (VEGFR) inhibition under pleural inflammation are unclear. We subjected the whole-mount mouse diaphragms to immunohistochemistry. The lymphatics and blood vessels were distributed in different layers of the pleural membrane. Major lymphatic subtypes were initial lymphatics in the pleura and collecting lymphatics in the muscle layer. Chronic pleural inflammation disorganized the stratified layers of the lymphatics and blood vessels and replaced buttons with zippers in the pleural lymphatics, which impaired drainage function. VEGFR inhibition under inflammation maintained the vascular structures and drainage function. In addition, VEGFR inhibition maintained the lymphatic endothelial junctions and reduced the blood vessel permeability under inflammation. These findings may provide new targets for managing pleural effusions caused by inflammation, such as pleuritis and empyema, which are common pneumonia comorbidities.
Collapse
|
3
|
Negrini D. Morphological, Mechanical and Hydrodynamic Aspects of Diaphragmatic Lymphatics. BIOLOGY 2022; 11:biology11121803. [PMID: 36552311 PMCID: PMC9775868 DOI: 10.3390/biology11121803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
The diaphragmatic lymphatic vascular network has unique anatomical characteristics. Studying the morphology and distribution of the lymphatic network in the mouse diaphragm by fluorescence-immunohistochemistry using LYVE-1 (a lymphatic endothelial marker) revealed LYVE1+ structures on both sides of the diaphragm-both in its the muscular and tendinous portion, but with different vessel density and configurations. On the pleural side, most LYVE1+ configurations are vessel-like with scanty stomata, while the peritoneal side is characterized by abundant LYVE1+ flattened lacy-ladder shaped structures with several stomata-like pores, particularly in the muscular portion. Such a complex, three-dimensional organization is enriched, at the peripheral rim of the muscular diaphragm, with spontaneously contracting lymphatic vessel segments able to prompt contractile waves to adjacent collecting lymphatics. This review aims at describing how the external tissue forces developing in the diaphragm, along with cyclic cardiogenic and respiratory swings, interplay with the spontaneous contraction of lymphatic vessel segments at the peripheral diaphragmatic rim to simultaneously set and modulate lymph flow from the pleural and peritoneal cavities. These details may provide useful in understanding the role of diaphragmatic lymphatics not only in physiological but, more so, in pathophysiological circumstances such as in dialysis, metastasis or infection.
Collapse
Affiliation(s)
- Daniela Negrini
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
4
|
Solari E, Marcozzi C, Ottaviani C, Negrini D, Moriondo A. Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task. BIOLOGY 2022; 11:419. [PMID: 35336793 PMCID: PMC8945018 DOI: 10.3390/biology11030419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023]
Abstract
Lymphatic vessels exploit the mechanical stresses of their surroundings together with intrinsic rhythmic contractions to drain lymph from interstitial spaces and serosal cavities to eventually empty into the blood venous stream. This task is more difficult when the liquid to be drained has a very subatmospheric pressure, as it occurs in the pleural cavity. This peculiar space must maintain a very low fluid volume at negative hydraulic pressure in order to guarantee a proper mechanical coupling between the chest wall and lungs. To better understand the potential for liquid drainage, the key parameter to be considered is the difference in hydraulic pressure between the pleural space and the lymphatic lumen. In this review we collected old and new findings from in vivo direct measurements of hydraulic pressures in anaesthetized animals with the aim to better frame the complex physiology of diaphragmatic and intercostal lymphatics which drain liquid from the pleural cavity.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Moriondo
- Department of Medicine and Surgery, School of Medicine, University of Insubria, 21100 Varese, Italy; (E.S.); (C.M.); (C.O.); (D.N.)
| |
Collapse
|
5
|
DeBiasi EM, Feller-Kopman D. Anatomy and Applied Physiology of the Pleural Space. Clin Chest Med 2021; 42:567-576. [PMID: 34774165 DOI: 10.1016/j.ccm.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The unique anatomy and physiology of the pleural space provides tight regulation of liquid within the space under normal physiologic conditions. When this balance is disrupted and pleural effusions develop, there can be significant impacts on the respiratory system. Drainage of effusions can lead to meaningful improvement in symptoms, primarily owing to improvement in the length-tension relationship of the respiratory muscles. Ultrasound examination to evaluate the movement and function of the diaphragm, as well as pleural manometry, have provided a greater understanding of the impact of pleural effusion and thoracentesis.
Collapse
Affiliation(s)
- Erin M DeBiasi
- Division of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - David Feller-Kopman
- Division of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
6
|
Kuper CF, Pieters RHH, van Bilsen JHM. Nanomaterials and the Serosal Immune System in the Thoracic and Peritoneal Cavities. Int J Mol Sci 2021; 22:ijms22052610. [PMID: 33807632 PMCID: PMC7961545 DOI: 10.3390/ijms22052610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NM on ILCs and other components of the serosal immune system are scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NM may lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NM on the serosal immune system.
Collapse
Affiliation(s)
- C. Frieke Kuper
- Consultant, Haagstraat 13, 3581 SW Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| | - Raymond H. H. Pieters
- Immunotoxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands;
- Innovative Testing in Life Sciences & Chemistry, Research Centre for Healthy and Sustainable Living, University of Applied Sciences Utrecht, Padualaan 97, 3584 CH Utrecht, The Netherlands
| | - Jolanda H. M. van Bilsen
- Department for Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| |
Collapse
|
7
|
Solari E, Marcozzi C, Bistoletti M, Baj A, Giaroni C, Negrini D, Moriondo A. TRPV4 channels' dominant role in the temperature modulation of intrinsic contractility and lymph flow of rat diaphragmatic lymphatics. Am J Physiol Heart Circ Physiol 2020; 319:H507-H518. [PMID: 32706268 DOI: 10.1152/ajpheart.00175.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The lymphatic system drains and propels lymph by extrinsic and intrinsic mechanisms. Intrinsic propulsion depends upon spontaneous rhythmic contractions of lymphatic muscles in the vessel walls and is critically affected by changes in the surrounding tissue like osmolarity and temperature. Lymphatics of the diaphragm display a steep change in contraction frequency in response to changes in temperature, and this, in turn, affects lymph flow. In the present work, we demonstrated in an ex vivo diaphragmatic tissue rat model that diaphragmatic lymphatics express transient receptor potential channels of the vanilloid 4 subfamily (TRPV4) and that their blockade by both the nonselective antagonist Ruthenium Red and the selective antagonist HC-067047 abolished the response of lymphatics to temperature changes. Moreover, the selective activation of TRPV4 channels by means of GSK1016790A mirrored the behavior of vessels exposed to increasing temperatures, pointing out the critical role played by these channels in sensing the temperature of the lymphatic vessels' environment and thus inducing a change in contraction frequency and lymph flow.NEW & NOTEWORTHY The present work addresses the putative receptor system that enables diaphragmatic lymphatics to change intrinsic contraction frequency and thus lymph flow according to the changes in temperature of the surrounding environment, showing that this role can be sustained by TRPV4 channels alone.
