1
|
Pun CK, Huang HC, Chang CC, Chuang CL, Hsu SJ, Hou MC, Lee FY. Fructooligosaccharides reverses hepatic vascular dysfunction and dysbiosis in rats with liver cirrhosis and portal hypertension. Eur J Clin Invest 2024; 54:e14287. [PMID: 39017981 DOI: 10.1111/eci.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Portal hypertension leads to lethal complications in liver cirrhosis. Oxidative stress induced hepatic vascular dysfunction, which exaggerated vasoconstriction and increases hepatic vascular resistance (HVR). Gut dysbiosis further exacerbates portal hypertension. Fructooligosaccharides are prebiotics with potent antioxidant effect. This study aimed to evaluate the roles of fructooligosaccharides in portal hypertension-related vascular dysregulation and gut microbiome. METHODS Sprague-Dawley rats received bile duct ligation to induce cirrhosis or sham operation as controls. The rats then randomly received fructooligosaccharides or vehicle for 4 weeks. Experiments were performed on the 29th day after operations. RESULTS Fructooligosaccharides did not affect portal pressure. Interestingly, fructooligosaccharides significantly attenuated HVR (p = .03). Malondialdehyde, an oxidative stress marker, reduced significantly in the liver in fructooligosaccharides-treated group. In addition, superoxide dismutase and trolox equivalent antioxidant capacity increased in the treatment group. On the other hand, vasodilatation-related protein expressions, GTPCH and phospho-eNOS, enhanced significantly. Fructooligosaccharides had no adverse vasodilatation effects on splanchnic vascular system or porto-systemic collateral systems. Locomotor function was not affected by fructooligosaccharides. Faecal microbiota analysis showed that Negativicutes, Selenomonadales and Lactobacillus salivarius reduced in the fructooligosaccharides-treated group. CONCLUSION In conclusion, fructooligosaccharides attenuate hepatic vascular dysfunction in cirrhotic rats via at least partly, ameliorate of dysbiosis and oxidative stress.
Collapse
Affiliation(s)
- Chon Kit Pun
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Chih Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiao-Lin Chuang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shao-Jung Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Pun C, Huang HC, Chang CC, Hsu SJ, Chuang CL, Huang YH, Hou MC, Lee FY. Low-dose alcohol exacerbates hyperdynamic circulation and shunting in non-alcoholic cirrhotic rats. Biosci Rep 2024; 44:BSR20240354. [PMID: 38967060 PMCID: PMC11263042 DOI: 10.1042/bsr20240354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Portal hypertension affects hepatic, splanchnic and portosystemic collateral systems. Although alcohol is a well-known risk factor for liver cirrhosis, it also affects vascular contractility. However, the relevant effects on portal hypertension have not been evaluated in non-alcoholic cirrhosis. The present study aimed to investigate the impacts of low-dose alcohol on portal hypertension-related derangements in non-alcoholic cirrhotic rats. METHODS Sprague-Dawley rats received bile duct ligation to induce cirrhosis or sham operation as controls. The chronic or acute effects of low-dose alcohol (2.4 g/kg/day, oral gavage, approximately 1.3 drinks/day in humans) were evaluated. RESULTS The chronic administration of low-dose alcohol did not precipitate liver fibrosis in the sham or cirrhotic rats; however, it significantly increased splanchnic blood inflow (P=0.034) and portosystemic collaterals (P=0.001). Mesenteric angiogenesis and pro-angiogenic proteins were up-regulated in the alcohol-treated cirrhotic rats, and poorer collateral vasoresponsiveness to vasoconstrictors (P<0.001) was noted. Consistently, acute alcohol administration reduced splenorenal shunt resistance. Collateral vasoresponsiveness to vasoconstrictors also significantly decreased (P=0.003). CONCLUSIONS In non-alcoholic cirrhosis rats, a single dose of alcohol adversely affected portosystemic collateral vessels due to vasodilatation. Long-term alcohol use precipitated splanchnic hyperdynamic circulation, in which mesenteric angiogenesis played a role. Further studies are warranted to evaluate the benefits of avoiding low-dose alcohol consumption in patients with non-alcoholic cirrhosis.
