1
|
Milewski K, Orzeł-Gajowik K, Zielińska M. Mitochondrial Changes in Rat Brain Endothelial Cells Associated with Hepatic Encephalopathy: Relation to the Blood-Brain Barrier Dysfunction. Neurochem Res 2024; 49:1489-1504. [PMID: 35917006 PMCID: PMC11106209 DOI: 10.1007/s11064-022-03698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/17/2022] [Accepted: 07/14/2022] [Indexed: 12/06/2022]
Abstract
The mechanisms underlying cerebral vascular dysfunction and edema during hepatic encephalopathy (HE) are unclear. Blood-brain barrier (BBB) impairment, resulting from increased vascular permeability, has been reported in acute and chronic HE. Mitochondrial dysfunction is a well-documented result of HE mainly affecting astrocytes, but much less so in the BBB-forming endothelial cells. Here we review literature reports and own experimental data obtained in HE models emphasizing alterations in mitochondrial dynamics and function as a possible contributor to the status of brain endothelial cell mitochondria in HE. Own studies on the expression of the mitochondrial fusion-fission controlling genes rendered HE animal model-dependent effects: increase of mitochondrial fusion controlling genes opa1, mfn1 in cerebral vessels in ammonium acetate-induced hyperammonemia, but a decrease of the two former genes and increase of fis1 in vessels in thioacetamide-induced HE. In endothelial cell line (RBE4) after 24 h ammonia and/or TNFα treatment, conditions mimicking crucial aspects of HE in vivo, we observed altered expression of mitochondrial fission/fusion genes: a decrease of opa1, mfn1, and, increase of the fission related fis1 gene. The effect in vitro was paralleled by the generation of reactive oxygen species, decreased total antioxidant capacity, decreased mitochondrial membrane potential, as well as increased permeability of RBE4 cell monolayer to fluorescein isothiocyanate dextran. Electron microscopy documented enlarged mitochondria in the brain endothelial cells of rats in both in vivo models. Collectively, the here observed alterations of cerebral endothelial mitochondria are indicative of their fission, and decreased potential of endothelial mitochondria are likely to contribute to BBB dysfunction in HE.
Collapse
Affiliation(s)
- Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| | - Karolina Orzeł-Gajowik
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Czarnecka A, Aleksandrowicz M, Jasiński K, Jaźwiec R, Kalita K, Hilgier W, Zielińska M. Cerebrovascular reactivity and cerebral perfusion of rats with acute liver failure: role of L-glutamine and asymmetric dimethylarginine in L-arginine-induced response. J Neurochem 2018; 147:692-704. [PMID: 30151828 DOI: 10.1111/jnc.14578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/27/2018] [Accepted: 08/16/2018] [Indexed: 01/19/2023]
Abstract
Cerebral blood flow (CBF) is impaired in acute liver failure (ALF), however, the complexity of the underlying mechanisms has often led to inconclusive interpretations. Regulation of CBF depends at least partially on variations in the local brain L-arginine concentration and/or its metabolic rate. In ALF, other factors, like an increased concentration of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor and elevated level of L-glutamine, may contribute to CBF alteration. This study demonstrated strong differences in the reactivity of the middle cerebral arteries and their response to extravascular L-arginine application between vessels isolated from rats with thioacetamide (TAA)-induced ALF and control animals. Our results also showed the decrease in the cerebral perfusion in TAA rats measured by arterial spin labeling perfusion magnetic resonance. Subsequently, we aimed to investigate the importance of balance between the concentration of ADMA and L-arginine in the CBF regulation. In vivo, intraperitoneal L-arginine administration in TAA rats corrected: (i) decrease in cerebral perfusion, (ii) decrease in brain extracellular L-arginine/ADMA ratio and (iii) increase in brain L-glutamine concentration. Our study implicates that impaired vascular tone of cerebral arteries is most likely associated with exposure to high ADMA and L-glutamine levels resulting in limited availability of L-arginine and might be responsible for reduced cerebral perfusion observed in ALF.
Collapse
Affiliation(s)
- Anna Czarnecka
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Aleksandrowicz
- Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Jasiński
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Radosław Jaźwiec
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kalita
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Wojciech Hilgier
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Sawant OB, Ramadoss J, Hankins GD, Wu G, Washburn SE. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol. Amino Acids 2014; 46:1981-96. [PMID: 24810329 DOI: 10.1007/s00726-014-1751-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/16/2014] [Indexed: 01/11/2023]
Abstract
Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75-2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid-base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid-base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.