Collapse
Affiliation(s)
- Eleonora Solari
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristiana Marcozzi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Daniela Negrini
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andrea Moriondo
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
8
|
The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations. Sci Rep 2019; 9:10649. [PMID: 31337769 PMCID: PMC6650476 DOI: 10.1038/s41598-019-46669-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 06/20/2019] [Indexed: 01/04/2023] Open
Abstract
The lymphatic system contains intraluminal leaflet valves that function to bias lymph flow back towards the heart. These valves are present in the collecting lymphatic vessels, which generally have lymphatic muscle cells and can spontaneously pump fluid. Recent studies have shown that the valves are open at rest, can allow some backflow, and are a source of nitric oxide (NO). To investigate how these valves function as a mechanical valve and source of vasoactive species to optimize throughput, we developed a mathematical model that explicitly includes Ca2+ -modulated contractions, NO production and valve structures. The 2D lattice Boltzmann model includes an initial lymphatic vessel and a collecting lymphangion embedded in a porous tissue. The lymphangion segment has mechanically-active vessel walls and is flanked by deformable valves. Vessel wall motion is passively affected by fluid pressure, while active contractions are driven by intracellular Ca2+ fluxes. The model reproduces NO and Ca2+ dynamics, valve motion and fluid drainage from tissue. We find that valve structural properties have dramatic effects on performance, and that valves with a stiffer base and flexible tips produce more stable cycling. In agreement with experimental observations, the valves are a major source of NO. Once initiated, the contractions are spontaneous and self-sustained, and the system exhibits interesting non-linear dynamics. For example, increased fluid pressure in the tissue or decreased lymph pressure at the outlet of the system produces high shear stress and high levels of NO, which inhibits contractions. On the other hand, a high outlet pressure opposes the flow, increasing the luminal pressure and the radius of the vessel, which results in strong contractions in response to mechanical stretch of the wall. We also find that the location of contraction initiation is affected by the extent of backflow through the valves.
Collapse
|
9
|
Kuper CF, van Bilsen J, Wijnands MVW. The Serosal Immune System of the Thorax in Toxicology. Toxicol Sci 2019; 164:31-38. [PMID: 29648628 DOI: 10.1093/toxsci/kfy085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The thoracic cavities receive increasing attention in toxicology, because inhaled fibers and (nano)particles can reach these cavities and challenge the local lymphoid tissues. The thoracic and abdominopelvic cavities are controlled by the serosal immune system with its special, loosely organized lymphoid clusters, namely the fat-associated lymphoid clusters and milky spots, which together can be denoted as serosa-associated lymphoid clusters. These clusters house numerous innate lymphoid cells, namely the nonconventional, innate B lymphoid cell and innate lymphocyte type 2 populations. The fat depots in the thorax play a significant role in the serosal immunity, and they can be modulated by health issues such as metabolic syndrome. The serosal immune system operates in a unique way at the interface of the innate and acquired immunity and therefore exposure-related modulation of the system may have a distinct impact on the body's immunity. To add to the investigation of the serosal immune system in the thorax, this review describes the (micro)anatomy of the immune system in relation to exposure, with a focus on the rat and mouse as preferred species in toxicology and immunology.
Collapse
Affiliation(s)
- Christine F Kuper
- The Netherlands Organization for Applied Scientific Research (TNO), Zeist, 3700 AJ, The Netherlands.,Retired
| | - Jolanda van Bilsen
- The Netherlands Organization for Applied Scientific Research (TNO), Zeist, 3700 AJ, The Netherlands
| | | |
Collapse
|
10
|
|
11
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
12
|
Demonstration and Analysis of the Suction Effect for Pumping Lymph from Tissue Beds at Subatmospheric Pressure. Sci Rep 2017; 7:12080. [PMID: 28935890 PMCID: PMC5608746 DOI: 10.1038/s41598-017-11599-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
Many tissues exhibit subatmospheric interstitial pressures under normal physiologic conditions. The mechanisms by which the lymphatic system extracts fluid from these tissues against the overall pressure gradient are unknown. We address this important physiologic issue by combining experimental measurements of contractile function and pressure generation with a previously validated mathematical model. We provide definitive evidence for the existence of 'suction pressure' in collecting lymphatic vessels, which manifests as a transient drop in pressure downstream of the inlet valve following contraction. This suction opens the inlet valve and is required for filling in the presence of low upstream pressure. Positive transmural pressure is required for this suction, providing the energy required to reopen the vessel. Alternatively, external vessel tethering can serve the same purpose when the transmural pressure is negative. Suction is transmitted upstream, allowing fluid to be drawn in through initial lymphatics. Because suction plays a major role in fluid entry to the lymphatics and is affected by interstitial pressure, our results introduce the phenomenon as another important factor to consider in the study of lymphoedema and its treatment.
Collapse
|
13
|
Retrograde Lymph Flow Leads to Chylothorax in Transgenic Mice with Lymphatic Malformations. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1984-1997. [PMID: 28683257 DOI: 10.1016/j.ajpath.2017.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/03/2017] [Accepted: 05/22/2017] [Indexed: 01/08/2023]
Abstract
Chylous pleural effusion (chylothorax) frequently accompanies lymphatic vessel malformations and other conditions with lymphatic defects. Although retrograde flow of chyle from the thoracic duct is considered a potential mechanism underlying chylothorax in patients and mouse models, the path chyle takes to reach the thoracic cavity is unclear. Herein, we use a novel transgenic mouse model, where doxycycline-induced overexpression of vascular endothelial growth factor (VEGF)-C was driven by the adipocyte-specific promoter adiponectin (ADN), to determine how chylothorax forms. Surprisingly, 100% of adult ADN-VEGF-C mice developed chylothorax within 7 days. Rapid, consistent appearance of chylothorax enabled us to examine the step-by-step development in otherwise normal adult mice. Dynamic imaging with a fluorescent tracer revealed that lymph in the thoracic duct of these mice could enter the thoracic cavity by retrograde flow into enlarged paravertebral lymphatics and subpleural lymphatic plexuses that had incompetent lymphatic valves. Pleural mesothelium overlying the lymphatic plexuses underwent exfoliation that increased during doxycycline exposure. Together, the findings indicate that chylothorax in ADN-VEGF-C mice results from retrograde flow of chyle from the thoracic duct into lymphatic tributaries with defective valves. Chyle extravasates from these plexuses and enters the thoracic cavity through exfoliated regions of the pleural mesothelium.
Collapse
|
14
|
Negrini D, Marcozzi C, Solari E, Bossi E, Cinquetti R, Reguzzoni M, Moriondo A. Hyperpolarization-activated cyclic nucleotide-gated channels in peripheral diaphragmatic lymphatics. Am J Physiol Heart Circ Physiol 2016; 311:H892-H903. [DOI: 10.1152/ajpheart.00193.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022]
Abstract
Diaphragmatic lymphatic function is mainly sustained by pressure changes in the tissue and serosal cavities during cardiorespiratory cycles. The most peripheral diaphragmatic lymphatics are equipped with muscle cells (LMCs), which exhibit spontaneous contraction, whose molecular machinery is still undetermined. Hypothesizing that spontaneous contraction might involve hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in lymphatic LMCs, diaphragmatic specimens, including spontaneously contracting lymphatics, were excised from 33 anesthetized rats, moved to a perfusion chamber containing HEPES-Tyrode's solution, and treated with HCN channels inhibitors cesium chloride (CsCl), ivabradine, and ZD-7288. Compared with control, exposure to 10 mM CsCl reduced (−65%, n = 13, P < 0.01) the contraction frequency (FL) and increased end-diastolic diameter (DL-d, +7.3%, P < 0.01) without changes in end-systolic diameter (DL-s). Ivabradine (300 μM) abolished contraction and increased DL-d (−14%, n = 10, P < 0.01) or caused an incomplete inhibition of FL ( n = 3, P < 0.01), leaving DL-d and DL-s unaltered. ZD-7288 (200 μM) completely ( n = 12, P < 0.01) abolished FL, while DL-d decreased to 90.9 ± 2.7% of control. HCN gene expression and immunostaining confirmed the presence of HCN1-4 channel isoforms, likely arranged in different configurations, in LMCs. Hence, all together, data suggest that HCN channels might play an important role in affecting contraction frequency of LMCs.
