1
|
Favre J, Vessieres E, Guihot AL, Proux C, Grimaud L, Rivron J, Garcia MC, Réthoré L, Zahreddine R, Davezac M, Fébrissy C, Adlanmerini M, Loufrani L, Procaccio V, Foidart JM, Flouriot G, Lenfant F, Fontaine C, Arnal JF, Henrion D. Membrane estrogen receptor alpha (ERα) participates in flow-mediated dilation in a ligand-independent manner. eLife 2021; 10:68695. [PMID: 34842136 PMCID: PMC8676342 DOI: 10.7554/elife.68695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα (Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent manner.
Collapse
Affiliation(s)
- Julie Favre
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Emilie Vessieres
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Anne-Laure Guihot
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Coralyne Proux
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Linda Grimaud
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Jordan Rivron
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Manuela Cl Garcia
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Léa Réthoré
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Rana Zahreddine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Morgane Davezac
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Chanaelle Fébrissy
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Marine Adlanmerini
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Laurent Loufrani
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Vincent Procaccio
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgium
| | - Gilles Flouriot
- INSERM U1085, IRSET (Institut de Recherche en Santé, Environnement et Travail), University of Rennes, Rennes, France
| | - Françoise Lenfant
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Coralie Fontaine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Jean-François Arnal
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Daniel Henrion
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| |
Collapse
|
2
|
Matsumoto T, Goulopoulou S, Taguchi K, Tostes RC, Kobayashi T. Constrictor prostanoids and uridine adenosine tetraphosphate: vascular mediators and therapeutic targets in hypertension and diabetes. Br J Pharmacol 2015; 172:3980-4001. [PMID: 26031319 DOI: 10.1111/bph.13205] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Vascular dysfunction plays a pivotal role in the development of systemic complications associated with arterial hypertension and diabetes. The endothelium, or more specifically, various factors derived from endothelial cells tightly regulate vascular function, including vascular tone. In physiological conditions, there is a balance between endothelium-derived factors, that is, relaxing factors (endothelium-derived relaxing factors; EDRFs) and contracting factors (endothelium-derived contracting factors; EDCFs), which mediate vascular homeostasis. However, in disease states, such as diabetes and arterial hypertension, there is an imbalance between EDRF and EDCF, with a reduction of EDRF signalling and an increase of EDCF signalling. Among EDCFs, COX-derived vasoconstrictor prostanoids play an important role in the development of vascular dysfunction associated with hypertension and diabetes. Moreover, uridine adenosine tetraphosphate (Up4 A), identified as an EDCF in 2005, also modulates vascular function. However, the role of Up4 A in hypertension- and diabetes-associated vascular dysfunction is unclear. In the present review, we focused on experimental and clinical evidence that implicate these two EDCFs (vasoconstrictor prostanoids and Up4 A) in vascular dysfunction associated with hypertension and diabetes.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Styliani Goulopoulou
- Department of Integrative Physiology and Anatomy, Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
3
|
Guedes-Martins L, Gaio R, Saraiva J, Cerdeira S, Matos L, Silva E, Macedo F, Almeida H. Reference ranges for uterine artery pulsatility index during the menstrual cycle: a cross-sectional study. PLoS One 2015; 10:e0119103. [PMID: 25742286 PMCID: PMC4351196 DOI: 10.1371/journal.pone.0119103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/28/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cyclic endometrial neoangiogenesis contributes to changes in local vascular patterns and is amenable to non-invasive assessment with Doppler sonography. We hypothesize that the uterine artery (UtA) impedance, measured by its pulsatility index (PI), exhibits a regular pattern during the normal menstrual cycle. Therefore, the main study objective was to derive normative new day-cycle-based reference ranges for the UtA-PI during the entire cycle from days 1 to 34 according to the isolated time effect and potential confounders such as age and parity. METHODS From January 2009 to December 2012, a cross-sectional study of 1,821 healthy women undergoing routine gynaecological ultrasound was performed. The Doppler flow of the right and left UtA-PI was studied transvaginally by colour and pulsed Doppler imaging. The mean right and left values and the presence or absence of a bilateral protodiastolic notch were recorded. Reference intervals for the PI according to the cycle day were generated by classical linear regression. RESULTS The majority of patients (97.5%) presented unilateral or bilateral UtA notches. The crude 5th, 50th, and 95th reference percentile curves of the UtA-PI at 1-34 days of the normal menstrual cycle were derived. In all curves, a progressive significant decrease occurred during the first 13 days, followed by an increase and recovery in the UtA-PI. The adjusted 5th, 50th, and 95th reference percentile curves for the effects of age and parity were also obtained. These two conditions generated an approximately identical UtA-PI pattern during the cycle, except with small but significant reductions at the temporal extremes. CONCLUSIONS The median, 5th, and the 95th percentiles of the UtA-PI decrease during the first third of the menstrual cycle and recover to their initial values during the last two thirds of the cycle. The rates of decrease and recovery depend significantly on age and parity.