Collapse
Affiliation(s)
- Onkar B Sawant
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, 4466 Texas A&M University, College Station, TX, 77843-4466, USA
| | | | | | | | | |
Collapse
|
4
|
Skowrońska M, Albrecht J. Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox Res 2011; 21:236-44. [PMID: 21874372 PMCID: PMC3246587 DOI: 10.1007/s12640-011-9269-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 02/01/2023]
Abstract
Ammonia is a neurotoxin involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy, a condition associated with acute—(ALF) or chronic liver failure. This article reviews evidence that apart from directly affecting the metabolism and function of the central nervous system cells, ammonia influences the passage of different molecules across the blood brain barrier (BBB). A brief description is provided of the tight junctions, which couple adjacent cerebral capillary endothelial cells to each other to form the barrier. Ammonia modulates the transcellular passage of low-to medium-size molecules, by affecting their carriers located at the BBB. Ammonia induces interrelated aberrations of the transport of the large neutral amino acids and aromatic amino acids (AAA), whose influx is augmented by exchange with glutamine produced in the course of ammonia detoxification, and maybe also modulated by the extracellularly acting gamma-glutamyl moiety transferring enzyme, gamma-glutamyl-transpeptidase. Impaired AAA transport affects neurotransmission by altering intracerebral synthesis of catecholamines (serotonin and dopamine), and producing “false neurotransmitters” (octopamine and phenylethylamine). Ammonia also modulates BBB transport of the cationic amino acids: the nitric oxide precursor, arginine, and ornithine, which is an ammonia trap, and affects the transport of energy metabolites glucose and creatine. Moreover, ammonia acting either directly or in synergy with liver injury-derived inflammatory cytokines also evokes subtle increases of the transcellular passage of molecules of different size (BBB “leakage”), which appears to be responsible for the vasogenic component of cerebral edema associated with ALF.
Collapse
Affiliation(s)
- Marta Skowrońska
- Departament of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warszawa, Pawińskiego 5, Poland
| | | |
Collapse
|
5
|
Toda N, Ayajiki K, Okamura T. Cerebral Blood Flow Regulation by Nitric Oxide: Recent Advances. Pharmacol Rev 2009; 61:62-97. [DOI: 10.1124/pr.108.000547] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
6
|
Abstract
Patients with acute liver failure (ALF) display impairment of cerebral blood flow (CBF) autoregulation, which may contribute to the development of fatal intracranial hypertension, but the pathophysiological mechanism remains unclear. In this study, we examined whether loss of liver mass causes impairment of CBF autoregulation. Four rat models were chosen, each representing different aspects of ALF: galactosamine (GlN) intoxication represented liver necrosis, 90% hepatectomy (PHx90) represented reduction in liver mass, portacaval anastomosis (PCA) represented shunting of blood/toxins into the systemic circulation thus mimicking intrahepatic shunting in ALF, PCA+NH(3) provided information about the additional effects of hyperammonemia Rats were intubated and sedated with pentobarbital. We measured CBF with laser Doppler, intracranial pressure (ICP) was measured in the fossa posterior and registered with a pressure transducer, brain water was measured using the wet-to-dry method, and cerebral glutamine/glutamate was measured enzymatically. The CBF autoregulatory index in both the GlN and PHx90 groups differed significantly from the control group. Conversely, CBF autoregulation was intact in the PCA and PCA+NH(3) groups despite high arterial ammonia, high cerebral glutamine concentration, and increased CBF and ICP. Increased water content of the brainstem or cerebellum was not associated with defective CBF autoregulation. In conclusion, impairment of CBF autoregulation is not caused by brain edema/high ICP. Nor does portacaval shunting or hyperammonemia impair autoregulation. Rather, massive liver necrosis and reduced liver mass are associated with loss of CBF autoregulation.
Collapse
|
7
|
Feltracco P, Serra E, Barbieri S, Tiberio I, Rizzi S, Salvaterra F. Cerebral Blood Flow in Fulminant Hepatitis. Transplant Proc 2006; 38:786-8. [PMID: 16647470 DOI: 10.1016/j.transproceed.2006.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fulminant hepatic failure (FHF) is often complicated with cerebral edema, intracranial hypertension, and coma. Cytotoxic and vasogenic factors have been recognized in the etiology of cerebral edema. One of the main causes seems to be the accumulation of glutamine in astrocytes, which is produced from ammonia and the excitatory neurotransmitter glutamate. Ammonia is detoxified within the brain in astrocytes, where it increases the osmotic pressure for water. Ammonia-induced astrocytic water accumulation seems to act as an integrative trigger for the development of intracranial hypertension. While cerebral blood flow is sometimes reduced in the first stage of FHF, as compensatory cerebral vasoconstriction to reduce mean arterial pressure, it later increases as hyperammonemia decreases cerebral arteriolar tone. Despite vasodilation in the systemic and splanchnic beds at early stages of the disease, cerebral vessel resistance may increase, so that cerebral perfusion pressure may be preserved. When cerebral vascular tone is no longer effective in the course of illness, vasodilation gradually develops and rapidly becomes poorly responsive to carbon dioxide stimulation, which signifies loss of autoregulatory tone and cerebral hyperemia develops. Prolonged excessive flow may lead to brain swelling, vasogenic edema, and intracerebral hemorrhage. Brain edema further aggravates the critically reduced cerebral perfusion and is responsible for the high mortality.
