1
|
Karkali K, Pastor-Pareja JC, Martin-Blanco E. JNK signaling and integrins cooperate to maintain cell adhesion during epithelial fusion in Drosophila. Front Cell Dev Biol 2024; 11:1034484. [PMID: 38264353 PMCID: PMC10803605 DOI: 10.3389/fcell.2023.1034484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
The fusion of epithelial sheets is an essential and conserved morphogenetic event that requires the maintenance of tissue continuity. This is secured by membrane-bound or diffusible signals that instruct the epithelial cells, in a coordinated fashion, to change shapes and adhesive properties and when, how and where to move. Here we show that during Dorsal Closure (DC) in Drosophila, the Jun kinase (JNK) signaling pathway modulates integrins expression and ensures tissue endurance. An excess of JNK activity, as an outcome of a failure in the negative feedback implemented by the dual-specificity phosphatase Puckered (Puc), promotes the loss of integrins [the ß-subunit Myospheroid (Mys)] and amnioserosa detachment. Likewise, integrins signal back to the pathway to regulate the duration and strength of JNK activity. Mys is necessary for the regulation of JNK activity levels and in its absence, puc expression is downregulated and JNK activity increases.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| | - Jose Carlos Pastor-Pareja
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (IN-CSIC), Alicante, Spain
| | - Enrique Martin-Blanco
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Jia B, Yu S, Yu D, Liu N, Zhang S, Wu A. Mycotoxin deoxynivalenol affects myoblast differentiation via downregulating cytoskeleton and ECM-integrin-FAK-RAC-PAK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112850. [PMID: 34607188 DOI: 10.1016/j.ecoenv.2021.112850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
As a common mycotoxin, deoxynivalenol (DON) contaminates cereal grains and feed in field or during processing and storage. DON elicits a spectrum of adverse effects in animals including anorexia and growth retardation. Especially, the presence of DON has also been detected in muscle, suggesting that DON may has the potential to affect the development of muscle. However, the relevant research is very rare and the molecular mechanism remains unclear. Myoblasts differentiation into multinucleated myotubes is one of the crucial steps of skeletal muscle development. In the present study, we investigated the effects of DON on differentiation of myoblasts using murine C2C12 cells model. The results indicated that DON dose-dependent inhibited the formation of myotubes in C2C12 cells. After performing omics techniques, a total of 149 differentially expressed genes were identified. The expression of cytoskeleton proteins and extracellular matrix (ECM) proteins were downregulated by DON. Furthermore, DON significantly downregulated the expression of integrin αv and integrin β5, leading to inhibition of the ECM-integrin receptor interaction. The focal adhesion kinase (FAK) and phosphorylated forms, ras-related C3 botulinum toxin substrate (RAC) and p21-activated kinases 1 (PAK1) were also downregulated by DON. Taken together, our findings suggest that DON has the potent to affect the differentiation of myoblasts via downregulating of cytoskeleton and ECM-integrin-FAK-RAC-PAK signaling pathway.
Collapse
Affiliation(s)
- Bingxuan Jia
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Song Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuo Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
3
|
Liu Q, Yu F, Yi L, Gao Y, Gui R, Yi M, Sun J. Stochastic Dynamics of Gene Switching and Energy Dissipation for Gene Expression. Front Genet 2020; 11:676. [PMID: 32714375 PMCID: PMC7343763 DOI: 10.3389/fgene.2020.00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
Abstract
Stochastic dynamics of gene switching and energy dissipation for gene expression are largely unknown, mainly due to the complexity of non-equilibrium mechanisms. Here, based on an important double-deck loop model, the stochastic mechanisms of gene switching and energy dissipation are studied. First, the probability distributions of steady states are calculated theoretically. It is found that the signal can strengthen the choice of gene switching between the "off" and "on" states. Our analysis of energy consumption illustrates that, compared with the synthesis and degradation of proteins, the process of gene switching costs little energy. Our theoretical analysis reveals some interesting insights into the determination of cell state and energy dissipation for gene expression.
Collapse
Affiliation(s)
- Quan Liu
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, China
| | - FengZhen Yu
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Liang Yi
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yijun Gao
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Rong Gui
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Ming Yi
- School of Mathematics and Physics, China University of Geosciences, Wuhan, China
| | - Jianqiang Sun
- School of Automation and Electrical Engineering, Linyi University, Linyi, China
| |
Collapse
|
4
|
Graham ZA, Gallagher PM, Cardozo CP. Focal adhesion kinase and its role in skeletal muscle. J Muscle Res Cell Motil 2015; 36:305-15. [PMID: 26142360 PMCID: PMC4659753 DOI: 10.1007/s10974-015-9415-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health.