Collapse
Affiliation(s)
- Chon Kit Pun
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Chih Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shao-Jung Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiao-Lin Chuang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsiang Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Huang HC, Tsai MH, Chang CC, Pun CK, Huang YH, Hou MC, Lee FY, Hsu SJ. Microbiota transplants from feces or gut content attenuated portal hypertension and portosystemic collaterals in cirrhotic rats. Clin Sci (Lond) 2021; 135:2709-2728. [PMID: 34870313 DOI: 10.1042/cs20210602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Liver cirrhosis and portal hypertension is the end of chronic liver injury with hepatic, splanchnic and portosystemic collateral systems dysregulation. Liver injury is accompanied by gut dysbiosis whereas dysbiosis induces liver fibrosis, splanchnic angiogenesis and dysregulated vascular tones vice versa, making portal hypertension aggravated. It has been proved that intestinal microbiota transplantation alleviates dysbiosis. Nevertheless, the influences of microbiota transplantation on cirrhosis-related portal hypertension are not so clear. Liver cirrhosis with portal hypertension was induced by bile duct ligation (BDL) in rats. Sham rats were surgical controls. Rats randomly received vehicle, fecal or gut (terminal ileum) material transplantation. The results showed that microbiota transplantation from feces or gut material significantly reduced portal pressure in cirrhotic rats (P=0.010, 0.044). Hepatic resistance, vascular contractility, fibrosis and relevant protein expressions were not significantly different among cirrhotic rats. However, microbiota transplantation ameliorated splanchnic hyperdynamic flow and vasodilatation. Mesenteric angiogenesis, defined by whole mesenteric window vascular density, decreased in both transplantation groups and phosphorylated endothelial nitric-oxide synthase (eNOS) was down-regulated. Portosystemic shunts determined by splenorenal shunt (SRS) flow decreased in both transplantation groups (P=0.037, 0.032). Shunting severity assessed by microsphere distribution method showed consistent results. Compared with sham rats, cirrhotic rats lacked Lachnospiraceae. Both microbiota transplants increased Bifidobacterium. In conclusion, microbiota transplantation in cirrhotic rats reduced portal pressure, alleviated splanchnic hyperdynamic circulation and portosystemic shunts. The main beneficial effects may be focused on portosystemic collaterals-related events, such as hepatic encephalopathy and gastroesophageal variceal hemorrhage. Further clinical investigations are mandatory.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Hung Tsai
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chih Chang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chon Kit Pun
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Huang HC, Ho HL, Chang CC, Chuang CL, Pun CK, Lee FY, Huang YH, Hou MC, Hsu SJ. Matrix metalloproteinase-9 inhibition or deletion attenuates portal hypertension in rodents. J Cell Mol Med 2021; 25:10073-10087. [PMID: 34647412 PMCID: PMC8572799 DOI: 10.1111/jcmm.16940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 12/29/2022] Open
Abstract
Liver cirrhosis and portal hypertension are accompanied by hyperdynamic circulation, angiogenesis and portosystemic collaterals. Matrix metalloproteinases (MMPs) participate in fibrogenesis and angiogenesis, however, whether they can be targeted in cirrhosis treatment is unclear. Therefore, we performed three series of experiments to investigate this issue. Liver cirrhosis was induced by common bile duct ligation (BDL) in Sprague‐Dawley rats. Sham‐operated rats served as controls. Rats were randomly allocated to receive vehicle, minocycline (a nonselective MMP inhibitor) or SB‐3CT (MMP‐2 and −9 inhibitor) for 28 days in the first and second series, respectively. MMP‐9 knockout mice were used in the third series. The results showed that minocycline ameliorated portal hypertension, hemodynamic abnormalities, reduced collateral shunting, mesenteric vascular density, plasma VEGF level and alleviated liver fibrosis. SB‐3CT attenuated portal hypertension, hemodynamic derangements, reduced shunting, mesenteric vascular density, mesenteric VEGF protein expression, and liver fibrosis. Knockout BDL mice had significantly alleviated portal hypertension, liver fibrosis, liver α‐SMA and mesenteric eNOS protein expressions compared to wild‐type BDL mice. Liver SMAD2 phosphorylation was down‐regulated in all series with MMP inhibition or knock‐out. In conclusion, MMP‐9 inhibition or deletion ameliorated the severity of cirrhosis, portal hypertension, and associated derangements. MMP‐9 may be targeted in the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Ling Ho
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Ching-Chih Chang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiao-Lin Chuang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chon Kit Pun
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Glycyrrhizin Attenuates Portal Hypertension and Collateral Shunting via Inhibition of Extrahepatic Angiogenesis in Cirrhotic Rats. Int J Mol Sci 2021; 22:ijms22147662. [PMID: 34299285 PMCID: PMC8304322 DOI: 10.3390/ijms22147662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/14/2023] Open
Abstract
Portal hypertension develops along with liver cirrhosis then induces the formation of portal-systemic collaterals and lethal complications. Extrahepatic angiogenesis plays an important role. Glycyrrhizin has been found to exhibit anti-angiogenic features, which leads to its extensive use. However, the relevant effects of glycyrrhizin on liver cirrhosis and portal hypertension have not been evaluated. This study thus aimed to investigate the impact of glycyrrhizin on portal hypertension-related derangements in cirrhotic rats. Male Sprague-Dawley rats received bile duct ligation (BDL) to induce cirrhosis or sham operation as control. The rats were subdivided to receive glycyrrhizin (150 mg/kg/day, oral gavage) or vehicle beginning on the 15th day post operation, when BDL-induced liver fibrosis developed. The effects of glycyrrhizin were determined on the 28th day, the typical timing of BDL-induced cirrhosis. Glycyrrhizin significantly reduced portal pressure (p = 0.004). The splanchnic inflow as measured by superior mesenteric arterial flow decreased by 22% (p = 0.029). The portal-systemic collateral shunting degree reduced by 30% (p = 0.024). The mesenteric angiogenesis and phospho-VEGFR2 protein expression were also downregulated (p = 0.038 and 0.031, respectively). Glycyrrhizin did not significantly influence the liver biochemistry data. Although glycyrrhizin tended to reverse liver fibrosis, statistical significance was not reached (p = 0.069). Consistently, hepatic inflow from portal side, hepatic vascular resistance, and liver fibrosis-related protein expressions were not affected. Glycyrrhizin treatment at the stage of hepatic fibrosis still effectively attenuated portal hypertension and portosystemic collateral shunting. These beneficial effects were attributed to, at least in part, the suppression of mesenteric angiogenesis by VEGF signaling pathway downregulation.