Collapse
Affiliation(s)
- Luís Guedes-Martins
- Department of Experimental Biology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal; Centro Hospitalar do Porto EPE, Departamento da Mulher e da Medicina Reprodutiva, Largo Prof. Abel Salazar, 4099-001 Porto, Portugal
| | - Rita Gaio
- Department of Mathematics, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; CMUP-Centre of Mathematics, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Joaquim Saraiva
- Department of Experimental Biology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Centro Hospitalar do Porto EPE, Departamento da Mulher e da Medicina Reprodutiva, Largo Prof. Abel Salazar, 4099-001 Porto, Portugal; Obstetrics-Gynecology, Private Hospital Trofa, 4785-409 Trofa, Portugal
| | - Sofia Cerdeira
- Gulbenkian Program for Advanced Medical Education, 1067-001 Lisbon, Portugal; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liliana Matos
- Department of Experimental Biology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Elisabete Silva
- Department of Experimental Biology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal
| | - Filipe Macedo
- Department of Cardiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Henrique Almeida
- Department of Experimental Biology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal; Obstetrics-Gynecology, Hospital-CUF Porto, 4100-180 Porto, Portugal
| |
Collapse
|
4
|
Okada Y, Best SA, Jarvis SS, Shibata S, Parker RS, Casey BM, Levine BD, Fu Q. Asian women have attenuated sympathetic activation but enhanced renal-adrenal responses during pregnancy compared to Caucasian women. J Physiol 2015; 593:1159-68. [PMID: 25545472 DOI: 10.1113/jphysiol.2014.282277] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022] Open
Abstract
Asians have a lower prevalence of hypertensive disorders of pregnancy than Caucasians. Since sympathetic overactivity and dysregulation of the renal-adrenal system (e.g. low aldosterone levels) have been found in preeclamptic women, we hypothesized that Asians have lower muscle sympathetic nerve activity (MSNA) and greater aldosterone concentrations during normal pregnancy than Caucasians. In a prospective study, blood pressure (BP), heart rate (HR), and MSNA were measured during supine and upright tilt (30 deg and 60 deg for 5 min each) in 9 Asians (32 ± 1 years (mean ± SEM)) and 12 Caucasians (29 ± 1 years) during pre-, early (≤8 weeks of gestation) and late (32-36 weeks) pregnancy, and post-partum (6-10 weeks after delivery). Supine MSNA increased with pregnancy in both groups (P < 0.001); it was significantly lower in Asians than Caucasians (14 ± 3 vs. 23 ± 3 bursts min(-1) and 16 ± 5 vs. 30 ± 3 bursts min(-1) in early and late pregnancy, respectively; P = 0.023). BP decreased during early pregnancy (P < 0.001), but was restored during late pregnancy. HR increased during pregnancy (P < 0.001) with no racial difference (P = 0.758). MSNA increased during tilting and it was markedly lower in Asians than Caucasians in late pregnancy (31 ± 6 vs. 49 ± 3 bursts min(-1) at 60 deg tilt; P = 0.003). Upright BP was lower in Asians, even in pre-pregnancy (P = 0.006), and this racial difference persisted during pregnancy. Direct renin and aldosterone increased during pregnancy (both P < 0.001); these hormones were greater in Asians (P = 0.086 and P = 0.014). Thus, Asians have less sympathetic activation but more upregulated renal-adrenal responses than Caucasians during pregnancy. These results may explain, at least in part, why Asian women are at low risk of hypertensive disorders in pregnancy.