Collapse
Affiliation(s)
- Zachary A Graham
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Christopher P Cardozo
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
GRP78 promotes the invasion of pancreatic cancer cells by FAK and JNK. Mol Cell Biochem 2014; 398:55-62. [PMID: 25218495 DOI: 10.1007/s11010-014-2204-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/30/2014] [Indexed: 01/11/2023]
Abstract
The major characteristics of pancreatic cancer are its excessive local invasion and early systemic dissemination. The glucose-regulated protein is over-expressed in many human cancers including pancreatic cancer and correlated with invasion and metastasis in many cancers. To investigate the effect of Grp78 on the invasion of pancreatic cancer, we used western blot and Transwell assay. We found Grp78 is expressed at lower levels in capan-2 and higher expressed in MiaPaCa-2 cells, and Grp78 expression levels were correlated with the invasion potentials of tumor cells. Then,we increased the expression of Grp78 in capan-2 cells and decreased the expression of Grp78 in MiaPaCa-2 cells. We found that over-expression of Grp78 caused significant increase in the expression of TIMP-1, TIMP-2, MMP-14, MMP-2, and MMP-9 in Capan-2 cells. Consistently, knockdown of Grp78 decreased the expression of them in MiaPaCa-2 cells. Gelatin zymography showed Grp78 over-expression stimulated the activities of MMP-2 and MMP-9, while GRP78 knockdown reduced the activities of MMP-2 and MMP-9. Cytoskeleton staining showed that knockdown of Grp78 caused a marked increase in cytoskeleton F-actin stress fibers in MiaPaCa-2 cells. Consistently, GRP78 knockdown hyperactivated RhoA and inhibited significantly Rac activity. Grp78 over-expression decreases the RhoA and stimulated Rac activity. We also found that Grp78 modulated FAK and JNK signaling pathways. Over-expression of GRP78 in Capan-2 activated FAK and JNK. Finally, we demonstrated that knockdown of FAK by shRNA in combination with blockade of JNK signaling pathway with SP600125 completely inhibited GRP78-induced cancer cell invasion. GRP78 is involved in the regulation of pancreatic cancer invasion. FAK and JNK are the key downstream effectors of GRP78.
Collapse
|
6
|
Lamon S, Wallace MA, Russell AP. The STARS signaling pathway: a key regulator of skeletal muscle function. Pflugers Arch 2014; 466:1659-71. [DOI: 10.1007/s00424-014-1475-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 01/08/2023]
|
7
|
Narayanan T, Subramaniam S. Community Structure Analysis of Gene Interaction Networks in Duchenne Muscular Dystrophy. PLoS One 2013; 8:e67237. [PMID: 23840633 PMCID: PMC3686745 DOI: 10.1371/journal.pone.0067237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is an important pathology associated with the human skeletal muscle and has been studied extensively. Gene expression measurements on skeletal muscle of patients afflicted with DMD provides the opportunity to understand the underlying mechanisms that lead to the pathology. Community structure analysis is a useful computational technique for understanding and modeling genetic interaction networks. In this paper, we leverage this technique in combination with gene expression measurements from normal and DMD patient skeletal muscle tissue to study the structure of genetic interactions in the context of DMD. We define a novel framework for transforming a raw dataset of gene expression measurements into an interaction network, and subsequently apply algorithms for community structure analysis for the extraction of topological communities. The emergent communities are analyzed from a biological standpoint in terms of their constituent biological pathways, and an interpretation that draws correlations between functional and structural organization of the genetic interactions is presented. We also compare these communities and associated functions in pathology against those in normal human skeletal muscle. In particular, differential enhancements are observed in the following pathways between pathological and normal cases: Metabolic, Focal adhesion, Regulation of actin cytoskeleton and Cell adhesion, and implication of these mechanisms are supported by prior work. Furthermore, our study also includes a gene-level analysis to identify genes that are involved in the coupling between the pathways of interest. We believe that our results serve to highlight important distinguishing features in the structural/functional organization of constituent biological pathways, as it relates to normal and DMD cases, and provide the mechanistic basis for further biological investigations into specific pathways differently regulated between normal and DMD patients. These findings have the potential to serve as fertile ground for therapeutic applications involving targeted drug development for DMD.