Collapse
|
6
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
7
|
Chang T, Ho HL, Hsu SJ, Chang CC, Tsai MH, Huo TI, Huang HC, Lee FY, Hou MC, Lee SD. Glucobrassicin Metabolites Ameliorate the Development of Portal Hypertension and Cirrhosis in Bile Duct-Ligated Rats. Int J Mol Sci 2019; 20:ijms20174161. [PMID: 31454890 PMCID: PMC6747388 DOI: 10.3390/ijms20174161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/11/2019] [Accepted: 08/24/2019] [Indexed: 01/24/2023] Open
Abstract
Patients suffering from liver cirrhosis are often complicated with the formation of portosystemic collateral vessels, which is associated with the progression of a splanchnic hyperdynamic circulatory state. Alleviating pathological angiogenesis has thus been proposed to be a feasible treatment strategy. Indole-3-carbinol (C9H9NO, I3C) and 3,3'-diindolymethane (DIM), formed by the breakdown of glucosinolate glucobrassicin, are prevalent in cruciferous vegetables and have anti-angiogenesis properties. We aimed to evaluate their influences on portal hypertension, the severity of mesenteric angiogenesis, and portosystemic collaterals in cirrhosis. Sprague-Dawley rats with common bile duct ligation (CBDL)-induced liver cirrhosis or sham operation (surgical control) were randomly allocated to receive I3C (20 mg/kg/3 day), DIM (5 mg/kg/day) or vehicle for 28 days. The systemic and portal hemodynamics, severity of portosystemic shunting, mesenteric angiogenesis, and mesenteric proangiogenic factors protein expressions were evaluated. Compared to vehicle, both DIM and I3C significantly reduced portal pressure, ameliorated liver fibrosis, and down-regulated mesenteric protein expressions of vascular endothelial growth factor and phosphorylated Akt. DIM significantly down-regulated pErk, and I3C down-regulated NFκB, pIκBα protein expressions, and reduced portosystemic shunting degree. The cruciferous vegetable byproducts I3C and DIM not only exerted a portal hypotensive effect but also ameliorated abnormal angiogenesis and portosystemic collaterals in cirrhotic rats.
Collapse
Affiliation(s)
- Ting Chang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsin-Ling Ho
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Lotong Poh-Ai Hospital, Yilan 26546, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ching-Chih Chang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Medicine, Lotong Poh-Ai Hospital, Yilan 26546, Taiwan.
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan.
| | - Ming-Hung Tsai
- Chang Gung University College of Medicine and Division of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hui-Chun Huang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Fa-Yauh Lee
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei 11217, Taiwan
| |
Collapse
|
8
|
Bellapart J, Cuthbertson K, Dunster K, Diab S, Platts DG, Raffel C, Gabrielian L, Barnett A, Paratz J, Boots R, Fraser JF. The effects of normovolemic anemia and blood transfusion on cerebral microcirculation after severe head injury. Intensive Care Med Exp 2018; 6:46. [PMID: 30411308 PMCID: PMC6223395 DOI: 10.1186/s40635-018-0210-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral regional microcirculation is altered following severe head injury. In addition to tissue disruption, partial pressure of tissue oxygenation is impaired due to an increase in the oxygen tissue gradient. The heterogenic distribution of cerebral microcirculation is multifactorial, and acute anemia challenges further the delivery of oxygen to tissues. Currently, a restrictive transfusion threshold is globally applied; however, it is unclear how anemia modifies regional cerebral microcirculation; hence, it is unclear if by aiming to a global endpoint, specific anatomical regions undergo ischemia. This study aims to quantify the temporal changes in cerebral microcirculation after severe head injury, under the effect of anemia and transfusion. It also aims to assess its effects specifically at the ischemic penumbra compared to contralateral regions and its interactions with axonal integrity in real time. Twelve ovine models were subjected to a severe contusion and acceleration-deceleration injury. Normovolemic anemia to a restrictive threshold was maintained after injury, followed by autologous transfusion. Direct quantification of cerebral microcirculation used cytometric count of color-coded microspheres. Axonal injury was assessed using amyloid precursor protein staining. RESULTS A mixed-effect regression model from pre-transfusion to post-transfusion times with a random intercept for each sheep was used. Cerebral microcirculation amongst subjects with normal intracranial pressure was maintained from baseline and increased further after transfusion. Subjects with high intracranial pressure had a consistent reduction of their microcirculation to ischemic thresholds (20-30 ml/100 g/min) without an improvement after transfusion. Cerebral PtiO2 was reduced when exposed to anemia but increased in a 9.6-fold with transfusion 95% CI 5.6 to 13.6 (p value < 0.001). CONCLUSIONS After severe head injury, the exposure to normovolemic anemia to a restrictive transfusion threshold, leads to a consistent reduction on cerebral microcirculation below ischemic thresholds, independent of cerebral perfusion pressure. Amongst subjects with raised intracranial pressure, microcirculation does not improve after transfusion. Cerebral oxymetry is impaired during anemia with a statistically significant increase after transfusion. Current transfusion practices in neurocritical care are based on a rigid hemoglobin threshold, a view that excludes cerebral metabolic demands and specific needs. An RCT exploring these concepts is warranted.