Collapse
Affiliation(s)
- P Feltracco
- Institute of Anaesthesiology and Intensive Care, University Hospital of Padua, Padua, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Astrocytes send processes to synapses and blood vessels, communicate with other astrocytes through gap junctions and by release of ATP, and thus are an integral component of the neurovascular unit. Electrical field stimulations in brain slices demonstrate an increase in intracellular calcium in astrocyte cell bodies transmitted to perivascular end-feet, followed by a decrease in vascular smooth muscle calcium oscillations and arteriolar dilation. The increase in astrocyte calcium after neuronal activation is mediated, in part, by activation of metabotropic glutamate receptors. Calcium signaling in vitro can also be influenced by adenosine acting on A2B receptors and by epoxyeicosatrienoic acids (EETs) shown to be synthesized in astrocytes. Prostaglandins, EETs, arachidonic acid, and potassium ions are candidate mediators of communication between astrocyte end-feet and vascular smooth muscle. In vivo evidence supports a role for cyclooxygenase-2 metabolites, EETs, adenosine, and neuronally derived nitric oxide in the coupling of increased blood flow to increased neuronal activity. Combined inhibition of the EETs, nitric oxide, and adenosine pathways indicates that signaling is not by parallel, independent pathways. Indirect pharmacological results are consistent with astrocytes acting as intermediaries in neurovascular signaling within the neurovascular unit. For specific stimuli, astrocytes are also capable of transmitting signals to pial arterioles on the brain surface for ensuring adequate inflow pressure to parenchymal feeding arterioles. Therefore, evidence from brain slices and indirect evidence in vivo with pharmacological approaches suggest that astrocytes play a pivotal role in regulating the fundamental physiological response coupling dynamic changes in cerebral blood flow to neuronal synaptic activity. Future work using in vivo imaging and genetic manipulation will be required to provide more direct evidence for a role of astrocytes in neurovascular coupling.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | |
Collapse
|
9
|
Kawaguchi T, Brusilow SW, Traystman RJ, Koehler RC. Glutamine-dependent inhibition of pial arteriolar dilation to acetylcholine with and without hyperammonemia in the rat. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1612-9. [PMID: 15705802 PMCID: PMC1847793 DOI: 10.1152/ajpregu.00783.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamine has been shown to influence endothelial-dependent relaxation and nitric oxide production in vitro, possibly by limiting arginine availability, but its effects in vivo have not been well studied. Hyperammonemia is a pathophysiological condition in which glutamine is elevated and contributes to depressed CO(2) reactivity of cerebral arterioles. We tested the hypothesis that acute hyperammonemia decreases pial arteriolar dilation to acetylcholine in vivo and that this decrease could be prevented by inhibiting glutamine synthetase with L-methionine-S-sulfoximine (MSO) or by intravenous infusion of L-arginine. Pial arteriolar diameter responses to topical superfusion of acetylcholine were measured in anesthetized rats before and at 6 h of infusion of either sodium or ammonium acetate. Ammonium acetate infusion increased plasma ammonia concentration from approximately 30 to approximately 600 microM and increased cerebral glutamine concentration fourfold. Arteriolar dilation to acetylcholine was intact after infusion of sodium acetate in groups pretreated with vehicle or with MSO plus methionine, which was coadministered to prevent MSO-induced seizures. In contrast, dilation in response to acetylcholine was completely blocked in hyperammonemic groups pretreated with vehicle or methionine alone. However, MSO plus methionine administration before hyperammonemia, which maintained cerebral glutamine concentration at control values, preserved acetylcholine dilation. Intravenous infusion of L-arginine during the last 2 h of the ammonium acetate infusion partially restored dilation to acetylcholine without reducing cerebral glutamine accumulation. Superfusion of 1 or 2 mM L-glutamine through the cranial window for 1 h in the absence of hyperammonemia attenuated acetylcholine dilation but had no effect on endothelial-independent dilation to nitroprusside. We conclude that 1) hyperammonemia reduces acetylcholine-evoked dilation in cerebral arterioles, 2) this reduction depends on increased glutamine rather than ammonium ions, and 3) increasing arginine partially overcomes the inhibitory effect of glutamine.