Collapse
Affiliation(s)
- Tejaswini Narayanan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Shankar Subramaniam
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Bizzarro V, Belvedere R, Dal Piaz F, Parente L, Petrella A. Annexin A1 induces skeletal muscle cell migration acting through formyl peptide receptors. PLoS One 2012; 7:e48246. [PMID: 23144744 PMCID: PMC3483218 DOI: 10.1371/journal.pone.0048246] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/21/2012] [Indexed: 01/04/2023] Open
Abstract
Annexin A1 (ANXA1, lipocortin-1) is a glucocorticoid-regulated 37-kDa protein, so called since its main property is to bind (i.e. to annex) to cellular membranes in a Ca(2+)-dependent manner. Although ANXA1 has predominantly been studied in the context of immune responses and cancer, the protein can affect a larger variety of biological phenomena, including cell proliferation and migration. Our previous results show that endogenous ANXA1 positively modulates myoblast cell differentiation by promoting migration of satellite cells and, consequently, skeletal muscle differentiation. In this work, we have evaluated the hypothesis that ANXA1 is able to exert effects on myoblast cell migration acting through formyl peptide receptors (FPRs) following changes in its subcellular localization as in other cell types and tissues. The analysis of the subcellular localization of ANXA1 in C2C12 myoblasts during myogenic differentiation showed an interesting increase of extracellular ANXA1 starting from the initial phases of skeletal muscle cell differentiation. The investigation of intracellular Ca(2+) perturbation following exogenous administration of the ANXA1 N-terminal derived peptide Ac2-26 established the engagement of the FPRs which expression in C2C12 cells was assessed by qualitative PCR. Wound healing assay experiments showed that Ac2-26 peptide is able to increase migration of C2C12 skeletal muscle cells and to induce cell surface translocation and secretion of ANXA1. Our results suggest a role for ANXA1 as a highly versatile component in the signaling chains triggered by the proper calcium perturbation that takes place during active migration and differentiation or membrane repair since the protein is strongly redistributed onto the plasma membranes after an rapid increase of intracellular levels of Ca(2+). These properties indicate that ANXA1 may be involved in a novel repair mechanism for skeletal muscle and may have therapeutic implications with respect to the development of ANXA1 mimetics.
Collapse
Affiliation(s)
- Valentina Bizzarro
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Raffaella Belvedere
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Fabrizio Dal Piaz
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Luca Parente
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
- * E-mail:
| |
Collapse
|
9
|
Zhang J, Ying ZZ, Tang ZL, Long LQ, Li K. MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem 2012; 287:21093-101. [PMID: 22547064 DOI: 10.1074/jbc.m111.330381] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are evolutionarily conserved small RNAs that post-transcriptionally regulate gene expression and have emerged as critical regulators of skeletal muscle development. Here, we identified miR-148a as a novel myogenic microRNA that mediated myogenic differentiation. The expression levels of miR-148a increased during C2C12 myoblast differentiation. Overexpression of miR-148a significantly promoted myogenic differentiation of both C2C12 myoblast and primary muscle cells. Blocking the function of miR-148a with a 2'-O-methylated antisense oligonucleotide inhibitor repressed C2C12 myoblast differentiation. Using a bioinformatics approach, we identified Rho-associated coiled-coil containing protein kinase 1 (ROCK1), a known inhibitor of myogenesis, as a target of miR-148a. A dual-luciferase reporter assay was used to demonstrate that miR-148a directly targeted the 3'-UTR of ROCK1. In addition, the overexpression of miR-148a decreased the protein expression of ROCK1 in C2C12 myoblast and primary muscle cells. Furthermore, ROCK1 inhibition with specific siRNA leaded to accelerated myogenic differentiation progression, underscoring a negative regulatory function of ROCK1 in myogenesis. Therefore, our results revealed a novel mechanism in which miR-148a positively regulates myogenic differentiation via ROCK1 down-regulation.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Animal Nutrition, The Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | | | | | | | | |
Collapse
|
10
|
Liu H, Niu A, Chen SE, Li YP. Beta3-integrin mediates satellite cell differentiation in regenerating mouse muscle. FASEB J 2011; 25:1914-21. [PMID: 21350117 DOI: 10.1096/fj.10-170449] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Skeletal muscle satellite cells can sense various forms of environmental cues and initiate coordinated signaling that activates myogenesis. Although this process involves cellular membrane receptor integrins, the role of integrins in myogenesis is not well defined. Here, we report a regulatory role of β3-integrin, which was previously thought not expressed in muscle, in the initiation of satellite cell differentiation. Undetected in normal muscle, β3-integrin expression in mouse hindlimb muscles is induced dramatically from 1 to 3 d after injury by cardiotoxin. The source of β3-integrin expression is found to be activated satellite cells. Proliferating C2C12 myoblasts also express β3-integrin, which is further up-regulated transiently on differentiation. Knockdown of β3-integrin expression attenuates Rac1 activity, impairs myogenic gene expression, and disrupts focal adhesion formation and actin organization, resulting in impaired myoblast migration and myotube formation. Conversely, overexpression of constitutively active Rac1 rescues myotube formation. In addition, a β3-integrin-neutralizing antibody similarly blocked myotube formation. Comparing with wild-type littermates, myogenic gene expression and muscle regeneration in cardiotoxin-injured β3-integrin-null mice are impaired, as indicated by depressed expression of myogenic markers and morphological disparities. Thus, β3-integrin is a mediator of satellite cell differentiation in regenerating muscle.