Collapse
Affiliation(s)
- Daniela Negrini
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy and
| | - Cristiana Marcozzi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy and
| | - Eleonora Solari
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy and
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marcella Reguzzoni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy and
| | - Andrea Moriondo
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy and
| |
Collapse
|
15
|
Moriondo A, Solari E, Marcozzi C, Negrini D. Lymph flow pattern in pleural diaphragmatic lymphatics during intrinsic and extrinsic isotonic contraction. Am J Physiol Heart Circ Physiol 2016; 310:H60-70. [DOI: 10.1152/ajpheart.00640.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
Peripheral rat diaphragmatic lymphatic vessels, endowed with intrinsic spontaneous contractility, were in vivo filled with fluorescent dextrans and microspheres and subsequently studied ex vivo in excised diaphragmatic samples. Changes in diameter and lymph velocity were detected, in a vessel segment, during spontaneous lymphatic smooth muscle contraction and upon activation, through electrical whole-field stimulation, of diaphragmatic skeletal muscle fibers. During intrinsic contraction lymph flowed both forward and backward, with a net forward propulsion of 14.1 ± 2.9 μm at an average net forward speed of 18.0 ± 3.6 μm/s. Each skeletal muscle contraction sustained a net forward-lymph displacement of 441.9 ± 159.2 μm at an average velocity of 339.9 ± 122.7 μm/s, values significantly higher than those documented during spontaneous contraction. The flow velocity profile was parabolic during both spontaneous and skeletal muscle contraction, and the shear stress calculated at the vessel wall at the highest instantaneous velocity never exceeded 0.25 dyne/cm2. Therefore, we propose that the synchronous contraction of diaphragmatic skeletal muscle fibers recruited at every inspiratory act dramatically enhances diaphragmatic lymph propulsion, whereas the spontaneous lymphatic contractility might, at least in the diaphragm, be essential in organizing the pattern of flow redistribution within the diaphragmatic lymphatic circuit. Moreover, the very low shear stress values observed in diaphragmatic lymphatics suggest that, in contrast with other contractile lymphatic networks, a likely interplay between intrinsic and extrinsic mechanisms be based on a mechanical and/or electrical connection rather than on nitric oxide release.
Collapse
Affiliation(s)
- Andrea Moriondo
- Department of Surgical and Morphological Sciences, Università degli Studi dell′Insubria, Italy
| | - Eleonora Solari
- Department of Surgical and Morphological Sciences, Università degli Studi dell′Insubria, Italy
| | - Cristiana Marcozzi
- Department of Surgical and Morphological Sciences, Università degli Studi dell′Insubria, Italy
| | - Daniela Negrini
- Department of Surgical and Morphological Sciences, Università degli Studi dell′Insubria, Italy
| |
Collapse
|
16
|
Moriondo A, Solari E, Marcozzi C, Negrini D. Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction. Am J Physiol Heart Circ Physiol 2015; 308:H193-205. [DOI: 10.1152/ajpheart.00701.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism through which the stresses developed in the diaphragmatic tissue during skeletal muscle contraction sustain local lymphatic function was studied in 10 deeply anesthetized, tracheotomized adult Wistar rats whose diaphragm was exposed after thoracotomy. To evaluate the direct effect of skeletal muscle contraction on the hydraulic intraluminal lymphatic pressures (Plymph) and lymphatic vessel geometry, the maximal contraction of diaphragmatic fibers adjacent to a lymphatic vessel was elicited by injection of 9.2 nl of 1 M KCl solution among diaphragmatic fibers while Plymph was recorded through micropuncture and vessel geometry via stereomicroscopy video recording. In lymphatics oriented perpendicularly to the longitudinal axis of muscle fibers and located at <300 μm from KCl injection, vessel diameter at maximal skeletal muscle contraction ( Dmc) decreased to 61.3 ± 1.4% of the precontraction value [resting diameter ( Drest)]; however, if injection was at >900 μm from the vessel, Dmc enlarged to 131.1 ± 2.3% of Drest. In vessels parallel to muscle fibers, Dmc increased to 122.8 ± 2.9% of Drest. During contraction, Plymph decreased as much as 22.5 ± 2.6 cmH2O in all submesothelial superficial vessels, whereas it increased by 10.7 ± 5.1 cmH2O in deeper vessels running perpendicular to contracting muscle fibers. Hence, the three-dimensional arrangement of the diaphragmatic lymphatic network seems to be finalized to efficiently exploit the stresses exerted by muscle fibers during the contracting inspiratory phase to promote lymph formation in superficial submesothelial lymphatics and its further propulsion in deeper intramuscular vessels.
Collapse
Affiliation(s)
- Andrea Moriondo
- Department of Surgical and Morphological Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Eleonora Solari
- Department of Surgical and Morphological Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Cristiana Marcozzi
- Department of Surgical and Morphological Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Daniela Negrini
- Department of Surgical and Morphological Sciences, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
17
|
Rittinghausen S, Hackbarth A, Creutzenberg O, Ernst H, Heinrich U, Leonhardt A, Schaudien D. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part Fibre Toxicol 2014; 11:59. [PMID: 25410479 PMCID: PMC4243371 DOI: 10.1186/s12989-014-0059-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological effects of tailor-made multi-walled carbon nanotubes (MWCNTs) without functionalization were investigated in vivo in a two-year carcinogenicity study. In the past, intraperitoneal carcinogenicity studies in rats using biopersistent granular dusts had always been negative, whereas a number of such studies with different asbestos fibers had shown tumor induction. The aim of this study was to identify possible carcinogenic effects of MWCNTs. We compared induced tumors with asbestos-induced mesotheliomas and evaluated their relevance for humans by immunohistochemical methods. METHODS A total of 500 male Wistar rats (50 per group) were treated once by intraperitoneal injection with 10⁹ or 5 × 10⁹ WHO carbon nanotubes of one of four different MWCNTs suspended in artificial lung medium, which was also used as negative control. Amosite asbestos (10⁸ WHO fibers) served as positive control. Morbid rats were sacrificed and necropsy comprising all organs was performed. Histopathological classification of tumors and, additionally, immunohistochemistry were conducted for podoplanin, pan-cytokeratin, and vimentin to compare induced tumors with malignant mesotheliomas occurring in humans. RESULTS Treatments induced tumors in all dose groups, but incidences and times to tumor differed between groups. Most tumors were histologically and immunohistochemically classified as malignant mesotheliomas, revealing a predominantly superficial spread on the serosal surface of the abdominal cavity. Furthermore, most tumors showed invasion of peritoneal organs, especially the diaphragm. All tested MWCNT types caused mesotheliomas. We observed highest frequencies and earliest appearances after treatment with the rather straight MWCNT types A and B. In the MWCNT C groups, first appearances of morbid mesothelioma-bearing rats were only slightly later. Later during the two-year study, we found mesotheliomas also in rats treated with MWCNT D - the most curved type of nanotubes. Malignant mesotheliomas induced by intraperitoneal injection of different MWCNTs and of asbestos were histopathologically and immunohistochemically similar, also compared with mesotheliomas in man, suggesting similar pathogenesis. CONCLUSION We showed a carcinogenic effect for all tested MWCNTs. Besides aspect ratio, curvature seems to be an important parameter influencing the carcinogenicity of MWCNTs.