Collapse
Affiliation(s)
- Tetsu Kawaguchi
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, 600 North Wolfe St./Blalock 1404-E, Baltimore, MD 21287-4961, USA
| | | | | | | |
Collapse
|
10
|
The effect of indomethacin on intracranial pressure, cerebral perfusion and extracellular lactate and glutamate concentrations in patients with fulminant hepatic failure. J Cereb Blood Flow Metab 2004. [PMID: 15241188 DOI: 10.1097/10.1097/01.wcb.0000125648.03213.1d] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Uncontrolled increase in intracranial pressure (ICP) continues to be one of the most significant causes of early death in patients with acute liver failure (ALF). In this study, we aimed to determine the effects of indomethacin on ICP and cerebral perfusion pressure in twelve patients with ALF and brain edema (9 females/3 males, median age 49,5 (range 21 to 64) yrs.). Also changes in cerebral perfusion determined by transcranial Doppler technique (Vmean) and jugular bulb oxygen saturation (SvjO2) were measured, as well as brain content of lactate and glutamate by microdialysis technique. Finally, we determined the cerebral blood flow autoregulation before and after indomethacin injection. We found that indomethacin reduced ICP from 30 (7 to 53) to 12 (4 to 33) mmHg (P < 0.05). The cerebral perfusion pressure increased from 48 (0 to 119) to 65 (42 to 129) mmHg (P < 0.05), while Vmean and SvjO2 on average remained unchanged at 68 (34 to 126) cm/s and 67 (28 to 82) %, respectively. The lactate and glutamate in the brain tissue were not altered (2.1 (1.8 to 7.8) mmol/l and 34 (2 to 268) micromol/l, respectively) after injection of indomethacin. Cerebral blood flow autoregulation was impaired in all patients before injection of indomethacin, but was not restored after administration of indomethacin. We conclude that a bolus injection of indomethacin reduces ICP and increases cerebral perfusion pressure without compromising cerebral perfusion or oxidative metabolism in patients with ALF. This finding indicates that indomethacin may be valuable as rescue treatment of uncontrolled intracranial hypertension in fulminant hepatic failure.
Collapse
|
11
|
Tofteng F, Larsen FS. The effect of indomethacin on intracranial pressure, cerebral perfusion and extracellular lactate and glutamate concentrations in patients with fulminant hepatic failure. J Cereb Blood Flow Metab 2004; 24:798-804. [PMID: 15241188 DOI: 10.1097/01.wcb.0000125648.03213.1d] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Uncontrolled increase in intracranial pressure (ICP) continues to be one of the most significant causes of early death in patients with acute liver failure (ALF). In this study, we aimed to determine the effects of indomethacin on ICP and cerebral perfusion pressure in twelve patients with ALF and brain edema (9 females/3 males, median age 49,5 (range 21 to 64) yrs.). Also changes in cerebral perfusion determined by transcranial Doppler technique (Vmean) and jugular bulb oxygen saturation (SvjO2) were measured, as well as brain content of lactate and glutamate by microdialysis technique. Finally, we determined the cerebral blood flow autoregulation before and after indomethacin injection. We found that indomethacin reduced ICP from 30 (7 to 53) to 12 (4 to 33) mmHg (P < 0.05). The cerebral perfusion pressure increased from 48 (0 to 119) to 65 (42 to 129) mmHg (P < 0.05), while Vmean and SvjO2 on average remained unchanged at 68 (34 to 126) cm/s and 67 (28 to 82) %, respectively. The lactate and glutamate in the brain tissue were not altered (2.1 (1.8 to 7.8) mmol/l and 34 (2 to 268) micromol/l, respectively) after injection of indomethacin. Cerebral blood flow autoregulation was impaired in all patients before injection of indomethacin, but was not restored after administration of indomethacin. We conclude that a bolus injection of indomethacin reduces ICP and increases cerebral perfusion pressure without compromising cerebral perfusion or oxidative metabolism in patients with ALF. This finding indicates that indomethacin may be valuable as rescue treatment of uncontrolled intracranial hypertension in fulminant hepatic failure.