Collapse
Affiliation(s)
- Huijie Liu
- Department of Integrative Biology and Pharmacology, University of Texas Health, Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
11
|
SHP2 mediates gp130-dependent cardiomyocyte hypertrophy via negative regulation of skeletal alpha-actin gene. J Mol Cell Cardiol 2010; 49:157-64. [PMID: 20226789 DOI: 10.1016/j.yjmcc.2010.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 11/21/2022]
Abstract
Morphological and biochemical phenotypes of cardiomyocyte hypertrophy are determined by neurohumoral factors. Stimulation of G protein-coupled receptor (GPCR) results in uniform cell enlargement in all directions with an increase in skeletal alpha-actin (alpha-SKA) gene expression, while stimulation of gp130 receptor by interleukin-6 (IL-6)-related cytokines induces longitudinal elongation with no increase in alpha-SKA gene expression. Thus, alpha-SKA is a discriminating marker for hypertrophic phenotypes; however, regulatory mechanisms of alpha-SKA gene expression remain unknown. Here, we clarified the role of SH2-containing protein tyrosine phosphatase 2 (SHP2) in alpha-SKA gene expression. In neonatal rat cardiomyocytes, endothelin-1 (ET-1), a GPCR agonist, but not leukemia inhibitory factor (LIF), an IL-6-related cytokine, induced RhoA activation and promotes alpha-SKA gene expression via RhoA. In contrast, LIF, but not ET-1, induced activation of SHP2 in cardiomyocytes, suggesting that SHP2 might negatively regulate alpha-SKA gene expression downstream of gp130. Therefore, we examined the effect of adenovirus-mediated overexpression of wild-type SHP2 (SHP2(WT)), dominant-negative SHP2 (SHP2(C/S)), or beta-galactosidase (beta-gal), on alpha-SKA gene expression. LIF did not upregulate alpha-SKA mRNA in cardiomyocytes overexpressing either beta-gal or SHP2(WT). In cardiomyocytes overexpressing SHP2(C/S), LIF induced upregulation of alpha-SKA mRNA, which was abrogated by concomitant overexpression of either C3-toxin or dominant-negative RhoA. RhoA was activated after LIF stimulation in the cardiomyocytes overexpressing SHP2(C/S), but not in myocytes overexpressing beta-gal. Furthermore, SHP2 mediates LIF-induced longitudinal elongation of cardiomyocytes via ERK5 activation. Collectively, these findings indicate that SHP2 negatively regulates alpha-SKA expression via RhoA inactivation and suggest that SHP2 implicates ERK5 in cardiomyocyte elongation downstream of gp130.
Collapse
|
12
|
Sakuma K, Watanabe K, Hotta N, Koike T, Ishida K, Katayama K, Akima H. The adaptive responses in several mediators linked with hypertrophy and atrophy of skeletal muscle after lower limb unloading in humans. Acta Physiol (Oxf) 2009; 197:151-9. [PMID: 19432591 DOI: 10.1111/j.1748-1716.2009.01995.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM To determine the adaptive changes in several molecules regulating muscle hypertrophy and atrophy after unloading, we examined whether unilateral lower limb suspension changes the mRNA and protein levels of SRF-linked (RhoA, RhoGDI, STARS and SRF), myostatin-linked (myostatin, Smad2, Smad3 and FLRG) and Foxo-linked (P-Akt, Foxo1, Foxo3a and Atrogin-1) mediators. METHODS A single lower limb of each of eight healthy men was suspended for 20 days. Biopsy specimens were obtained from the vastus lateralis muscle pre- and post-suspension. RESULTS The volume of the vastus lateralis muscle was significantly decreased after unloading. The amount of RhoA, RhoGDI or SRF protein in the muscle was not significantly changed post-suspension. An RT-PCR semiquantitative analysis showed increased levels of myostatin mRNA but not Smad2, Smad3 or FLRG mRNA. Unloading did not elicit significant changes in the amount of p-Smad3 or myostatin protein in the muscle. The amount of p-Akt protein was markedly reduced in the unloaded muscle. Lower limb SUSPENSION DID NOT INFLUENCE THE EXPRESSION PATTERN OF FOXO1, FOXO3A OR ATROGIN-1. CONCLUSION Unloading inducing a mild degree of muscle atrophy may decrease p-Akt and increase myostatin but not SRF-linked mediators.