Collapse
Affiliation(s)
- Judith Bellapart
- Critical Care Research Group, University of Queensland, Brisbane, Queensland, Australia. .,Intensive Care Department, Royal Brisbane and Women's Hospital, Butterfield Street, Herston, QLD, 4025, Australia.
| | - Kylie Cuthbertson
- Histopathology Department, Royal Brisbane and Women's Hospital, Herston, QLD, 4025, Australia
| | - Kimble Dunster
- Critical Care Research Group, University of Queensland, Brisbane, Queensland, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Stafford Heights, QLD, 4053, Australia
| | - Sara Diab
- Critical Care Research Group, University of Queensland, Brisbane, Queensland, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Stafford Heights, QLD, 4053, Australia
| | - David G Platts
- Critical Care Research Group, University of Queensland, Brisbane, Queensland, Australia.,Department of Cardiology, The Prince Charles Hospital, Chermside, QLD, 4032, Australia
| | - Christopher Raffel
- Critical Care Research Group, University of Queensland, Brisbane, Queensland, Australia.,Department of Cardiology, The Prince Charles Hospital, Chermside, QLD, 4032, Australia
| | - Levon Gabrielian
- Medical School Research Centre, Frome road, Adelaide, SA, 5005, Australia
| | - Adrian Barnett
- Critical Care Research Group, University of Queensland, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation and School of Public Health and Social Work, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| | - Jennifer Paratz
- School of Medicine, University of Queensland, Brisbane, Queensland, 4025, Australia.,Griffith University, Parkland Drive, Southport, 4215, Australia
| | - Rob Boots
- Intensive Care Department, Royal Brisbane and Women's Hospital, Butterfield Street, Herston, QLD, 4025, Australia
| | - John F Fraser
- Critical Care Research Group, University of Queensland, Brisbane, Queensland, Australia.,Intensive Care Department, The Prince Charles Hospital, Rode road, Chermside, QLD, 4032, Australia
| |
Collapse
|
9
|
Bellapart J, Cuthbertson K, Dunster K, Diab S, Platts DG, Raffel OC, Gabrielian L, Barnett A, Paratz J, Boots R, Fraser JF. Cerebral Microcirculation and Histological Mapping After Severe Head Injury: A Contusion and Acceleration Experimental Model. Front Neurol 2018; 9:277. [PMID: 29867710 PMCID: PMC5949334 DOI: 10.3389/fneur.2018.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/09/2018] [Indexed: 11/21/2022] Open
Abstract
Background Cerebral microcirculation after severe head injury is heterogeneous and temporally variable. Microcirculation is dependent upon the severity of injury, and it is unclear how histology relates to cerebral regional blood flow. Objective This study assesses the changes of cerebral microcirculation blood flow over time after an experimental brain injury model in sheep and contrasts these findings with the histological analysis of the same regions with the aim of mapping cerebral flow and tissue changes after injury. Methods Microcirculation was quantified using flow cytometry of color microspheres injected under intracardiac ultrasound to ensure systemic and homogeneous distribution. Histological analysis used amyloid precursor protein staining as a marker of axonal injury. A mapping of microcirculation and axonal staining was performed using adjacent layers of tissue from the same anatomical area, allowing flow and tissue data to be available from the same anatomical region. A mixed effect regression model assessed microcirculation during 4 h after injury, and those results were then contrasted to the amyloid staining qualitative score. Results Microcirculation values for each subject and tissue region over time, including baseline, ranged between 20 and 80 ml/100 g/min with means that did not differ statistically from baseline flows. However, microcirculation values for each subject and tissue region were reduced from baseline, although their confidence intervals crossing the horizontal ratio of 1 indicated that such reduction was not statistically significant. Histological analysis demonstrated the presence of moderate and severe score on the amyloid staining throughout both hemispheres. Conclusion Microcirculation at the ipsilateral and contralateral site of a contusion and the ipsilateral thalamus and medulla showed a consistent decline over time. Our data suggest that after severe head injury, microcirculation in predefined areas of the brain is reduced from baseline with amyloid staining in those areas reflecting the early establishment of axonal injury.
Collapse
Affiliation(s)
- Judith Bellapart
- Department of Intensive Care, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kylie Cuthbertson
- Department of Histopathology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kimble Dunster
- Critical Care Research Group, University of Queensland, Brisbane, QLD, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sara Diab
- Critical Care Research Group, University of Queensland, Brisbane, QLD, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - David G Platts
- Critical Care Research Group, University of Queensland, Brisbane, QLD, Australia.,Department of Cardiology, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Owen Christopher Raffel
- Critical Care Research Group, University of Queensland, Brisbane, QLD, Australia.,Department of Cardiology, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Levon Gabrielian
- Medical School, University of South Australia, Adelaide, SA, Australia.,Medical Research Centre, Adelaide, SA, Australia
| | - Adrian Barnett
- Critical Care Research Group, University of Queensland, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation & School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jenifer Paratz
- Department of Intensive Care, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Rob Boots
- Department of Intensive Care, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - John F Fraser
- Critical Care Research Group, University of Queensland, Brisbane, QLD, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation & School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, Australia.,Department of Intensive Care, The Prince Charles Hospital, Chermside, QLD, Australia