Collapse
Affiliation(s)
- Susanne Rittinghausen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | - Anja Hackbarth
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | - Heinrich Ernst
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | - Uwe Heinrich
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | - Albrecht Leonhardt
- Leibniz Institute for Solid State and Materials Research Dresden, PF 270116, 01171, Dresden, Germany.
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
18
|
Breslin JW. Mechanical forces and lymphatic transport. Microvasc Res 2014; 96:46-54. [PMID: 25107458 DOI: 10.1016/j.mvr.2014.07.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
This review examines the current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect the pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. An improved understanding of the physiological mechanisms by which lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
19
|
Pelosi P, Quintel M, Malbrain MLNG. Effect of intra-abdominal pressure on respiratory mechanics. Acta Clin Belg 2014; 62 Suppl 1:78-88. [PMID: 24881704 DOI: 10.1179/acb.2007.62.s1.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
INTRODUCTION There has been an exponentially increasing interest in intra-abdominal hypertension (IAH). The intra-abdominal pressure (IAP) markedly affects the function of the respiratory system. METHODS This review will focus on the available literature from the past few years. A Medline and Pubmed search was performed in order to find an answer to the question "What is the impact of increased IAP on respiratory function in the critically ill?". RESULTS In particular, increased IAP increases chest wall elastance (or decreases compliance) and promotes cranial shift of the diaphragm, with consequent reduction in lung volume and atelectasis formation. Compression of the lung parenchyma also triggers pulmonary infection. During general anaesthesia, in normal subjects, IAP does not affect the chest wall mechanics, but plays a relevant role in the caudal-cranial displacement of the abdominal content, the diaphragm and consequent changes in lung mechanics and function. In obese patients, the increased IAP is the major determinant of the reduction in lung volume, atelectasis formation and alterations in chest wall mechanics. In ARDS patients the measurement of IAP and chest wall mechanics is important for a better interpretation of respiratory mechanics, hemodynamics and appropriate setting of the ventilator. Furthermore, increased IAP promotes lung oedema, ventilator induced lung injury and reduced lymphatic flow in normal and diseased lungs. CONCLUSION Increased IAP markedly affects respiratory function in such a way that it has an impact on daily clinical practise.
Collapse
|
20
|
Kinashi H, Ito Y, Mizuno M, Suzuki Y, Terabayashi T, Nagura F, Hattori R, Matsukawa Y, Mizuno T, Noda Y, Nishimura H, Nishio R, Maruyama S, Imai E, Matsuo S, Takei Y. TGF-β1 promotes lymphangiogenesis during peritoneal fibrosis. J Am Soc Nephrol 2013; 24:1627-42. [PMID: 23990681 PMCID: PMC3785267 DOI: 10.1681/asn.2012030226] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/01/2013] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis (PF) causes ultrafiltration failure (UFF) and is a complicating factor in long-term peritoneal dialysis. Lymphatic reabsorption also may contribute to UFF, but little is known about lymphangiogenesis in patients with UFF and peritonitis. We studied the role of the lymphangiogenesis mediator vascular endothelial growth factor-C (VEGF-C) in human dialysate effluents, peritoneal tissues, and peritoneal mesothelial cells (HPMCs). Dialysate VEGF-C concentration correlated positively with the dialysate-to-plasma ratio of creatinine (D/P Cr) and the dialysate TGF-β1 concentration. Peritoneal tissue from patients with UFF expressed higher levels of VEGF-C, lymphatic endothelial hyaluronan receptor-1 (LYVE-1), and podoplanin mRNA and contained more lymphatic vessels than tissue from patients without UFF. Furthermore, mesothelial cell and macrophage expression of VEGF-C increased in the peritoneal membranes of patients with UFF and peritonitis. In cultured mesothelial cells, TGF-β1 upregulated the expression of VEGF-C mRNA and protein, and this upregulation was suppressed by a TGF-β type I receptor (TGFβR-I) inhibitor. TGF-β1-induced upregulation of VEGF-C mRNA expression in cultured HPMCs correlated with the D/P Cr of the patient from whom the HPMCs were derived (P<0.001). Moreover, treatment with a TGFβR-I inhibitor suppressed the enhanced lymphangiogenesis and VEGF-C expression associated with fibrosis in a rat model of PF. These results suggest that lymphangiogenesis associates with fibrosis through the TGF-β-VEGF-C pathway.
Collapse
Affiliation(s)
| | - Yasuhiko Ito
- Departments of Nephrology and Renal Replacement Therapy
| | | | | | | | - Fumiko Nagura
- Departments of Nephrology and Renal Replacement Therapy
| | | | | | - Tomohiro Mizuno
- Division of Clinical Sciences and Neuropsychopharmacology, Meijyo University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijyo University Graduate School of Medicine, Nagoya, Japan
| | - Hayato Nishimura
- Department of Nephrology, Toyota Kosei Hospital, Toyota, Japan; and
| | - Ryosuke Nishio
- Department of Emergency Medicine, Kyoto University Hospital, Kyoto, Japan
| | | | - Enyu Imai
- Departments of Nephrology and Renal Replacement Therapy
| | | | - Yoshifumi Takei
- Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
21
|
Moriondo A, Solari E, Marcozzi C, Negrini D. Spontaneous activity in peripheral diaphragmatic lymphatic loops. Am J Physiol Heart Circ Physiol 2013; 305:H987-95. [DOI: 10.1152/ajpheart.00418.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spontaneous contractility of FITC-dextran-filled lymphatics at the periphery of the pleural diaphragm was documented for the first time “in vivo” in anesthetized Wistar rats. We found that lymphatic segments could be divided into four phenotypes: 1) active, displaying rhythmic spontaneous contractions (51.8% of 197 analyzed sites); 2) stretch-activated, whose contraction was triggered by passive distension of the vessel lumen (4.1%); 3) passive, which displayed a completely passive distension (4.5%); and 4) inert, whose diameter never changed over time (39.6%). Smooth muscle actin was detected by immunofluorescence and confocal microscopy in the vessel walls of active but also of inert sites, albeit with a very different structure within the vessel wall. Indeed, while in active segments, actin was arranged in a dense mesh completely surrounding the lumen, in inert segments actin decorated the vessels wall in sparse longitudinal strips. When located nearby along the same lymphatic loop, active, stretch-activated, and passive sites were always recruited in temporal sequence starting from the active contraction. The time delay was ∼0.35 s between active and stretch-activated and 0.54 s between stretch-activated and passive segments, promoting a uniform lymph flux of ∼150/200 pl/min. We conclude that, unlike more central diaphragmatic lymphatic vessels, loops located at the extreme diaphragmatic periphery do require an intrinsic pumping mechanism to propel lymph centripetally, and that such an active lymph propulsion is attained by means of a complex interplay among sites whose properties differ but are indeed able to organize lymph flux in an ordered fashion.