Collapse
Affiliation(s)
- K Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, Toyohashi, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Jani K, Schöck F. Molecular mechanisms of mechanosensing in muscle development. Dev Dyn 2009; 238:1526-34. [DOI: 10.1002/dvdy.21972] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Age-related reductions in expression of serum response factor and myocardin-related transcription factor A in mouse skeletal muscles. Biochim Biophys Acta Mol Basis Dis 2008; 1782:453-61. [PMID: 18442487 DOI: 10.1016/j.bbadis.2008.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 11/29/2022]
Abstract
The molecular signaling pathways linking the atrophy of skeletal muscle during aging have not been identified. Using reverse transcription (RT)-PCR, Western blotting, and immunofluorescence microscopy, we investigated whether the amounts of RhoA, RhoGDI, SRF, MRTF-A, and MyoD in the triceps brachii and quadriceps muscles change with aging in mice. Young adult (3 mo) and aged (24 mo) C57BL/6J mice were used. Senescent mice possessed many fibers with central nuclei in the quadriceps muscle. Western blotting using a homogenate of whole muscle or the cytosolic fraction clearly showed that the amount of SRF protein was significantly decreased in the aged skeletal muscles. Immunofluorescence labeling indicated more SRF-positive muscle fibers in young mice. Both young and old mice possessed SRF immunoreactivity in some satellite cells expressing Pax7. MRTF-A and STARS mRNA levels significantly declined with aging in the triceps brachii and quadriceps muscles. The amount of MRTF-A protein was markedly reduced in the nuclear fraction of aged muscle of mice. The amounts of RhoA and RhoGDI in the crude homogenate or the cytosolic and membrane fractions were greater in the aged muscle. Senescent mice possessed significantly higher levels of MyoD protein in the cytosol and nucleus. Decreased SRF and MRTF expression may induce the atrophy of skeletal muscle with aging.
Collapse
|
15
|
Amin M, Magnusson KE, Kapus A, Glogauer M, Ellen RP. Treponema denticola Msp-deduced peptide conjugate, P34BSA, promotes RhoA-dependent actin stress fiber formation independent of its internalization by fibroblasts. ACTA ACUST UNITED AC 2008; 65:406-21. [DOI: 10.1002/cm.20270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Dogra C, Hall SL, Wedhas N, Linkhart TA, Kumar A. Fibroblast growth factor inducible 14 (Fn14) is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes. Evidence for TWEAK-independent functions of Fn14 during myogenesis. J Biol Chem 2007; 282:15000-10. [PMID: 17383968 PMCID: PMC4149055 DOI: 10.1074/jbc.m608668200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14), distantly related to tumor necrosis factor receptor superfamily and a receptor for TWEAK cytokine, has been implicated in several biological responses. In this study, we have investigated the role of Fn14 in skeletal muscle formation in vitro. Flow cytometric and Western blot analysis revealed that Fn14 is highly expressed on myoblastic cell line C2C12 and mouse primary myoblasts. The expression of Fn14 was decreased upon differentiation of myoblasts into myotubes. Suppression of Fn14 expression using RNA interference inhibited the myotube formation in both C2C12 and primary myoblast cultures. Fn14 was required for the transactivation of skeletal alpha-actin promoter and the expression of specific muscle proteins such as myosin heavy chain fast type and creatine kinase. RNA interference-mediated knockdown of Fn14 receptor in C2C12 myoblasts decreased the levels of myogenic regulatory factors MyoD and myogenin upon induction of differentiation. Conversely, overexpression of MyoD increased differentiation in Fn14-knockdown C2C12 cultures. Suppression of Fn14 expression in C2C12 myoblasts also inhibited the differentiation-associated increase in the activity of serum response factor and RhoA GTPase. In addition, our data suggest that the role of Fn14 during myogenic differentiation could be independent of TWEAK cytokine. Collectively, our study suggests that the Fn14 receptor is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes.
Collapse
Affiliation(s)
- Charu Dogra
- Jerry L Pettis Memorial Veteran Administration Medical Center, Loma Linda, CA 92357
| | - Susan L. Hall
- Jerry L Pettis Memorial Veteran Administration Medical Center, Loma Linda, CA 92357
- Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Nia Wedhas
- Jerry L Pettis Memorial Veteran Administration Medical Center, Loma Linda, CA 92357
| | - Thomas A. Linkhart
- Jerry L Pettis Memorial Veteran Administration Medical Center, Loma Linda, CA 92357
- Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Ashok Kumar
- Jerry L Pettis Memorial Veteran Administration Medical Center, Loma Linda, CA 92357
- Loma Linda University School of Medicine, Loma Linda, CA 92350
| |
Collapse
|
17
|
Formigli L, Meacci E, Sassoli C, Squecco R, Nosi D, Chellini F, Naro F, Francini F, Zecchi-Orlandini S. Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts. J Cell Physiol 2007; 211:296-306. [PMID: 17295211 DOI: 10.1002/jcp.20936] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the present study, we investigated the functional interaction between stress fibers (SFs) and stretch-activated channels (SACs) and its possible role in the regulation of myoblast differentiation induced by switch to differentiation culture in the presence or absence of sphingosine 1-phosphate. It was found that there was a clear temporal correlation between SF formation and SAC activation in differentiating C2C12 myoblasts. Inhibition of actin polymerization with the specific Rho kinase inhibitor Y-27632, significantly decreased SAC sensitivity in these cells, suggesting a role for Rho-dependent actin remodeling in the regulation of the channel opening. The alteration of cytoskeletal/SAC functional correlation had also deleterious effects on myogenic differentiation of C2C12 cells as judged by combined confocal immunofluorescence, biochemical and electrophysiological analyses. Indeed, the treatment with Y-27632 or with DHCB, an actin disrupting agent, inhibited the expression of the myogenic markers (myogenin and sarcomeric proteins) and myoblast-myotube transition. The treatment with the channel blocker, GdCl(3), also affected myogenesis in these cells. It impaired, in fact, myoblast phenotypic maturation (i.e., reduced the expression of alpha-sarcomeric actin and skeletal myosin and the activity of creatine kinase) but did not modify promoter activity and protein expression levels of myogenin. The results of this study, together with being in agreement with the general idea that cytoskeletal remodeling is essential for muscle differentiation, describe a novel pathway whereby the formation of SFs and their contraction, generate a mechanical tension to the plasma membrane, activate SACs and trigger Ca(2+)-dependent signals, thus influencing the phenotypic maturation of myoblasts.