Collapse
Affiliation(s)
- Yoshiyuki Okada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA; University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Jarvis SS, Shibata S, Bivens TB, Okada Y, Casey BM, Levine BD, Fu Q. Sympathetic activation during early pregnancy in humans. J Physiol 2012; 590:3535-43. [PMID: 22687610 DOI: 10.1113/jphysiol.2012.228262] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sympathetic activity has been reported to increase in normotensive pregnant women, and to be even greater in women with gestational hypertension and preeclampsia at term. Whether sympathetic overactivity develops early during pregnancy, remaining high throughout gestation, or whether it only occurs at term providing the substrate for hypertensive disorders is unknown. We tested the hypothesis that sympathetic activation occurs early during pregnancy in humans. Eleven healthy women (29 ± 3 (SD) years) without prior hypertensive pregnancies were tested during the mid-luteal phase (PRE) and early pregnancy (EARLY; 6.2 ± 1.2 weeks of gestation). Muscle sympathetic nerve activity (MSNA) and haemodynamics were measured supine, at 30 deg and 60 deg upright tilt for 5 min each. Blood samples were drawn for catecholamines, direct renin, and aldosterone. MSNA was significantly greater during EARLY than PRE (supine: 25 ± 8 vs. 14 ± 8 bursts min(-1), 60 deg tilt: 49 ± 14 vs. 40 ± 10 bursts min(-1); main effect, P < 0.05). Resting diastolic pressure trended lower (P = 0.09), heart rate was similar, total peripheral resistance decreased (2172 ± 364 vs. 2543 ± 352 dyne s cm(-5); P < 0.05), sympathetic vascular transduction was blunted (0.10 ± 0.05 vs. 0.36 ± 0.47 units a.u.(-1) min(-1); P < 0.01), and both renin (supine: 27.9 ± 6.2 vs. 14.2 ± 8.7 pg ml(-1), P < 0.01) and aldosterone (supine: 16.7 ± 14.1 vs. 7.7 ± 6.8 ng ml(-1), P = 0.05) were higher during EARLY than PRE. These results suggest that sympathetic activation is a common characteristic of early pregnancy in humans despite reduced diastolic pressure and total peripheral resistance. These observations challenge conventional thinking about blood pressure regulation during pregnancy, showing marked sympathetic activation occurring within the first few weeks of conception, and may provide the substrate for pregnancy induced cardiovascular complications.
Collapse
Affiliation(s)
- Sara S Jarvis
- Institute for Exercise and Environmental Medicine, 7232 Greenville Avenue, Suite 435, Dallas, TX 75231, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Meyer MR, Amann K, Field AS, Hu C, Hathaway HJ, Kanagy NL, Walker MK, Barton M, Prossnitz ER. Deletion of G protein-coupled estrogen receptor increases endothelial vasoconstriction. Hypertension 2011; 59:507-12. [PMID: 22203741 DOI: 10.1161/hypertensionaha.111.184606] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endogenous estrogens mediate protective effects in the cardiovascular system, affecting both endothelium-dependent and endothelium-independent mechanisms. Previous studies have suggested that nonselective estrogen receptor agonists such as endogenous estrogens inhibit endothelium-dependent vasoconstriction; however, the role of estrogen receptors in this response has not yet been clarified. This study investigated whether the intracellular transmembrane G protein-coupled estrogen receptor (GPER) regulates vascular reactivity in mice. Effects of chronic deficiency (using mice lacking the GPER gene) and acute inhibition (using the GPER-selective antagonist G15) on endothelium-dependent and endothelium-independent vascular reactivity, and the effects of GPER deficiency on vascular gene expression and structure were investigated. We found that chronic GPER deficiency is associated with increased endothelial prostanoid-mediated vasoconstriction but has no effect on endothelial nitric oxide bioactivity, gene expression of endothelial nitric oxide synthase and thromboxane prostanoid (TP) receptor, or vascular structure. GPER deletion also increases TP receptor-mediated contraction. Acute GPER blockade enhances endothelium-dependent contractions and reduces endothelial nitric oxide bioactivity. Contractions in response to TP receptor activation are unaffected by G15. In conclusion, this study identifies GPER as the first estrogen receptor with inhibitory activity on endothelium-dependent contractility. These findings may be important for understanding and treating diseases associated with increased endothelial vasoconstrictor prostanoid activity such as hypertension and obesity.