Collapse
Affiliation(s)
- Andrea Moriondo
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Eleonora Solari
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Cristiana Marcozzi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Daniela Negrini
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
22
|
Negrini D, Moriondo A. Pleural function and lymphatics. Acta Physiol (Oxf) 2013; 207:244-59. [PMID: 23009260 DOI: 10.1111/apha.12016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 07/24/2012] [Accepted: 09/17/2012] [Indexed: 11/26/2022]
Abstract
The pleural space plays an important role in respiratory function as the negative intrapleural pressure regimen ensures lung expansion and in the mean time maintains the tight mechanical coupling between the lung and the chest wall. The efficiency of the lung-chest wall coupling depends upon pleural liquid volume, which in turn reflects the balance between the filtration of fluid into and its egress out of the cavity. While filtration occurs through a single mechanism passively driving fluid from the interstitium of the parietal pleura into the cavity, several mechanisms may co-operate to remove pleural fluid. Among these, the pleural lymphatic system emerges as the most important one in quantitative terms and the only one able to cope with variable pleural fluid volume and drainage requirements. In this review, we present a detailed account of the actual knowledge on: (a) the complex morphology of the pleural lymphatic system, (b) the mechanism supporting pleural lymph formation and propulsion, (c) the dependence of pleural lymphatic function upon local tissue mechanics and (d) the effect of lymphatic inefficiency in the development of clinically severe pleural and, more in general, respiratory pathologies.
Collapse
Affiliation(s)
- D. Negrini
- Department of Surgical and Morphological Sciences; University of Insubria; Varese; Italy
| | - A. Moriondo
- Department of Surgical and Morphological Sciences; University of Insubria; Varese; Italy
| |
Collapse
|
23
|
Kakkad SM, Solaiyappan M, Argani P, Sukumar S, Jacobs LK, Leibfritz D, Bhujwalla ZM, Glunde K. Collagen I fiber density increases in lymph node positive breast cancers: pilot study. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:116017. [PMID: 23117811 PMCID: PMC3486274 DOI: 10.1117/1.jbo.17.11.116017] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 09/16/2012] [Accepted: 10/05/2012] [Indexed: 05/19/2023]
Abstract
Collagen I (Col1) fibers are a major structural component in the extracellular matrix of human breast cancers. In a preliminary pilot study, we explored the link between Col1 fiber density in primary human breast cancers and the occurrence of lymph node metastasis. Col1 fibers were detected by second harmonic generation (SHG) microscopy in primary human breast cancers from patients presenting with lymph node metastasis (LN+) versus those without lymph node metastasis (LN-). Col1 fiber density, which was quantified using our in-house SHG image analysis software, was significantly higher in the primary human breast cancers of LN+ (fiber volume=29.22%±4.72%, inter-fiber distance=2.25±0.45 μm) versus LN- (fiber volume=20.33%±5.56%, inter-fiber distance=2.88±1.07 μm) patients. Texture analysis by evaluating the co-occurrence matrix and the Fourier transform of the Col1 fibers proved to be significantly different for the parameters of co-relation and energy, as well as aspect ratio and eccentricity, for LN+ versus LN- cases. We also demonstrated that tissue fixation and paraffin embedding had negligible effect on SHG Col1 fiber detection and quantification. High Col1 fiber density in primary breast tumors is associated with breast cancer metastasis and may serve as an imaging biomarker of metastasis.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/secondary
- Collagen Type I/metabolism
- Female
- Humans
- Lymphatic Metastasis/pathology
- MCF-7 Cells
- Mice
- Mice, Nude
- Microscopy, Confocal/methods
- Optical Phenomena
- Paraffin Embedding
- Pilot Projects
- Retrospective Studies
- Tissue Fixation
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Samata M. Kakkad
- The Johns Hopkins University School of Medicine, In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland
- University of Bremen, Department of Chemistry and Biology, Bremen, Germany
| | - Meiyappan Solaiyappan
- The Johns Hopkins University School of Medicine, In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland
| | - Pedram Argani
- The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- The Johns Hopkins University School of Medicine, Pathology Department, Baltimore, Maryland
| | - Saraswati Sukumar
- The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- The Johns Hopkins University School of Medicine, Pathology Department, Baltimore, Maryland
| | - Lisa K. Jacobs
- The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- The Johns Hopkins University School of Medicine, Department of Surgery, Baltimore, Maryland
| | - Dieter Leibfritz
- University of Bremen, Department of Chemistry and Biology, Bremen, Germany
| | - Zaver M. Bhujwalla
- The Johns Hopkins University School of Medicine, In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland
- The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Address all correspondence to: Kristine Glunde, The Johns Hopkins University School of Medicine, Department of Radiology, 212 Traylor Building, 720 Rutland Avenue, Baltimore, Maryland 21205. Tel: (410) 614-2705; Fax: (410) 614-1948; E-mail: , or Zaver M. Bhujwalla, The Johns Hopkins University School of Medicine, Department of Radiology, 208C Traylor Building, 720 Rutland Avenue, Baltimore, Maryland 21205. Tel: (410) 955-9698; Fax: (410) 614-1948; E-mail:
| | - Kristine Glunde
- The Johns Hopkins University School of Medicine, In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland
- The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Address all correspondence to: Kristine Glunde, The Johns Hopkins University School of Medicine, Department of Radiology, 212 Traylor Building, 720 Rutland Avenue, Baltimore, Maryland 21205. Tel: (410) 614-2705; Fax: (410) 614-1948; E-mail: , or Zaver M. Bhujwalla, The Johns Hopkins University School of Medicine, Department of Radiology, 208C Traylor Building, 720 Rutland Avenue, Baltimore, Maryland 21205. Tel: (410) 955-9698; Fax: (410) 614-1948; E-mail:
| |
Collapse
|
24
|
Abstract
Lymph formation is driven by hydraulic pressure gradients developing between the interstitial tissue and the lumen of initial lymphatics. While in vessels equipped with lymphatic smooth muscle cells these gradients are determined by well-synchronized spontaneous contractions of vessel segments, initial lymphatics devoid of smooth muscles rely on tissue motion to form lymph and propel it along the network. Lymphatics supplying highly moving tissues, such as skeletal muscle, diaphragm or thoracic tissues, undergo cyclic compression and expansion of their lumen imposed by local stresses arising in the tissue as a consequence of cardiac and respiratory activities. Active muscle contraction and not passive tissue displacement is required to support an efficient lymphatic drainage, as suggested by the fact that the respiratory activity promotes lymph formation during spontaneous, but not mechanical ventilation. The mechanical properties of the lymphatic wall and of the surrounding tissue also play an important role in lymphatic function. Modelling of stress distribution in the lymphatic wall suggests that compliant vessels behave as reservoirs accommodating absorbed interstitial fluid, while lymphatics with stiffer walls, taking advantage of a more efficient transmission of tissue stresses to the lymphatic lumen, propel fluid through the lumen of the lymphatic circuit.