Collapse
Affiliation(s)
- Lucia Formigli
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bonet-Kerrache A, Fortier M, Comunale F, Gauthier-Rouvière C. The GTPase RhoA increases utrophin expression and stability, as well as its localization at the plasma membrane. Biochem J 2006; 391:261-8. [PMID: 15963030 PMCID: PMC1276923 DOI: 10.1042/bj20050024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Rho family of small GTPases are signalling molecules involved in cytoskeleton remodelling and gene transcription. Their activities are important for many cellular processes, including myogenesis. In particular, RhoA positively regulates skeletal-muscle differentiation. We report in the present study that the active form of RhoA increases the expression of utrophin, the autosomal homologue of dystrophin in the mouse C2C12 and rat L8 myoblastic cell lines. Even though this RhoA-dependent utrophin increase is higher in proliferating myoblasts, it is maintained during myogenic differentiation. This occurs via two mechanisms: (i) transcriptional activation of the utrophin promoter A and (ii) post-translational stabilization of utrophin. In addition, RhoA increases plasma-membrane localization of utrophin. Thus RhoA activation up-regulates utrophin levels and enhances its localization at the plasma membrane.
Collapse
Affiliation(s)
- Armelle Bonet-Kerrache
- CRBM (Centre de Recherches en Biochimie Macromoléculaire), CNRS FRE2593, 1919 Route de Mende, 34293 Montpellier Cedex, France
| | - Mathieu Fortier
- CRBM (Centre de Recherches en Biochimie Macromoléculaire), CNRS FRE2593, 1919 Route de Mende, 34293 Montpellier Cedex, France
| | - Franck Comunale
- CRBM (Centre de Recherches en Biochimie Macromoléculaire), CNRS FRE2593, 1919 Route de Mende, 34293 Montpellier Cedex, France
| | - Cécile Gauthier-Rouvière
- CRBM (Centre de Recherches en Biochimie Macromoléculaire), CNRS FRE2593, 1919 Route de Mende, 34293 Montpellier Cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
Kontaridis MI, Eminaga S, Fornaro M, Zito CI, Sordella R, Settleman J, Bennett AM. SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway. Mol Cell Biol 2004; 24:5340-52. [PMID: 15169898 PMCID: PMC419889 DOI: 10.1128/mcb.24.12.5340-5352.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myogenesis is an intricate process that coordinately engages multiple intracellular signaling cascades. The Rho family GTPase RhoA is known to promote myogenesis, however, the mechanisms controlling its regulation in myoblasts have yet to be fully elucidated. We show here that the SH2-containing protein tyrosine phosphatase, SHP-2, functions as an early modulator of myogenesis by regulating RhoA. When MyoD was expressed in fibroblasts lacking functional SHP-2, muscle-specific gene activity was impaired and abolition of SHP-2 expression by RNA interference inhibited muscle differentiation. By using SHP-2 substrate-trapping mutants, we identified p190-B RhoGAP as a SHP-2 substrate. When dephosphorylated, p190-B RhoGAP has been shown to stimulate the activation of RhoA. During myogenesis, p190-B RhoGAP was tyrosyl dephosphorylated concomitant with the stimulation of SHP-2's phosphatase activity. Moreover, overexpression of a catalytically inactive mutant of SHP-2 inhibited p190-B RhoGAP tyrosyl dephosphorylation, RhoA activity, and myogenesis. These observations strongly suggest that SHP-2 dephosphorylates p190-B RhoGAP, leading to the activation of RhoA. Collectively, these data provide a mechanistic basis for RhoA activation in myoblasts and demonstrate that myogenesis is critically regulated by the actions of SHP-2 on the p190-B Rho GAP/RhoA pathway.