Collapse
Affiliation(s)
- Matthias R Meyer
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Park SH, Bahk JH, Oh AY, Gil NS, Huh J, Lee JH. Gender difference and change of α(1)-adrenoceptors in the distal mesenteric arteries of streptozotocin-induced diabetic rats. Korean J Anesthesiol 2011; 61:419-27. [PMID: 22148092 PMCID: PMC3229022 DOI: 10.4097/kjae.2011.61.5.419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the gender-related changes in the function and distribution of α(1)-adrenoceptors in the distal mesenteric artery of streptozotocin (STZ)-induced diabetic rats at the level of α(1)-adrenoceptor subtypes. METHODS Diabetes was induced by intravenous injection of STZ in a dose of 60 mg/kg through the tail vein in 8 week-old male or female Sprague-Dawley rats (n = 13/group). Age-matched normal rats (n = 15) were used as a control group. Four weeks after STZ injection, the change in mean arterial pressure caused by a 45° tilting was recorded. The α(1)-adrenoceptor subtypes mediating contractions of the distal mesenteric artery were investigated using the agonist, phenylephrine as well as subtype-selective antagonists including prazocin, 5-methylurapidil, and BMY 7378. The expression of α(1)-adrenoceptor subtypes of each artery was examined by immunofluorescence staining and western blotting using subtype selective antibodies. RESULTS Compared with normal male rats, the contractile response to phenylephrine was decreased in the distal mesenteric artery in normal female rats. Moreover, a decrease in contractile force was observed in STZ-induced diabetic rats compared with age-matched controls. Western blotting revealed that there was the difference between normal male and female rats in manifestation of the α(1D)-adrenoceptor. In STZ-induced male and female diabetic rats, all α(1)-adrenoceptor subtypes were decreased in distal mesenteric arteries, compared with normal rats. CONCLUSIONS There was the gender-related functional difference of α(1)-adrenoceptors in normal rats. In both male and female rats, diabetes decreased the contractile response in mesenteric arteries, which might be caused by the overall change in α(1)-adrenoceptor.
Collapse
Affiliation(s)
- Sang-Hyun Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | | | | | | | | |
Collapse
|
8
|
Duncker DJ, Merkus D. Sympathetic coronary vasomotor control: are women really the weaker sex? J Physiol 2010; 588:4343-4. [DOI: 10.1113/jphysiol.2010.199984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
9
|
do Nascimento GRA, Barros YVR, Wells AK, Khalil RA. Research into Specific Modulators of Vascular Sex Hormone Receptors in the Management of Postmenopausal Cardiovascular Disease. Curr Hypertens Rev 2009; 5:283-306. [PMID: 20694192 PMCID: PMC2915874 DOI: 10.2174/157340209789587717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiovascular disease (CVD) is more common in men and postmenopausal women than premenopausal women, suggesting vascular benefits of female sex hormones. Studies on the vasculature have identified estrogen receptors ERα, ERβ and a novel estrogen binding membrane protein GPR30, that mediate genomic and/or non-genomic effects. Estrogen promotes endothelium-dependent relaxation by inducing the production/activity of nitric oxide, prostacyclin, and hyperpolarizing factor, and inhibits the mechanisms of vascular smooth muscle contraction including [Ca(2+)](i), protein kinase C, Rho kinase and mitogen-activated protein kinase. Additional effects of estrogen on the cytoskeleton, matrix metalloproteinases and inflammatory factors contribute to vascular remodeling. However, the experimental evidence did not translate into vascular benefits of menopausal hormone therapy (MHT), and the HERS, HERS-II and WHI clinical trials demonstrated adverse cardiovascular events. The discrepancy has been partly related to delayed MHT and potential changes in the vascular ER amount, integrity, affinity, and downstream signaling pathways due to the subjects' age and preexisting CVD. The adverse vascular effects of MHT also highlighted the need of specific modulators of vascular sex hormone receptors. The effectiveness of MHT can be improved by delineating the differences in phramcokinetics and pharmacodynamics of natural, synthetic, and conjugated equine estrogens. Estriol, "hormone bioidenticals" and phytoestrogens are potential estradiol substitutes. The benefits of low dose MHT, and transdermal or vaginal estrogens over oral preparations are being evaluated. Specific ER modulators (SERMs) and ER agonists are being developed to maximize the effects on vascular ERs. Also, the effects of estrogen are being examined in the context of the whole body hormonal environment and the levels of progesterone and androgens. Thus, the experimental vascular benefits of estrogen can be translated to the outcome of MHT in postmenopausal CVD, as more specific modulators of sex hormone receptors become available and are used at the right dose, route of administration and timing, depending on the subject's age and preexisting cardiovascular condition.
Collapse
|
10
|
Abstract
Pregnancy is associated with dramatic alterations in maternal hemodynamics, which begin as early as 4 to 5 weeks of gestation. It has been proposed that these changes occur through autonomic control mechanisms, but the actual role of the autonomic nervous system in pregnancy is poorly understood. Here, we review what is known about the hemodynamic adaptation, changes in vascular endothelial function, sympathetic neural control and vascular responsiveness in pregnancy, and baroreflex function during pregnancy in humans. However, whether and how the sympathetic nervous system plays a role in hemodynamic homeostasis during EARLY human pregnancy remains completely unknown. Understanding the pathophysiology underlying autonomic control of maternal hemodynamics may be particularly important for prevention of cardiovascular complications during pregnancy and may improve risk stratification and prevention of cardiovascular disease for women well beyond the postpartum period.