| |
Collapse
|
10
|
The beneficial effects of curcumin in cirrhotic rats with portal hypertension. Biosci Rep 2017; 37:BSR20171015. [PMID: 29162665 PMCID: PMC6435472 DOI: 10.1042/bsr20171015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 12/11/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022] Open
Abstract
In liver cirrhosis with portal hypertension, the uneven distribution of vasoactive substances leads to increased intrahepatic vascular resistance and splanchnic vasodilatation. Angiogenesis also induces increased portal inflow and portosystemic collaterals. The collaterals may induce lethal complications such as gastroesophageal variceal hemorrhage, but the therapeutic effect of vasoconstrictors is still suboptimal due to poor collateral vasoresponsivenss. Curcumin has aroused much attention for its antifibrosis, vasoactive, and anti-angiogenesis actions. However, whether it affects the aforementioned aspects is unknown. Liver cirrhosis was induced by common bile duct ligation (CBDL) in Sprague-Dawley rats. Sham-operated rats were controls. CBDL and sham rats were randomly allocated to receive curcumin (600 mg/kg per day) or vehicle since the 15th day after BDL. On the 29th day, portal hypertension related parameters were surveyed. Portosystemic collateral in situ perfusion was performed to evaluate vascular activity. Chronic curcumin treatment decreased portal pressure (PP), cardiac index (CI) and increased systemic vascular resistance (SVR) in cirrhotic rats. In splanchnic system, curcumin decreased superior mesenteric artery (SMA) flow and increased SMA resistance. Mesenteric angiogenesis was attenuated by curcumin. Acute administration of curcumin significantly induced splanchnic vasoconstriction. The mesenteric protein expressions of p-endothelial nitric oxide synthase (eNOS), cyclooxygenase (COX) 2 (COX2), vascular endothelial growth factor (VEGF), p-VEGF receptor 2 (VEGFR2), and p-Erk were down-regulated. In collateral system, curcumin decreased portosystemic shunting and induced vasoconstriction. In conclusion, chronic curcumin administration in cirrhotic rats ameliorated portal hypertension related hemodynamic derangements and portosystemic collaterals. Curcumin also attenuated splanchnic hyperdynamic circulation by inducing vasoconstriction through inhibition of eNOS activation and by decreasing mesenteric angiogenesis via VEGF pathway blockade.
Collapse
|
11
|
Hoffman JIE. The history of the microsphere method for measuring blood flows with special reference to myocardial blood flow: a personal memoir. Am J Physiol Heart Circ Physiol 2017; 312:H705-H710. [PMID: 28130341 DOI: 10.1152/ajpheart.00834.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 11/22/2022]
Abstract
We use many types of equipment and technologies to make our measurements but give little thought to how they developed. Evolution was once described as a series of recoils from blind alleys, and this is exemplified by the gradual development of the microsphere method of measuring blood flows. The microsphere method is one of the most frequently used methods for measuring blood flow to organs and portions of organs. The method can measure myocardial blood flow with reasonable accuracy (within 10%) down to samples weighing >50 mg but probably will not do so for samples weighing 1-10 mg. Microspheres with diameters from 10 to 15 μm provide the best compromise between accurate flow measurement and retention in tissue. Radioactive labels have been almst entirely replaced by fluorescent labels, but colored microspheres and neutron-activated labels are also used.NEW & NOTEWORTHY The contributions of the various individuals who developed the microsphere method of measuring regional blood flows and how these advances took place are brought to light in this paper.
Collapse
Affiliation(s)
- Julien I E Hoffman
- Department of Pediatrics, University of California, San Francisco, California
| |
Collapse
|
12
|
Taurà P, Ibarzabal A, Vendrell M, Adelsdorfer C, Delitala A, de Lacy B, Deulofeu R, Delgado S, Lacy AM. Pretreatment with endothelium-derived nitric oxide synthesis modulators on gastrointestinal microcirculation during NOTES: an experimental study. Surg Endosc 2016; 30:5232-5238. [PMID: 27008575 DOI: 10.1007/s00464-016-4870-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND STUDY AIMS On-demand endoscopic insufflation during natural orifice transluminal endoscopic surgery (NOTES) adversely affects microcirculatory blood flow (MBF), even with low mean intra-abdominal pressure, suggesting that shear stress caused by time-varying flow fluctuations has a great impact on microcirculation. As shear stress is inversely related to vascular diameter, nitric oxide (NO) production acts as a brake to vasoconstriction. OBJECTIVE To assess whether pretreatment by NO synthesis modulators protects gastrointestinal MBF during transgastric peritoneoscopy. METHODS Fourteen pigs submitted to cholecystectomy by endoscope CO2 insufflation for 60 min were randomized into 2 groups: (1) 150 mg/kg of N-acetyl cysteine (NAC, n = 7) and (2) 4 ml/kg of hypertonic saline 7.5 % (HS, n = 7), and compared to a non-treated NOTES group (n = 7). Five animals made up a sham group. Colored microspheres were used to assess changes in MBF. RESULTS The average level of intra-abdominal pressure was similar in all groups (9 mmHg). In NOTES group microcirculation decrease compared with baseline was greater in renal cortex, mesocolon, and mesentery (41, 42, 44 %, respectively, p < 0.01) than in renal medulla, colon, and small bowel (29, 32, 34, respectively, p < 0.05). NAC avoided the peritoneoscopy effect on renal medulla and cortex (4 and 14 % decrease, respectively) and reduced the impact on colon and small bowel (20 % decrease). HS eliminated MBF changes in colon and small bowel (14 % decrease) and modulated MBF in renal medulla and cortex (19 % decrease). Neither treatment influenced mesentery MBF decrease. CONCLUSIONS Both pretreatments can effectively attenuate peritoneoscopy-induced deleterious effects on gastrointestinal MBF.