Collapse
Affiliation(s)
- Maria I Kontaridis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Spangenburg EE, Bowles DK, Booth FW. Insulin-like growth factor-induced transcriptional activity of the skeletal alpha-actin gene is regulated by signaling mechanisms linked to voltage-gated calcium channels during myoblast differentiation. Endocrinology 2004; 145:2054-63. [PMID: 14684598 DOI: 10.1210/en.2003-1476] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IGF-I activates signaling pathways that increase the expression of muscle-specific genes in differentiating myoblasts. Induction of skeletal alpha-actin expression occurs during differentiation through unknown mechanisms. The purpose of this investigation was to examine the mechanisms that IGF-I uses to induce skeletal alpha-actin gene expression in C2C12 myoblasts. IGF-I increased skeletal alpha-actin promoter activity by 107% compared with the control condition. Ni(+) [T-type voltage-gated Ca(2+) channel (VGCC) inhibitor] reduced basal-induced activation of the skeletal alpha-actin promoter by approximately 84%, and nifedipine (L-type VGCC inhibitor) inhibited IGF-I-induced activation of the skeletal alpha-actin promoter by 29-48%. IGF-I failed to increase skeletal alpha-actin promoter activity in differentiating dysgenic (lack functional L-type VGCC) myoblasts; 30 mm K(+) and 30 mm K(+)+IGF-I increased skeletal alpha-actin promoter activity by 162% and 76% compared with non-IGF-I or IGF-I-only conditions, respectively. IGF-I increased calcineurin activity, which was inhibited by cyclosporine A. Further, cyclosporine A inhibited K(+)+IGF-I-induced activation of the skeletal alpha-actin promoter. Constitutively active calcineurin increased skeletal alpha-actin promoter activity by 154% and rescued the nifedipine-induced inhibition of L-type VGCC but failed to rescue the Ni(+)-inhibition of T-type VGCC. IGF-I-induced nuclear factor of activated T-cells transcriptional activity was not inhibited by nifedipine or Ni(+). IGF-I failed to increase serum response factor transcriptional activity; however, serum response factor activity was reduced in the presence of Ni(+). These data suggest that IGF-I-induced activation of the skeletal alpha-actin promoter is regulated by the L-type VGCC and calcineurin but independent of nuclear factor of activated T-cell transcriptional activity as C2C12 myoblasts differentiate into myotubes.
Collapse
Affiliation(s)
- Espen E Spangenburg
- Department of Biomedical Sciences, University of Missouri, Columbia 65211, USA.
| | | | | |
Collapse
|
21
|
Lee WJ, Thompson RW, McClung JM, Carson JA. Regulation of androgen receptor expression at the onset of functional overload in rat plantaris muscle. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1076-85. [PMID: 14557238 DOI: 10.1152/ajpregu.00202.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle androgen receptor (AR) expression at the onset of functional overload (OV) has not been well described. It is also not known if overload and/or anabolic steroid differentially regulate AR expression. The purpose of this study was to examine AR gene expression at the onset of functional OV in rat plantaris muscle with and without nandrolone decanoate (ND) administration. The functional significance of AR protein induction was examined using skeletal α-actin promoter activity in transiently transfected CV-1 fibroblast cells. Male Sprague-Dawley rats (∼125 g) were functionally overloaded for 1, 3, 7, or 21 days. A subset of animals was given an ND (6 mg/kg) injection at day 0 and then overloaded for 3 days. Control animals underwent sham surgeries. AR protein concentration increased 106 and 279% after 7 and 21 days of OV, respectively. AR mRNA increased 430% after 7 days of OV. AR protein expression in C2C12 murine myotubes subjected to 1% chronic radial stretch for 18 h was elevated 101% compared with control. ND treatment increased AR protein concentration 1,300% compared with controls, and there was no additional effect when ND and OV were combined. ND with 3 days of OV treatment increased AR mRNA expression 50% compared with control. AR overexpression in transiently transfected CV-1 fibroblast cells increased -424 bp skeletal α-actin promoter activity 80 to 1,800% in a dose-dependent fashion. Co-overexpression of either serum response factor (SRF) or active RhoA with AR overexpression induced a synergistic 36- and 28-fold induction of skeletal α-actin promoter. Cotransfection of AR, SRF, and active RhoA induced 180-fold increase in skeletal α-actin promoter activity. In conclusion, AR protein expression is increased after 7 days of functional OV, and this induction is regulated pretranslationally. AR induction in conjunction with SRF and RhoA signaling may be an important regulator of gene expression during overload-induced muscle growth.
Collapse
Affiliation(s)
- Won Jun Lee
- Univ. of South Carolina, Dept. of Exercise Science, 1300 Wheat St., Columbia SC 29208, USA
| | | | | | | |
Collapse
|
22
|
Kaarbø M, Crane DI, Murrell WG. RhoA is highly up-regulated in the process of early heart development of the chick and important for normal embryogenesis. Dev Dyn 2003; 227:35-47. [PMID: 12701097 DOI: 10.1002/dvdy.10283] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have used molecular techniques, combined with classic embryological methods, to identify up-regulated genes associated with early heart development. One of the cDNAs identified and isolated by screening a chick lambda cDNA library was the small guanosine triphosphatase RhoA. RhoA has at least three different length mRNA species, each varying in the length of the 3' untranslated region. In situ hybridisation and immunocytochemistry analysis of RhoA expression show marked up-regulation in the heart-forming region. In other systems, RhoA signalling has been shown to be important for both gene expression and morphology. To investigate the function of RhoA in early heart development, we used small interfering RNAs (siRNA) in early chick embryos. Disruption of RhoA expression by siRNA treatment resulted in lack of heart tube fusion and abnormal head development. These data indicate that RhoA is important for normal embryogenesis.