Collapse
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, TX 75231, USA.
| | | |
Collapse
|
11
|
Fu Q, Okazaki K, Shibata S, Shook RP, VanGunday TB, Galbreath MM, Reelick MF, Levine BD. Menstrual cycle effects on sympathetic neural responses to upright tilt. J Physiol 2009; 587:2019-31. [PMID: 19237424 DOI: 10.1113/jphysiol.2008.168468] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Young women are more susceptible to orthostatic intolerance than men, though the sex-specific pathophysiology remains unknown. As blood pressure (BP) is regulated through the baroreflex mechanism, we tested the hypothesis that baroreflex control of muscle sympathetic nerve activity (MSNA) during orthostasis is impaired in women and can be affected by the menstrual cycle. MSNA and haemodynamics were measured supine and during a graded upright tilt (30 deg for 6 min, 60 deg for 45 min or till presyncope) in 11 young men and 11 women during the early follicular (EFP) and mid-luteal phase (MLP) of the menstrual cycle. Sympathetic baroreflex sensitivity was quantified using the slope of the linear correlation between total activity and diastolic BP during spontaneous breathing. Baroreflex function was further assessed during a Valsalva manoeuvre (VM). Although MSNA burst frequency responses during tilting were similar between sexes and menstrual phases, increases in total activity were lower in women during EFP than MLP (P = 0.030), while total peripheral resistance and plasma noradrenaline were not similarly lower; upright total activity tended to be lower in women during EFP than men (P = 0.102). Sympathetic baroreflex sensitivity did not differ between sexes (P = 0.676) supine (-281 +/- 46 (S.E.M.) units beat(-1) mmHg(-1) in men vs -252 +/- 52 in EFP and -272 +/- 40 in MLP in women), at 30 deg tilt (-648 +/- 129 vs -611 +/- 79 and -487 +/- 94), and at 60 deg tilt (-792 +/- 135 vs -831 +/- 92 and -814 +/- 142); this sensitivity was not affected by the menstrual cycle (P = 0.747). Similar sympathetic baroreflex sensitivity between sexes and phases was also observed during the VM. Cardiovagal baroreflex sensitivity assessed during decreasing BP (i.e. early phase II of the VM) was comparable between sexes, but it was greater in men than women during increasing BP (i.e. phase IV); the menstrual cycle had no influences on cardiovagal baroreflex sensitivity. We conclude that the menstrual cycle affects sympathetic neural responses but not sympathetic baroreflex sensitivity during orthostasis, though upright vasomotor sympathetic activity is not clearly different between men and women. Not only sympathetic but also cardiovagal baroreflex sensitivity is similar between sexes and menstrual phases during a hypotensive stimulus. However, cardiovagal baroreflex-mediated bradycardia during a hypertensive stimulus is different between sexes but not affected by the menstrual cycle. Thus, other factors rather than sympathetic baroreflex control mechanisms contribute to sex differences in orthostatic tolerance in young humans.
Collapse
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, TX 75231, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hemmings DG, Xu Y, Davidge ST. Sphingosine 1-phosphate-induced vasoconstriction is elevated in mesenteric resistance arteries from aged female rats. Br J Pharmacol 2004; 143:276-84. [PMID: 15326035 PMCID: PMC1575332 DOI: 10.1038/sj.bjp.0705752] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), a bioactive lipid, signals through cell surface receptors to induce vasoconstriction and activate endothelial nitric oxide synthase (eNOS), suggesting a role for S1P in vascular tone modulation. Using a model of aging in female rats, we investigated the vasoactivity of S1P and the roles of eNOS and estrogen replacement in modulation of that vasoactivity. Mesenteric arteries from aged female rats were significantly more sensitive to S1P-induced vasoconstriction than arteries from young female rats, and reached greater maximum constriction (58.2+/-2.98 vs 34.8+/-4.44%; P<0.005). Modulation of this vasoconstriction by pretreating vessels with the NOS inhibitor l-NAME occurred only in young vessels. Ovariectomy reduced the maximum S1P-induced vasoconstriction observed in intact aged rats. Estrogen replacement did not appear to have an independent beneficial effect. However, estrogen replacement did restore nitric oxide modulation of S1P-induced vasoconstriction. Expression of the S1P(1) receptor, through which eNOS can be activated, was reduced in vessels from aged rats. S1P(1) receptor expression was restored in vessels from the estrogen-replaced group. S1P is a novel mediator of vascular tone through induction of both vasoconstriction and vasodilation. Reduced S1P(1) receptor expression on aging vessels may explain reduced eNOS activity, which results in greater sensitivity to S1P-induced vasoconstriction. Estrogen replacement in aging female rats restores both S1P(1) receptor expression and NOS activity, suggesting an important role for estrogen in this novel pathway of vascular tone modulation.