Collapse
Affiliation(s)
- Flemming Tofteng
- Department of Hepatology, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | | |
Collapse
|
12
|
Simon A, Plies L, Habermeier A, Martiné U, Reining M, Closs EI. Role of neutral amino acid transport and protein breakdown for substrate supply of nitric oxide synthase in human endothelial cells. Circ Res 2003; 93:813-20. [PMID: 14512444 DOI: 10.1161/01.res.0000097761.19223.0d] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial dysfunction is often associated with a relative substrate deficiency of the endothelial nitric oxide synthase (eNOS) in spite of apparently high intracellular arginine concentrations. For a better understanding of the underlying pathophysiological mechanisms, we aimed to characterize the intracellular arginine sources of eNOS. Our previous studies in human endothelial EA.hy926 cells suggested the existence of two arginine pools: pool I can be depleted by extracellular lysine, whereas pool II is not freely exchangeable with the extracellular space, but accessible to eNOS. In this study, we demonstrate that the eNOS accessible pool II is also present in human umbilical vein endothelial cells (HUVECs), but not in ECV bladder carcinoma cells transfected with an expression plasmid for eNOS. In the endothelial cells, one part of pool II (referred to as pool IIA) consisted of recycling of citrulline to arginine. This part could be depleted by neutral amino acids that match the substrate profile of system N transporter 1 (SN1), presumably by the removal of intracellular citrulline. SN1 was expressed in EA.hy926 cells and HUVECs as shown by real-time RT-PCR. The second part of pool II (referred to as pool IIB) could not be depleted by any of the cationic or neutral amino acids tested. Our data demonstrate that pool IIB is nourished by protein breakdown and thus represents a substrate pool likely to accumulate protein-derived endogenous inhibitors of eNOS. Preferential use of the arginine pool IIB under pathophysiological conditions might therefore explain the arginine paradox.
Collapse
Affiliation(s)
- Alexandra Simon
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Chronic alcoholism, viral hepatitis or hepatotoxic drug overdose result in liver dysfunction which may lead to a neuropsychiatric disorder termed hepatic encephalopathy (HE). Although, the exact molecular mechanisms underlying the pathophysiology of HE are not known, excitatory/inhibitory neurotransmitter imbalance leading to dysfunction of the glutamate-nitric oxide (NO) system is thought to play a major role. Activation of the NMDA subtype of glutamate receptors leads to increase in intracellular calcium, which initiates several calcium-dependent processes including NO formation. NO is a gaseous, highly reactive, freely diffusible molecule with a short half-life. Recent studies demonstrate increased expression of the neuronal isoform of NO synthase (NOS) and the uptake of L-arginine (the obligate precursor of NO) in both chronic and acute HE. Hyperammonemia associated with liver dysfunction results in increased NO, which may lead to learning and memory impairments and cerebral edema commonly seen, particularly in acute hyperammonemia.
Collapse
Affiliation(s)
- Vemuganti L Raghavendra Rao
- Department of Neurological Surgery and Cardiovascular Research Center, University of Wisconsin-Madison, H4/334 CSC, 600 Highland Avenue, Madison, WI 53792, USA.
| |
Collapse
|
14
|
Cooper AJ. Role of glutamine in cerebral nitrogen metabolism and ammonia neurotoxicity. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:280-6. [PMID: 11754523 DOI: 10.1002/mrdd.1039] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ammonia enters the brain by diffusion from the blood or cerebrospinal fluid, or is formed in situ from the metabolism of endogenous nitrogen-containing substances. Despite its central importance in nitrogen homeostasis, excess ammonia is toxic to the central nervous system and its concentration in the brain must be kept low. This is accomplished by the high activity of glutamine synthetase, which is localized in astrocytes and which permits efficient detoxification of incoming or endogenously generated ammonia. The location also permits the operation of an intercellular glutamine cycle. In this cycle, glutamate released from nerve terminals is taken up by astrocytes where it is converted to glutamine. Glutamine is released to the extracellular fluid to be taken up into the nerve cells, where it is converted back to glutamate by the action of glutaminase. Most extrahepatic organs lack a complete urea cycle, and for many organs, including the brain, glutamine represents a temporary storage form of waste nitrogen. As such, glutamine was long thought to be harmless to the brain. However, recent evidence suggests that excess glutamine is neurotoxic. Hyperammonemic syndromes (e.g., liver disease, inborn errors of the urea cycle, Reye's disease) consistently cause astrocyte pathology. Evidence has been presented that hyperammonemia results in increased formation of glutamine directly in astrocytes, thereby generating an osmotic stress to these cells. This osmotic stress results in impaired astrocyte function, which in turn leads to neuronal dysfunction. In this review a brief overview is presented of the role of glutamine in normal brain metabolism and in the pathogenesis of hyperammonemic syndromes.
Collapse
Affiliation(s)
- A J Cooper
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA.
| |
Collapse
|