Collapse
Affiliation(s)
- Daniela Negrini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi dell'Insubria, Via J.H. Dunant 5, 21100 Varese, Italy.
| | | |
Collapse
|
25
|
Moriondo A, Boschetti F, Bianchin F, Lattanzio S, Marcozzi C, Negrini D. Tissue contribution to the mechanical features of diaphragmatic initial lymphatics. J Physiol 2011; 588:3957-69. [PMID: 20724369 DOI: 10.1113/jphysiol.2010.196204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of the mechanical properties of the initial lymphatic wall and of the surrounding tissue in supporting lymph formation and/or progression was studied in six anaesthetized, neuromuscularly blocked and mechanically ventilated rats. After mid-sternal thoracotomy, submesothelial initial lymphatics were identified on the pleural diaphragmatic surface through stereomicroscopy. An 'in vivo' lymphatic segment was prepared by securing two surgical threads around the vessel at a distance of ∼2.5 mm leaving the vessel in place. Two glass micropipettes were inserted into the lumen, one for intraluminar injections of 4.6 nl saline boluses and one for hydraulic pressure (Plymph) recording. The compliance of the vessel wall (Clymph) was calculated as the slope of the plot describing the change in segment volume as a function of the post-injection Plymph changes. Two superficial lymphatic vessel populations with a significantly different Clymph (6.7 ± 1.6 and 1.5 ± 0.4 nl mmHg−1 (mean ± S.E.M.), P < 0.001) were identified. In seven additional rats, the average elastic modulus of diaphragmatic tissue strips was determined by uniaxial tension tests to be 1.7 ± 0.3 MPa. Clymph calculated for an initial lymphatic completely surrounded by isotropic tissue was 0.068 nl mmHg−1, i.e. two orders of magnitude lower than in submesothelial lymphatics. Modelling of stress distribution in the lymphatic wall suggests that compliant vessels may act as reservoirs accommodating large absorbed fluid volumes, while lymphatics with stiffer walls serve to propel fluid through the lumen of the lymphatic vessel by taking advantage of the more efficient mechanical transmission of tissue stresses to the lymphatic lumen.
Collapse
Affiliation(s)
- Andrea Moriondo
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi dell’Insubria, 21100 Varese, Italy
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Gashev AA, Zawieja DC. Hydrodynamic regulation of lymphatic transport and the impact of aging. PATHOPHYSIOLOGY 2010; 17:277-87. [PMID: 20226639 PMCID: PMC5507682 DOI: 10.1016/j.pathophys.2009.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/17/2009] [Accepted: 09/23/2009] [Indexed: 10/19/2022] Open
Abstract
To accomplish its normal roles in body fluid regulation/macromolecular homeostasis, immune function, and lipid absorption; the lymphatic system must transport lymph from the interstitial spaces, into and through the lymphatics, through the lymphatic compartment of the nodes, back into the nodal efferent lymphatics and eventually empty into the great veins. The usual net pressure gradients along this path do not normally favor the passive movement of lymph. Thus, lymph transport requires the input of energy to the lymph to propel it along this path. To do this, the lymphatic system uses a series of pumps to generate lymph flow. Thus to regulate lymph transport, both lymphatic pumping and resistance must be controlled. This review focuses on the regulation of the intrinsic lymph pump by hydrodynamic factors and how these regulatory processes are altered with age. Intrinsic lymph pumping is generated via the rapid/phasic contractions of lymphatic muscle, which are modulated by local physical factors (pressure/stretch and flow/shear). Increased lymph pressure/stretch will generally activate the intrinsic lymph pump up to a point, beyond which the lymph pump will begin to fail. The effect of increased lymph flow/shear is somewhat more complex, in that it can either activate or inhibit the intrinsic lymph pump, depending on the pattern and magnitude of the flow. The pattern and strength of the hydrodynamic regulation of the lymph transport is different in various parts of the lymphatic tree under normal conditions, depending upon the local hydrodynamic conditions. In addition, various pathophysiological processes can affect lymph transport. We have begun to evaluate the influence of the aging process on lymphatic transport characteristics in the rat thoracic duct. The pressure/stretch-dependent activation of intrinsic pumping is significantly impaired in aged rat thoracic duct (TD) and the flow/shear-dependent regulatory mechanisms are essentially completely lacking. The loss of shear-dependent modulation of lymphatic transport appears to be related to a loss of normal eNOS expression and a large rise in iNOS expression in these vessels. Therefore, aging of the lymph transport system significantly impairs its ability to transport lymph. We believe this will alter normal fluid balance as well as negatively impact immune function in the aged animals. Further studies are needed to detail the mechanisms that control and alter lymphatic transport during normal and aged conditions.
Collapse
Affiliation(s)
- Anatoliy A. Gashev
- Department of Systems Biology and Translational Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, College of Medicine, Texas A&M Health Science Center, 702 SW H.K. Dodgen Loop, Temple, TX 76504, USA
| | - David C. Zawieja
- Department of Systems Biology and Translational Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, College of Medicine, Texas A&M Health Science Center, 702 SW H.K. Dodgen Loop, Temple, TX 76504, USA
| |
Collapse
|
28
|
Galie P, Spilker RL. A two-dimensional computational model of lymph transport across primary lymphatic valves. J Biomech Eng 2010; 131:111004. [PMID: 20353255 DOI: 10.1115/1.3212108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study utilizes a finite element model to characterize the transendothelial transport through overlapping endothelial cells in primary lymphatics during the uptake of interstitial fluid. The computational model is built upon the analytical model of these junctions created by Mendoza and Schmid-Schonbein (2003, "A Model for Mechanics of Primary Lymphatic Valves," J. Biomed. Eng., 125, pp. 407-414). The goal of the present study is to investigate how adding more sophisticated and physiologically representative biomechanics affects the model's prediction of fluid uptake. These changes include incorporating a porous domain to represent interstitial space, accounting for finite deformation of the deflecting endothelial cell, and utilizing an arbitrary Lagrangian-Eulerian algorithm to account for interacting and nonlinear mechanics of the junctions. First, the present model is compared with the analytical model in order to understand its effects on parameters such as cell deflection, pressure distribution, and velocity profile of the fluid entering the lumen. Without accounting for the porous nature of the interstitium, the computational model predicts greater cell deflection and consequently higher lymph velocities and flow rates than the analytical model. However, incorporating the porous domain attenuates the cell deflection and flow rate to values below that predicted by the analytical model for a given transmural pressure. Second, the present model incorporates recent experimental data for parameters such as lymph viscosity, transmural pressure measurements, and others to evaluate the ability of these junctions to act as unidirectional valves. The volume of flow through the valve is calculated to be 0.114 nL/microm per cycle for a transmural pressure varying between 8.0 mm Hg and -1.0 mm Hg at 0.4 Hz. Though experimental data for the absorption of lymph through these endothelial junctions are scarce, several measurements of lymph velocity and flow rates are cited to validate the present model.