Collapse
Affiliation(s)
- D G Hemmings
- Department of Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Y Xu
- Department of Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - S T Davidge
- Department of Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
- Author for correspondence:
| |
Collapse
|
13
|
Abstract
The greater incidence of hypertension and coronary artery disease in men and postmenopausal women compared with premenopausal women has been related, in part, to gender differences in vascular tone and possible vascular protective effects of the female sex hormones estrogen and progesterone. However, vascular effects of the male sex hormone testosterone have also been suggested. Estrogen, progesterone, and testosterone receptors have been identified in blood vessels of human and other mammals and have been localized in the plasmalemma, cytosol, and nuclear compartments of various vascular cells, including the endothelium and the smooth muscle. The interaction of sex hormones with cytosolic/nuclear receptors triggers long-term genomic effects that could stimulate endothelial cell growth while inhibiting smooth muscle proliferation. Activation of plasmalemmal sex hormone receptors may trigger acute nongenomic responses that could stimulate endothelium-dependent mechanisms of vascular relaxation such as the nitric oxide-cGMP, prostacyclin-cAMP, and hyperpolarization pathways. Additional endothelium-independent effects of sex hormones may involve inhibition of the signaling mechanisms of vascular smooth muscle contraction such as intracellular Ca2+ concentration and protein kinase C. The sex hormone-induced stimulation of the endothelium-dependent mechanisms of vascular relaxation and inhibition of the mechanisms of vascular smooth muscle contraction may contribute to the gender differences in vascular tone and may represent potential beneficial vascular effects of hormone replacement therapy during natural and surgically induced deficiencies of gonadal hormones.
Collapse
Affiliation(s)
- Julia M Orshal
- Harvard Medical School, VA Boston Healthcare-Research, 1400 VFW Parkway 3/2B123, Boston, MA 02132, USA
| | | |
Collapse
|
14
|
Palacios J, Marusic ET, Lopez NC, Gonzalez M, Michea L. Estradiol-induced expression of N(+)-K(+)-ATPase catalytic isoforms in rat arteries: gender differences in activity mediated by nitric oxide donors. Am J Physiol Heart Circ Physiol 2004; 286:H1793-800. [PMID: 14704224 DOI: 10.1152/ajpheart.00990.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We tested the hypothesis that previously demonstrated gender differences in ACh-induced vascular relaxation could involve diverse Na(+)-K(+)-ATPase functions. We determined Na(+)-K(+)-ATPase by measuring arterial ouabain-sensitive 86Rb uptake in response to ACh. We found a significant increase of Na+ pump activity only in aortic rings from female rats (control 206 +/- 11 vs. 367 +/- 29 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.01). Ovariectomy eliminated sex differences in Na(+)-K(+)-ATPase function, and chronic in vivo hormone replacement with 17beta-estradiol restored the ACh effect on Na(+)-K(+)-ATPase. Because ACh acts by enhancing production of NO, we examined whether the NO donor sodium nitroprusside (SNP) mimics the action of ACh on Na(+)-K(+)-ATPase activity. SNP increased ouabain-sensitive 86Rb uptake in denuded female arteries (control 123 +/- 7 vs. 197 +/- 12 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.05). Methylene blue (an inhibitor of guanylate cyclase) and KT-5823 (a cGMP-dependent kinase inhibitor) blocked the stimulatory action of SNP. Exposure of female thoracic aorta to the Na+/K+ pump inhibitor ouabain significantly decreased SNP-induced and ACh-mediated relaxation of aortic rings. At the molecular level, Western blot analysis of arterial tissue revealed significant gender differences in the relative abundance of catalytic isoforms of Na(+)-K(+)-ATPase. Female-derived aortas exhibited a greater proportion of alpha2-isoform (44%) compared with male-derived aortas. Furthermore, estradiol upregulated the expression of alpha2 mRNA in male arterial explants. Our results demonstrate that enhancement of ACh-induced relaxation observed in female rats may be in part explained by 1) NO-dependent increased Na(+)-K(+)-ATPase activity in female vascular tissue and 2) greater abundance of Na(+)-K(+)-ATPase alpha2-isoform in females.