Collapse
Affiliation(s)
- Pilar Taurà
- Department of Anaesthesiology, Hospital Clinic, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| | - Aitnitze Ibarzabal
- Department of Gastrointestinal Surgery, Institute of Digestive and Metabolic Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Marina Vendrell
- Department of Anaesthesiology, Hospital Clinic, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Cedric Adelsdorfer
- Department of Gastrointestinal Surgery, Institute of Digestive and Metabolic Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Alberto Delitala
- Department of Gastrointestinal Surgery, Institute of Digestive and Metabolic Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Borja de Lacy
- Department of Gastrointestinal Surgery, Institute of Digestive and Metabolic Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ramon Deulofeu
- Department of Biochemistry and Molecular Genetics, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Salvadora Delgado
- Department of Gastrointestinal Surgery, Institute of Digestive and Metabolic Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Antonio M Lacy
- Department of Gastrointestinal Surgery, Institute of Digestive and Metabolic Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Bellapart J, Cuthbertson K, Dunster K, Diab S, Platts DG, Raffel OC, Gabrielian L, Barnett A, Paratz J, Boots R, Fraser JF. Cerebral Microcirculation during Experimental Normovolaemic Anemia. Front Neurol 2016; 7:6. [PMID: 26869986 PMCID: PMC4735869 DOI: 10.3389/fneur.2016.00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/14/2016] [Indexed: 11/13/2022] Open
Abstract
Anemia is accepted among critically ill patients as an alternative to elective blood transfusion. This practice has been extrapolated to head injury patients with only one study comparing the effects of mild anemia on neurological outcome. There are no studies quantifying microcirculation during anemia. Experimental studies suggest that anemia leads to cerebral hypoxia and increased rates of infarction, but the lack of clinical equipoise, when testing the cerebral effects of transfusion among critically injured patients, supports the need of experimental studies. The aim of this study was to quantify cerebral microcirculation and the potential presence of axonal damage in an experimental model exposed to normovolaemic anemia, with the intention of describing possible limitations within management practices in critically ill patients. Under non-recovered anesthesia, six Merino sheep were instrumented using an intracardiac transeptal catheter to inject coded microspheres into the left atrium to ensure systemic and non-chaotic distribution. Cytometric analyses quantified cerebral microcirculation at specific regions of the brain. Amyloid precursor protein staining was used as an indicator of axonal damage. Animals were exposed to normovolaemic anemia by blood extractions from the indwelling arterial catheter with simultaneous fluid replacement through a venous central catheter. Simultaneous data recording from cerebral tissue oxygenation, intracranial pressure, and cardiac output was monitored. A regression model was used to examine the effects of anemia on microcirculation with a mixed model to control for repeated measures. Homogeneous and normal cerebral microcirculation with no evidence of axonal damage was present in all cerebral regions, with no temporal variability, concluding that acute normovolaemic anemia does not result in short-term effects on cerebral microcirculation in the ovine brain.
Collapse
Affiliation(s)
- Judith Bellapart
- Department of Intensive Care, Royal Brisbane and Women's Hospital , Herston, QLD , Australia
| | - Kylie Cuthbertson
- Department of Intensive Care, Royal Brisbane and Women's Hospital , Herston, QLD , Australia
| | - Kimble Dunster
- Critical Care Research Group, University of Queensland, St Lucia, QLD, Australia; Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sara Diab
- Critical Care Research Group, University of Queensland, St Lucia, QLD, Australia; Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - David G Platts
- Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD, Australia; Department of Cardiology, The Prince Charles Hospital, Chermside, QLD, Australia
| | - O Christopher Raffel
- Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD, Australia; Department of Cardiology, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Levon Gabrielian
- Medical Research Centre, Medical School, University of South Australia , Adelaide, SA , Australia
| | - Adrian Barnett
- Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD, Australia; School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jenifer Paratz
- Department of Intensive Care, Royal Brisbane and Women's Hospital , Herston, QLD , Australia
| | - Rob Boots
- Department of Intensive Care, Royal Brisbane and Women's Hospital , Herston, QLD , Australia
| | - John F Fraser
- Critical Care Research Group, University of Queensland, St Lucia, QLD, Australia; Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD, Australia; School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Department of Intensive Care, The Prince Charles Hospital, Chermside, QLD, Australia
| |
Collapse
|
14
|
Chemonges S, Shekar K, Tung JP, Dunster KR, Diab S, Platts D, Watts RP, Gregory SD, Foley S, Simonova G, McDonald C, Hayes R, Bellpart J, Timms D, Chew M, Fung YL, Toon M, Maybauer MO, Fraser JF. Optimal management of the critically ill: anaesthesia, monitoring, data capture, and point-of-care technological practices in ovine models of critical care. BIOMED RESEARCH INTERNATIONAL 2014; 2014:468309. [PMID: 24783206 PMCID: PMC3982457 DOI: 10.1155/2014/468309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/21/2014] [Accepted: 02/10/2014] [Indexed: 12/18/2022]
Abstract
Animal models of critical illness are vital in biomedical research. They provide possibilities for the investigation of pathophysiological processes that may not otherwise be possible in humans. In order to be clinically applicable, the model should simulate the critical care situation realistically, including anaesthesia, monitoring, sampling, utilising appropriate personnel skill mix, and therapeutic interventions. There are limited data documenting the constitution of ideal technologically advanced large animal critical care practices and all the processes of the animal model. In this paper, we describe the procedure of animal preparation, anaesthesia induction and maintenance, physiologic monitoring, data capture, point-of-care technology, and animal aftercare that has been successfully used to study several novel ovine models of critical illness. The relevant investigations are on respiratory failure due to smoke inhalation, transfusion related acute lung injury, endotoxin-induced proteogenomic alterations, haemorrhagic shock, septic shock, brain death, cerebral microcirculation, and artificial heart studies. We have demonstrated the functionality of monitoring practices during anaesthesia required to provide a platform for undertaking systematic investigations in complex ovine models of critical illness.