Collapse
Affiliation(s)
- Peter Galie
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | | |
Collapse
|
29
|
Zamir M, Moore JE, Fujioka H, Gaver DP. Biofluid mechanics of special organs and the issue of system control. Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, 2008 Pasadena, California. Ann Biomed Eng 2010; 38:1204-15. [PMID: 20336840 PMCID: PMC2917121 DOI: 10.1007/s10439-010-9902-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the field of fluid flow within the human body, focus has been placed on the transportation of blood in the systemic circulation since the discovery of that system; but, other fluids and fluid flow phenomena pervade the body. Some of the most fascinating fluid flow phenomena within the human body involve fluids other than blood and a service other than transport--the lymphatic and pulmonary systems are two striking examples. While transport is still involved in both cases, this is not the only service which they provide and blood is not the only fluid involved. In both systems, filtration, extraction, enrichment, and in general some "treatment" of the fluid itself is the primary function. The study of the systemic circulation has also been conventionally limited to treating the system as if it were an open-loop system governed by the laws of fluid mechanics alone, independent of physiological controls and regulations. This implies that system failures can be explained fully in terms of the laws of fluid mechanics, which of course is not the case. In this paper we examine the clinical implications of these issues and of the special biofluid mechanics issues involved in the lymphatic and pulmonary systems.
Collapse
Affiliation(s)
- Mair Zamir
- Department of Applied Mathematics, The University of Western Ontario, London, ON, Canada.
| | | | | | | |
Collapse
|
30
|
Rutkowski JM, Markhus CE, Gyenge CC, Alitalo K, Wiig H, Swartz MA. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1122-9. [PMID: 20110415 DOI: 10.2353/ajpath.2010.090733] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling--predominantly collagen and fat deposition--may dictate tissue swelling and govern interstitial transport in lymphedema.
Collapse
Affiliation(s)
- Joseph M Rutkowski
- Institute of Bioengineering, School of Life Sciences/LMBM/Station 15, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Effects of positive end-expiratory pressure on respiratory function and hemodynamics in patients with acute respiratory failure with and without intra-abdominal hypertension: a pilot study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R160. [PMID: 19804634 PMCID: PMC2784387 DOI: 10.1186/cc8118] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/19/2009] [Accepted: 10/05/2009] [Indexed: 12/29/2022]
Abstract
INTRODUCTION To investigate the effects of positive end-expiratory pressure (PEEP) on respiratory function and hemodynamics in patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) with normal intra-abdominal pressure (IAP < 12 mmHg) and with intra-abdominal hypertension (IAH, defined as IAP >or= 12 mmHg) during lung protective ventilation and a decremental PEEP, a prospective, observational clinical pilot study was performed. METHODS Twenty patients with ALI/ARDS with normal IAP or IAH treated in the surgical intensive care unit in a university hospital were studied. The mean IAP in patients with IAH and normal IAP was 16 +/- 3 mmHg and 8 +/- 3 mmHg, respectively (P < 0.001). At different PEEP levels (5, 10, 15, 20 cmH2O) we measured respiratory mechanics, partitioned into its lung and chest wall components, alveolar recruitment, gas-exchange, hemodynamics, extravascular lung water index (EVLWI) and intrathoracic blood volume index (ITBVI). RESULTS We found that ALI/ARDS patients with IAH, as compared to those with normal IAP, were characterized by: a) no differences in gas-exchange, respiratory mechanics, partitioned into its lung and chest wall components, as well as hemodynamics and EVLWI/ITBVI; b) decreased elastance of the respiratory system and the lung, but no differences in alveolar recruitment and oxygenation or hemodynamics, when PEEP was increased at 10 and 15cmH2O; c) at higher levels of PEEP, EVLWI was lower in ALI/ARDS patients with IAH as compared with those with normal IAP. CONCLUSIONS IAH, within the limits of IAP measured in the present study, does not affect interpretation of respiratory mechanics, alveolar recruitment and hemodynamics.
Collapse
|
32
|
Abstract
The lymphatic system has important roles in body fluid regulation, macromolecular homeostasis, lipid absorption, and immune function. To accomplish these roles, lymphatics must move fluid and its other contents (macromolecules, lipids/chylomicra, immune cells) from the interstitium through the lymphatics, across the nodes, and into the great veins. Thus, the principal task of the lymphatic vascular system is transport. The body must impart energy to the lymph via pumping mechanisms to propel it along the lymphatic network and use pumps and valves to generate lymph flow and prevent its backflow. The lymphatic system utilizes both extrinsic pumps, which rely on the cyclical compression and expansion of lymphatics by surrounding tissue forces, and intrinsic pumps, which rely on the intrinsic rapid/phasic contractions of lymphatic muscle. The intrinsic lymph pump function can be modulated by neural, humoral, and physical factors. Generally, increased lymph pressure/stretch of the muscular lymphatics activates the intrinsic lymph pump, while increased lymph flow/shear in the muscular lymphatics can either activate or inhibit the intrinsic lymph pump depending on the pattern and magnitude of the flow. To regulate lymph transport, lymphatic pumping and resistance must be controlled. A better understanding of these mechanisms could provide the basis for the development of better diagnostic and treatment modalities for lymphatic dysfunction.
Collapse
Affiliation(s)
- David C Zawieja
- Department of Systems Biology and Translational Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, Temple, Texas 77843-1114, USA.
| |
Collapse
|
33
|
Moriondo A, Bianchin F, Marcozzi C, Negrini D. Kinetics of fluid flux in the rat diaphragmatic submesothelial lymphatic lacunae. Am J Physiol Heart Circ Physiol 2008; 295:H1182-H1190. [DOI: 10.1152/ajpheart.00369.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The specific role of loops and/or linear segments in pleural diaphragmatic submesothelial lymphatics was investigated in seven anesthetized, paralyzed, and mechanically ventilated rats. Lymphatic loops lay peripherally above the diaphragmatic muscular plane, whereas linear vessels run over both the muscular and central tendineous regions. Lymph vessel diameter, measured by automatic software analysis, was significantly greater ( P < 0.01) in linear vessels [103.4 ± 8.5 μm (mean ± SE), n = 18] than in loops (54.6 ± 3.3 μm, n = 21). Conversely, the geometric mean of intraluminal flow velocity, obtained from the speed of distribution of a bolus of fluorescent dextrans injected into the vessel, was lower ( P < 0.01) in linear vessels (26.3 ± 1.4 μm/s) compared with loops (51.3 ± 3.2 μm/s). Lymph flow, calculated as the product of flow velocity by vessel cross-sectional area, was similar in linear vessels and in individual vessels of a loop, averaging 8.6 ± 1.6 nl/min. Flow was always directed from the diaphragm periphery toward the medial tendineous region in linear vessels, whereas it was more complex and evidently controlled by intraluminal unidirectional valves in loops. The results suggest that loops might be the preferential site of lymph formation, whereas linear vessels would be mainly involved in the progression of newly formed lymph toward deeper collecting diaphragmatic ducts. Within the same hierarchic order of diaphragmatic lymphatic vessels, the spatial organization and geometrical arrangement of the submesothelial lacunae seem to be finalized at exploiting the alternate contraction/relaxation phases of diaphragmatic muscle fibers to optimize fluid removal from serosal cavities.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Lymph flow will be discussed as part of the drainage and fluid balance of lung tissue and abdomen as well as a qualitative analysis of inflammatory processes. RECENT FINDINGS Measurement of lung lymph is still a technical challenge. Mechanical ventilation and positive end-expiratory pressure impede lung lymph flow by increased intrathoracic pressure and increased central venous pressure. Positive end-expiratory pressure may thus enhance edema formation of the lung. Inflammatory spread from abdomen to the lung via the lymphatic system has been shown in a number of experimental studies. Ligation or diversion of the thoracic duct has been proposed to blunt the effects of noxious stimuli mediated by lymphatics to the lungs. Lymphatics have a major role on abdominal fluid balance while draining extravascular fluid accumulation and edema, especially during sepsis. Mechanical ventilation with high airway pressure increases abdominal edema (ascites) and spontaneous breathing protects from edema formation. SUMMARY Lymph flow measurements are still a difficult task to perform; however, new results show an important function in the fluid balance of the lung and abdomen. Inflammatory spread may occur from the lung to the periphery by the blood stream and from the abdomen to the lung by lymph flow.