Collapse
Affiliation(s)
- Javier Palacios
- Laboratory of Cellular and Molecular Physiology, School of Medicine, Universidad Los Andes, Santiago, Chile 6782468
| | | | | | | | | |
Collapse
|
15
|
Ospina JA, Duckles SP, Krause DN. 17beta-estradiol decreases vascular tone in cerebral arteries by shifting COX-dependent vasoconstriction to vasodilation. Am J Physiol Heart Circ Physiol 2003; 285:H241-50. [PMID: 12637362 DOI: 10.1152/ajpheart.00018.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that estrogen treatment increases cerebrovascular cyclooxygenase-1, prostacyclin synthase, and production of prostacyclin. Therefore, vascular tone and prostanoid production were measured to investigate functional consequences of estrogen exposure. Middle cerebral arteries were isolated from ovariectomized female Fischer-344 rats with or without chronic in vivo 17beta-estradiol treatment. In vivo 17beta-estradiol treatment increased cerebral artery diameter; functional endothelium was required for expression of these differences. The nonspecific cyclooxygenase inhibitor indomethacin constricted, whereas arachidonic acid dilated, cerebral arteries from estrogen-treated animals. Estrogen exposure increased production of prostacyclin by cerebral arteries. Conversely, in estrogen-deficient animals, indomethacin dilated and arachidonic acid constricted cerebral blood vessels. This correlated with vasorelaxation following inhibition of the thromboxane-endoperoxide receptor with SQ-29548 but not after selective blockade of thromboxane synthase with furegrelate, suggesting prostaglandin endoperoxide (i.e., PGH2) activity. Removal of the endothelium or selective blockade of cyclooxygenase-1 with SC-560 abolished estrogen-mediated differences in the effects of arachidonate on vessel diameter and on prostacyclin production by cerebral arteries. These data suggest 17beta-estradiol decreases cerebrovascular tone by shifting the primary end product of the endothelial cyclooxygenase-1 pathway from the constrictor prostaglandin PGH2 to the vasodilator prostacyclin. These effects of estrogen may contribute to the heightened thromboresistance and enhanced cerebral blood flow documented in pre-versus postmenopausal women.
Collapse
Affiliation(s)
- Jose A Ospina
- Department of Pharmacology, College of Medicine, University of California, Irvine, CA 92697-4625, USA
| | | | | |
Collapse
|
16
|
Moreau KL, Donato AJ, Tanaka H, Jones PP, Gates PE, Seals DR. Basal leg blood flow in healthy women is related to age and hormone replacement therapy status. J Physiol 2003; 547:309-16. [PMID: 12562958 PMCID: PMC2342605 DOI: 10.1113/jphysiol.2002.032524] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Basal leg blood flow declines with age in healthy men, an effect that is mediated by augmented sympathetic vasoconstriction. However, in women the presence or absence of oestrogen and selective use of hormone replacement therapy (HRT) may alter these relationships with ageing. We studied 103 healthy women: 73 postmenopausal (41 HRT, mean +/- S.E.M. 61 +/- 1 years; 32 no-HRT, 63 +/- 2 years) and 30 premenopausal (29 +/- 1 years). Compared with the premenopausal controls, absolute femoral artery blood flow (duplex ultrasound) was 23 % lower (P < 0.001) in the postmenopausal no-HRT group, but only 13 % lower in the HRT group (P < 0.01). The age and HRT group differences in leg blood flow were consistently associated with differences in leg vascular conductance, but not with femoral artery lumen diameter, leg muscle sympathetic nerve activity or cardiac output (systemic arterial blood flow). Leg fat-free mass was smaller in the postmenopausal groups (P < 0.05). Femoral blood flow normalized for leg fat-free mass was 17 % lower (P < 0.01) in the postmenopausal no-HRT compared with the premenopausal women, but was not different in the postmenopausal HRT and premenopausal groups. Femoral artery shear stress was similar in the postmenopausal HRT and premenopausal women, but was lower in the postmenopausal no-HRT group (P < 0.01). Basal whole-leg blood flow declines with age in healthy, oestrogen-deficient women, a phenomenon that is mediated primarily by reductions in leg vascular conductance. Among postmenopausal women, chronic HRT use is associated with augmented basal leg blood flow and vascular conductance. Leg blood flow normalized for leg fat-free mass is preserved with age in women taking chronic HRT. In contrast to men, differences in leg sympathetic vasoconstrictor nerve activity do not explain group differences in leg blood flow and vascular conductance with ageing in women.