Collapse
Affiliation(s)
- Saul Chemonges
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia ; Medical Engineering Research Facility (MERF), Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Kiran Shekar
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia ; Bond University, Gold Coast, QLD 4226, Australia
| | - John-Paul Tung
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; Research and Development, Australian Red Cross Blood Service, Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Kimble R Dunster
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Sara Diab
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - David Platts
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Ryan P Watts
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; Department of Emergency Medicine, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Shaun D Gregory
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia ; Innovative Cardiovascular Engineering and Technology Laboratory, The Prince Charles Hospital, Chermside, Brisbane, QLD 4032, Australia
| | - Samuel Foley
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Gabriela Simonova
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Charles McDonald
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Rylan Hayes
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Judith Bellpart
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Daniel Timms
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; Innovative Cardiovascular Engineering and Technology Laboratory, The Prince Charles Hospital, Chermside, Brisbane, QLD 4032, Australia
| | - Michelle Chew
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia
| | - Yoke L Fung
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Michael Toon
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia
| | - Marc O Maybauer
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - John F Fraser
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia ; Innovative Cardiovascular Engineering and Technology Laboratory, The Prince Charles Hospital, Chermside, Brisbane, QLD 4032, Australia
| |
Collapse
|
15
|
Intracardiac echocardiography guided transeptal catheter injection of microspheres for assessment of cerebral microcirculation in experimental models. Cardiol Res Pract 2013; 2013:595838. [PMID: 24102032 PMCID: PMC3786547 DOI: 10.1155/2013/595838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 11/24/2022] Open
Abstract
The use of microspheres for the determination of regional microvascular blood flow (RMBF) has previously used different approaches. This study presents for the first time the intracardiac injection of microspheres using transeptal puncture under intracardiac echocardiography guidance. Five Merino sheep were instrumented and cardiovascularly supported according to local guidelines. Two catheter sheaths into the internal jugular vein facilitated the introduction of an intracardiac probe and transeptal catheter, respectively. Five million colour coded microspheres were injected into the left atrium via this catheter. After euthanasia the brain was used as proof of principle and the endpoint for determination of microcirculation at different time points. Homogeneous allocation of microspheres to different regions of the brain was found over time. Alternate slices from both hemispheres showed the following flow ranges: for slice 02; 0.57–1.02 mL/min/g, slice 04; 0.45–1.42 mL/min/g, slice 06; 0.35–1.87 mL/min/g, slice 08; 0.46–1.77 mL/min/g, slice 10; 0.34–1.28 mL/min/g. A mixed effect regression model demonstrated that the confidence interval did include zero suggesting that the apparent variability intra- and intersubject was not statistically significant, supporting the stability and reproducibility of the injection technique. This study demonstrates the feasibility of the transeptal injection of microspheres, showing a homogeneous distribution of blood flow through the brain unchanged over time and has established a new interventional model for the measurement of RMBF in ovine models.
Collapse
|
16
|
Kakinuma Y, Furihata M, Akiyama T, Arikawa M, Handa T, Katare RG, Sato T. Donepezil, an acetylcholinesterase inhibitor against Alzheimer's dementia, promotes angiogenesis in an ischemic hindlimb model. J Mol Cell Cardiol 2009; 48:680-93. [PMID: 19962381 DOI: 10.1016/j.yjmcc.2009.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 11/07/2009] [Accepted: 11/10/2009] [Indexed: 11/25/2022]
Abstract
Our recent studies have indicated that acetylcholine (ACh) protects cardiomyocytes from prolonged hypoxia through activation of the PI3K/Akt/HIF-1alpha/VEGF pathway and that cardiomyocyte-derived VEGF promotes angiogenesis in a paracrine fashion. These results suggest that a cholinergic system plays a role in modulating angiogenesis. Therefore, we assessed the hypothesis that the cholinergic modulator donepezil, an acetylcholinesterase inhibitor utilized in Alzheimer's disease, exhibits beneficial effects, especially on the acceleration of angiogenesis. We evaluated the effects of donepezil on angiogenic properties in vitro and in vivo, using an ischemic hindlimb model of alpha7 nicotinic receptor-deleted mice (alpha7 KO) and wild-type mice (WT). Donepezil activated angiogenic signals, i.e., HIF-1alpha and VEGF expression, and accelerated tube formation in human umbilical vein endothelial cells (HUVECs). ACh and nicotine upregulated signal transduction with acceleration of tube formation, suggesting that donepezil promotes a common angiogenesis pathway. Moreover, donepezil-treated WT exhibited rich capillaries with enhanced VEGF and PCNA endothelial expression, recovery from impaired tissue perfusion, prevention of ischemia-induced muscular atrophy with sustained surface skin temperature in the limb, and inhibition of apoptosis independent of the alpha7 receptor. Donepezil exerted comparably more effects in alpha7 KO in terms of angiogenesis, tissue perfusion, biochemical markers, and surface skin temperature. Donepezil concomitantly elevated VEGF expression in intracardiac endothelial cells of WT and alpha7 KO and further increased choline acetyltransferase (ChAT) protein expression, which is critical for ACh synthesis in endothelial cells. The present study concludes that donepezil can act as a therapeutic tool to accelerate angiogenesis in cardiovascular disease patients.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abraldes JG, Iwakiri Y, Loureiro-Silva M, Haq O, Sessa WC, Groszmann RJ. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am J Physiol Gastrointest Liver Physiol 2006; 290:G980-7. [PMID: 16603731 DOI: 10.1152/ajpgi.00336.2005] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Increased nitric oxide (NO) is the main factor leading to the hyperdynamic circulation associated with advanced portal hypertension (PHT), but the initial mechanisms and the magnitude of increase in portal pressure required to trigger NO production are not known. We addressed these issues by studying systemic and splanchnic hemodynamics and endothelial NO synthase (eNOS) and VEGF expression in rats with different degrees of portal hypertension. Portal vein ligation (PVL) performed over needles of three different calibers (16-, 18-, and 20-gauge) yielded different degrees of PHT and portosystemic shunting. Compared with sham rats, all three groups of PVL rats exhibited features of hyperdynamic circulation. Rats with minimal portal hypertension (PVL with a 16-gauge needle) showed an early increase in VEGF and eNOS expression selectively at the jejunum. Immunofluorescence showed that VEGF expression was located in highly vascularized areas of the mucosa. Inhibition of VEGF signaling markedly attenuated the increase in eNOS expression. In conclusion, mild increases in portal pressure are enough to upregulate eNOS at the intestinal microcirculation, and this occurs, at least in part, through VEGF upregulation.