Collapse
|
35
|
Miserocchi G, Sancini G, Mantegazza F, Chiappino G. Translocation pathways for inhaled asbestos fibers. Environ Health 2008; 7:4. [PMID: 18218073 PMCID: PMC2265277 DOI: 10.1186/1476-069x-7-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 01/24/2008] [Indexed: 05/24/2023]
Abstract
We discuss the translocation of inhaled asbestos fibers based on pulmonary and pleuro-pulmonary interstitial fluid dynamics. Fibers can pass the alveolar barrier and reach the lung interstitium via the paracellular route down a mass water flow due to combined osmotic (active Na+ absorption) and hydraulic (interstitial pressure is subatmospheric) pressure gradient. Fibers can be dragged from the lung interstitium by pulmonary lymph flow (primary translocation) wherefrom they can reach the blood stream and subsequently distribute to the whole body (secondary translocation). Primary translocation across the visceral pleura and towards pulmonary capillaries may also occur if the asbestos-induced lung inflammation increases pulmonary interstitial pressure so as to reverse the trans-mesothelial and trans-endothelial pressure gradients. Secondary translocation to the pleural space may occur via the physiological route of pleural fluid formation across the parietal pleura; fibers accumulation in parietal pleura stomata (black spots) reflects the role of parietal lymphatics in draining pleural fluid. Asbestos fibers are found in all organs of subjects either occupationally exposed or not exposed to asbestos. Fibers concentration correlates with specific conditions of interstitial fluid dynamics, in line with the notion that in all organs microvascular filtration occurs from capillaries to the extravascular spaces. Concentration is high in the kidney (reflecting high perfusion pressure and flow) and in the liver (reflecting high microvascular permeability) while it is relatively low in the brain (due to low permeability of blood-brain barrier). Ultrafine fibers (length < 5 mum, diameter < 0.25 mum) can travel larger distances due to low steric hindrance (in mesothelioma about 90% of fibers are ultrafine). Fibers translocation is a slow process developing over decades of life: it is aided by high biopersistence, by inflammation-induced increase in permeability, by low steric hindrance and by fibers motion pattern at low Reynolds numbers; it is hindered by fibrosis that increases interstitial flow resistances.
Collapse
Affiliation(s)
- G Miserocchi
- Department of Experimental Medicine, University of Milano-Bicocca, Via Cadore 48, 20052, Monza, Italy
| | - G Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Via Cadore 48, 20052, Monza, Italy
| | - F Mantegazza
- Department of Experimental Medicine, University of Milano-Bicocca, Via Cadore 48, 20052, Monza, Italy
| | - Gerolamo Chiappino
- Clinic of Occupational Medicine and Research Centre of Inhaled Particles, University of Milano, Via San Barnaba, 8 – 20122 Milano, Italy
| |
Collapse
|
36
|
|
37
|
Negrini D, Passi A. Interstitial matrix and transendothelial fluxes in normal lung. Respir Physiol Neurobiol 2007; 159:301-10. [PMID: 17499562 DOI: 10.1016/j.resp.2007.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 03/08/2007] [Accepted: 04/05/2007] [Indexed: 11/17/2022]
Abstract
Pulmonary gas exchange critically depends upon the hydration state and the thinness of the interstitial tissue layer within the alveolo-capillary barrier. In the interstitium, fluid freely moving within the fibrous extracellular matrix equilibrates with water chemically interacting with hyaluronic acid and proteoglycans, the non-fibrillar components of the matrix. The integrity of the macromolecular assembly of the tissue matrix is required in all processes involved in establishing and maintaining the adequate interstitial tissue fluid volume, by providing: (a) a stiff three dimensional fibrous scaffold, functioning as an efficient safety factor to oppose fluid filtration into the tissue and preventing tissue fluid accumulation; (b) a restrictive perivascular and interstitial sieve with respect to plasma proteins; (c) a mechanical support to initial lymphatics. Therefore, disturbances of the deposition and/or turnover of the matrix and/or of its three dimensional architecture and composition are invariably accompanied by profound changes of the steady state tissue fluid dynamics, eventually evolving towards severe lung disease.
Collapse
Affiliation(s)
- Daniela Negrini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi dell'Insubria, Via Dunant 5, 21100, Varese, Italy.
| | | |
Collapse
|
38
|
Moriondo A, Grimaldi A, Sciacca L, Guidali ML, Marcozzi C, Negrini D. Regional recruitment of rat diaphragmatic lymphatics in response to increased pleural or peritoneal fluid load. J Physiol 2007; 579:835-47. [PMID: 17218349 PMCID: PMC2151369 DOI: 10.1113/jphysiol.2006.127126] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The specific role of the diaphragmatic tendinous and muscular tissues in sustaining lymph formation and propulsion in the diaphragm was studied in 24 anaesthetized spontaneously breathing supine rats. Three experimental protocols were used: (a) control; (b) peritoneal ascitis, induced through an intraperitoneal injection of 100 ml kg(-1) of iso-oncotic saline; and (c) pleural effusion, induced through an intrapleural injection of 6.6 ml kg(-1) saline solution. A group of animals (n = 12) was instrumented to measure the hydraulic transdiaphragmatic pressure gradient between the pleural and peritoneal cavities in the three protocols. In the other group (n = 12), the injected iso-oncotic saline was enriched with 2% fluorescent dextrans (molecular mass = 70 kDa); at 30 min from the injections these animals were suppressed and their diaphragm excised and processed for confocal microscopy analysis. In control conditions, in spite of a favourable peritoneal-to-pleural pressure gradient, the majority of the tracer absorbed into the diaphragmatic lymphatic system converges towards the deeper collecting lymphatic ducts. This suggests that diaphragmatic lymph formation mostly depends upon pressure gradients developing between the serosal cavities and the lymphatic vessel lumen. In addition, the tracer distributes to lymph vessels located in the muscular diaphragmatic tissue, suggesting that active muscle contraction, rather than passive tendon stretch, more efficiently enhances local diaphragmatic lymph flow. Vice versa, a prevailing recruitment of the lymphatics of the tendinous diaphragmatic regions was observed in peritoneal ascitis and pleural effusion, suggesting a functional adaptation of the diaphragmatic network to increased draining requirements.
Collapse
Affiliation(s)
- Andrea Moriondo
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi dell'Insubria, Via J.H. Dunant 5, 21100 Varese, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Malbrain M, Pelosi P. Open up and keep the lymphatics open: they are the hydraulics of the body! Crit Care Med 2006; 34:2860-2. [PMID: 17053578 DOI: 10.1097/01.ccm.0000239420.64405.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|