Collapse
Affiliation(s)
- Mari Kaarbø
- School of Biomolecular and Biomedical Science, Griffith University, Nathan, Queensland, Australia
| | | | | |
Collapse
|
23
|
Abstract
Rho GTPases, such as Rho, Rac and Cdc42, are known to regulate many cellular processes including cell movement and cell adhesion. While the cellular events of germ cell movement are crucial to spermatogenesis since developing germ cells must migrate progressively from the basal to the adluminal compartment but remain attached to the seminiferous epithelium, the physiological significance of Rho GTPases in spermatogenesis remains largely unexplored. This paper reviews some recent findings on Rho GTPases in the field with emphasis on the studies in the testis, upon which future studies can be designed to delineate the role of Rho GTPases in spermatogenesis.
Collapse
Affiliation(s)
- Wing-Yee Lui
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
24
|
Osses N, Brandan E. ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression. Am J Physiol Cell Physiol 2002; 282:C383-94. [PMID: 11788350 DOI: 10.1152/ajpcell.00322.2001] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription of specific skeletal muscle genes requires the expression of the muscle regulatory factor myogenin. To assess the role of the extracellular matrix (ECM) in skeletal muscle differentiation, the specific inhibitors of proteoglycan synthesis, sodium chlorate and beta-D-xyloside, were used. Treatment of cultured skeletal muscle cells with each inhibitor substantially abolished the expression of creatine kinase and alpha-dystroglycan. This inhibition was totally reversed by the addition of exogenous ECM. Myoblast treatment with each inhibitor affected the deposition and assembly of the ECM constituents glypican, fibronectin, and laminin. These treatments did not affect MyoD, MEF2A, and myogenin expression and nuclear localization. Differentiated myoblast treatment with RGDS peptides completely inhibited myogenesis without affecting the expression or nuclear localization of myogenin. Integrin-mediated signaling of focal adhesion kinase was partially inhibited by chlorate and beta-D-xyloside, an effect reversed by the addition of exogenous ECM gel. These results suggested that the expression of myogenin is not sufficient to successfully drive skeletal muscle formation and that ECM is required to complete the skeletal muscle differentiation process.
Collapse
Affiliation(s)
- Nelson Osses
- Centro de Regulación Celular y Patología, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Millennium Institute for Fundamental and Applied Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
25
|
Gordon SE, Flück M, Booth FW. Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol (1985) 2001; 90:1174-83; discussion 1165. [PMID: 11181634 DOI: 10.1152/jappl.2001.90.3.1174] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This investigation examined the effect of mechanical loading state on focal adhesion kinase (FAK), paxillin, and serum response factor (SRF) in rat skeletal muscle. We found that FAK concentration and tyrosine phosphorylation, paxillin concentration, and SRF concentration are all lower in the lesser load-bearing fast-twitch plantaris and gastrocnemius muscles compared with the greater load-bearing slow-twitch soleus muscle. Of these three muscles, 7 days of mechanical unloading via tail suspension elicited a decrease in FAK tyrosine phosphorylation only in the soleus muscle and decreases in FAK and paxillin concentrations only in the plantaris and gastrocnemius muscles. Unloading decreased SRF concentration in all three muscles. Mechanical overloading (via bilateral gastrocnemius ablation) for 1 or 8 days increased FAK and paxillin concentrations in the soleus and plantaris muscles. Additionally, whereas FAK tyrosine phosphorylation and SRF concentration were increased by < or =1 day of overloading in the soleus muscle, these increases did not occur until somewhere between 1 and 8 days of overloading in the plantaris muscle. These data indicate that, in the skeletal muscles of rats, the focal adhesion complex proteins FAK and paxillin and the transcription factor SRF are generally modulated in association with the mechanical loading state of the muscle. However, the somewhat different patterns of adaptation of these proteins to altered loading in slow- vs. fast-twitch skeletal muscles indicate that the mechanisms and time course of adaptation may partly depend on the prior loading state of the muscle.
Collapse
Affiliation(s)
- S E Gordon
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
26
|
Prologue: low-molecular-weight GTPases in the heart and circulation. Am J Physiol Heart Circ Physiol 2000; 278:H1733-5. [PMID: 10843866 DOI: 10.1152/ajpheart.2000.278.6.h1733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|