Collapse
Affiliation(s)
- Juan G Abraldes
- Hepatic Hemodynamic Laboratory, Veterans Affairs Connecticut Healthcare System, Digestive Disease 111H, 950 Campbell Ave., New Haven, CT 06516, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kingma JG, Simard D, Rouleau JR. Comparison of Neutron Activated and Radiolabeled Microsphere Methods for Measurement of Transmural Myocardial Blood Flow in Dogs. J Thromb Thrombolysis 2005; 19:201-8. [PMID: 16082608 DOI: 10.1007/s11239-005-1201-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The 'gold standard' radioactive microsphere (RM) technique for measurement of organ blood flow under various experimental conditions is inaccessible to many researchers due to increasing environmental concerns regarding safety and disposal of low-level radioactive waste materials. A new method using neutron activated microspheres (NAM) has recently been described. METHODS We compared regional myocardial blood flows using the new formulation STERIspheres (NAM; 15.0 +/- 0.1 [SD] microm; density 1.5 gr/mL) with RM (15.0 +/- 0.1 [SD] microm; density 1.5 gr/mL) under different experimental conditions during acute ischemia-reperfusion injury in dogs. Random paired combinations of four different RM and NAM were co-injected into the left atrium during autoregulation, coronary occlusion and flow-mediated hyperemia (reperfusion) in the same animal. The left ventricle was divided into non-ischemic and ischemic regions and further subdivided into endocardial, mid-myocardial and epicardial portions. After gamma-counting, blood and myocardial tissue samples (n = 180) were dried and then shipped to a core facility for neutron activation and analysis. NAM-RM blood flow data were directly compared by ANOVA and regression analysis; Bland and Altman analysis was also performed to assess mean differences in blood flow with NAM-RM. RESULTS A direct relation for blood flow between NAM-RM was observed; the slope of the relation (1.17 RM +/- 0.04 [SEE]) was different from unity but the intercept (0.06 +/- 0.06 [SEE]) was not different from the origin. Intermethod mean differences were minimal between NAM-RM in the low to normal range of blood flow and were increased at the higher blood flow levels the latter being of minor physiological consequence. A direct relation for endo/epicardial blood flow ratios between NAM-RM was also observed; the slope of the relation (0.98 RM +/- 0.04 [SEE]) and the intercept (0.03 +/- 0.06 [SEE]) were not different from unity or the origin, respectively. CONCLUSIONS RESULTS show that in addition to limiting production of radioactive waste materials, NAM accurately measure myocardial blood flow, endocardial/epicardial and ischemic/non-ischemic blood flow distributions over a wide range. We compared myocardial blood flows using paired combinations of neutron activated (NAM) and the 'gold standard' radiolabeled microspheres (RM) co-injected during autoregulation, coronary occlusion and flow-mediated hyperemia in an in situ canine ischemia-reperfusion preparation. A direct relation for blood flow and endo/epicardial blood flow ratios between NAM-RM was observed; intermethod mean differences between NAM-RM were minimal in the low to normal blood flow range but increased at higher blood flow levels. These results indicate that NAM accurately measure myocardial blood flow and its transmural distribution in addition to limiting unnecessary production of radioactive laboratory waste products.
Collapse
Affiliation(s)
- John G Kingma
- Institut Universitaire de Cardiologie et Pneumologie, Department of Medicine, Laval University, Quebec City, Quebec, G1K 7P4.
| | | | | |
Collapse
|
19
|
Abstract
The art and science of the use of deposition markers for the estimation of blood flow distributions throughout the body and within organs is reviewed. Development of diffusible tracer techniques started 50 years ago. Twenty years later, radioactive 15 micron microspheres became the standard marker. Early studies on small animals, fetal sheep in 1967 and rats in 1976, provoked much of the technical development. Needs for avoiding the use of radioactivity, for having long lasting labels, and for providing higher spatial resolution, are driving the continuing exploration of newer techniques using colored and fluorescent microspheres and molecular deposition markers. Strengths and weaknesses of the various methods are compared.
Collapse
Affiliation(s)
- F W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| | | |
Collapse
|