Collapse
Affiliation(s)
- Kerrie L Moreau
- Department of Kinesiology and Applied Physiology, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Stephens DP, Bennett LAT, Aoki K, Kosiba WA, Charkoudian N, Johnson JM. Sympathetic nonnoradrenergic cutaneous vasoconstriction in women is associated with reproductive hormone status. Am J Physiol Heart Circ Physiol 2002; 282:H264-72. [PMID: 11748071 DOI: 10.1152/ajpheart.2002.282.1.h264] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested whether a nonnoradrenergic component of reflex vasoconstriction of skin blood flow (SkBF) is sensitive to female reproductive hormones. Six women taking oral contraceptives underwent whole-body cooling during high-hormone (HH) and low-hormone (LH) phases of oral contraceptive use. SkBF was monitored by laser Doppler flowmetry (LDF) at sites treated by intradermal injection of yohimbine-propranolol (5 mM and 1 mM; YOPR) to block the effects of norepinephrine (NE) or at saline (Sal) control sites. Mean arterial pressure (MAP) was measured with the use of the Penaz method. Cutaneous vascular conductance (CVC = LDF/mean arterial pressure) was expressed as a percentage of baseline. Whole body skin temperature was decreased from 34 to 31 degrees C in HH and LH. In both HH and LH, CVC at Sal-treated sites was reduced during cooling (CVC = 53.1 +/- 8.6% and 54.4 +/- 4.2%, both P < 0.05). In HH, CVC at YOPR sites was reduced during cooling (78.8 +/- 3.6%, P < 0.05). In contrast, CVC at YOPR sites was not reduced significantly during cooling in LH (CVC = 95.9 +/- 2.8%, P > 0.05). Across phases, CVC at YOPR sites during cooling was significantly different (P < 0.05). After cooling, the effects of NE at YOPR sites were completely blocked. These data indicate that a nonnoradrenergic mechanism of reflex cutaneous vasoconstriction is present in women and is associated with reproductive hormone status.
Collapse
Affiliation(s)
- Dan P Stephens
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
18
|
Andersen HL, Weis JU, Fjalland B, Korsgaard N. Effect of acute and long-term treatment with 17-beta-estradiol on the vasomotor responses in the rat aorta. Br J Pharmacol 1999; 126:159-68. [PMID: 10051132 PMCID: PMC1565793 DOI: 10.1038/sj.bjp.0702289] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1998] [Revised: 10/09/1998] [Accepted: 10/13/1998] [Indexed: 11/09/2022] Open
Abstract
1. This study sought to evaluate whether the effects of acute and long-term treatment with 17-beta-estradiol on the vasomotor responses in rat aortic rings are mediated through the same mechanism. 2. Ovariectomized rats were treated daily with either 17-beta-estradiol-3-benzoate (100 microg kg(-1)) or vehicle for 1 week. 3. The effect of long-term 17-beta-estradiol treatment on the responses to cumulative doses of phenylephrine, 5-HT, calcium, potassium and 17-beta-estradiol was determined in aortic rings. In the same rings, the effect of acute exposure to 17-beta-estradiol (5 and 10 microM) on the dose response curves for phenylephrine, 5-HT, calcium, potassium and acetylcholine were estimated. The measurements were made in rings with and without intact endothelium. The tone-related basal release of nitric oxide (NO) was measured in rings with intact endothelium. 4. Long-term 17-beta-estradiol treatment reduced the maximum developed contraction to all contracting agents studied. This effect was abolished in endothelium denuded vessels. Acute 17-beta-estradiol treatment also reduced maximal contraction. This effect, however, was independent of the endothelium. 5. Long-term 17-beta-estradiol treatment significantly increased the ability of the rings to dilate in response to acetylcholine whereas acute exposure to 17-beta-estradiol had no effect. The tone-related release of NO was significantly increased after long-term exposure to 17-beta-estradiol. 6. In conclusion, this study indicate that the acute and long-term effects of 17-beta-estradiol in the rat aorta are mediated through different mechanisms. The long-term effect is mediated through the endothelium most likely by increasing NO release. In contrast, the acute effect of 17-beta-estradiol seems to be through an effect on the vascular smooth muscle cells.
Collapse
Affiliation(s)
- H L Andersen
- Department of Preclinical Pharmacology, Novo Nordisk A/S, Maaloev, Denmark
| | | | | | | |
Collapse
|